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Let R be an integral domain with quotient field K.

We want to associate an abelian group G with R

R — G = CI(R), the class group of R.

If R is a Dedekind domain or a Prufer domain, we have

CI(R) = Inv(R)/Prin(R), the ideal class group of R.

For any integral domain R, we define

Pic(R) = Inv(R)/Prin(R), the Picard group of R.

[f R is a Krull domain, we have

CI(R) = D(R)/Prin(R), the divisor class group of R.

For any integral domain R, we define

Cl4(R) = T(R)/Prin(R), the (t-)class group of R.

Here, T(R) = { 1] 1 is a t-invertible (fractional) t-ideal of R }
is an abelian group under the t-multiplication IxJ = (1J),

and Prin(R) is its subgroup of principal (fractional) ideals.



We write elements of Cl(R) as [Il. Thus [I] = [J] & \(
] = xJ forsome 0 #¥xe€eK & | =J as R-modules.
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Let F(R) = {111 is a nonzero fractional 1deal of R }.
F(R) is a commutative monoid (with identity R) under

the usual multiplication of ideals.

Def. An [ € F(R) is invertible if thereisa J ¢ F(R) with
IJ = R. Necessarily J=(R:I) ={xeK|xICR} = =

Inv(R) = {1 € F(R)II isinvertible } is an abelian group
and a submonoid of F(R).

Prin(R) = { xR |0 # x € K} is a subgroup of Inv(R).

Def. For any integral domain R, we define

Pic(R) = Inv(R)/Prin(R), the Picard group of R.

Note that Pic(R) is the group of isomorphism classes of
projective ideals, or f. g. rank-one projective R-modules.



Dedekind, Prufer, and Krull domains

Def. (1) R 1is a Dedekind domain if all nonzero (fractional)
ideals of R are invertible.

(2) R a Prufer domain if all nonzero f. g. (fractional)
ideals of R are invertible.

(3) R is a Bezout domain if all f. g. (fractional) ideals of
R are principal.

st
Facts. (1) For R Dedekind, Pic(R) = 0 & R isa PID." juan3
(2) For R Priifer, Pic(R) = 0 & R is a Bezout domain.
(3) If R is quasilocal (or semiquasilocal), then Pic(R) = O.
(4) If R is a Dedekind domain arising as the ring of
integers in a finite algebraic extension of @, then Pic(R) is
finite.

Thm. (Claborn-1966) Let G be an abelian group. Then there
is a Dedekind domain R with Pic(R) = G. O

Thm. TFAE for an integral domain R (not a field).
(1) R is a Dedekind domain (all nonzero ideals of R are
71 vertible).
( (2)r R is Noetherian, integrally closed, and dimR = 1.
. J(3)/ R is Noetherian and Rp is a DVR for each maximal
ideal M of R. O

%

Let X"(R) = { P|P is a ht-one prime ideal of R } C Spec(R).



Def. An integral domain R (not a field) is a Krull domain if
(1) Rp is a DVR for all P € X¥(R),

(2) R = NpextryRp,
(3) (FC) Each 0 # x € R is aunitin Rp for almost all

P ¢ XW(R) (equivalently, x is contained in at most a finite
number of ht-one prime ideals of R).

Facts. (1) R Dedekind = R Krull.
(2) A Krull domain R is Dedekind & dimR = 1.
(3) R UFD = R Krull
(4) R Noetherian integrally closed = R Krull

(5) R Krull = Rg, RIX], RI[X]] Krull \ga

) P
Thm. (Mori, Nagata-1952-1955). The integral closure of a
Noetherian integral domain is a Krull domain. O

Thm. An integral domain R is a Krull domain if and only if
(1) R 1is completely integrally closed, and
(2) R satisfies ACC on integral divisorial ideals
/lie, R is a Mori domain). 0 (=) o"& & hanstd~
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Def. (1) An x € K is almost integral over R if rxM ¢ R &
/for some 0#r € R and all n2>1 implies x € R. Then R is
completely integrally closed (c.i. c)) if x almost integral

over R implies x € R.

(2) For I ¢ F(R), define I. = (U (=n{xR|IcCRx

A4
with x € K}). Then [ is divisorial or a v-ideal if I, = L



Facts. (1) R is integrally closed & (I1:1) = R for all
nonzero f. g. (fractional) ideals I of R.

(2) R is completely integrally closed & (1:1) = R for all
nonzero (fractional) ideals [ of R.

(3) R is completely integrally closed = R is integrally
closed.

(4) If R 1is Noetherian, then R is integrally closed & R
is completely integrally closed.

(5) R Noetherian = R 1is a Mori domain.

(6) We have Y4 = I_l; so (I,), = I,. Thus I, is

Vv v
always a v-ideal. Note that an invertible ideal is divisorial.

Thm. A Noetherian integrally closed domain is a Krull
domain. O

Let D(R) = {1 € F(R) |1 is divisorial }.
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D(R) is a commutative monoid (with identity R) under
the v-multiplication IxJ = (IJ),,, We have

Prin(R) ¢ Inv(R) € D(R)., ‘somemeds

Def. An [ € D(R) is v-invertible if (IJ),, = R for some
J € F(R). Note that I has an inversein D(R) & (1:1) = R,

e W .

and J,, = 1"l Hence I is v-invertible & (II o

Thus if R is c.i. c. (in particular, if R is a Krull domain),
then D(R) is an abelian group under the v-multiplication

IxJ = (IJ), with identity R and the inverse of 1 is T



Def. For R a Krull domain, we define

CI(R) = D(R)/Prin(R), the divisor class group of R.
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Pic(R) ¢ CI(R), and CI(R) = 0 & R 1is a UFD.

For R Dedekind, ClI(R) = Pic(R) since Inv(R) = D(R) = F(R).

Def. For R a Krull domain, we define Vb JoX

G(R) = D(R)/Inv(R), the local divisor class group of R.
0 — Pic(R) — CI(R) — G(R) —8 0

Thm. (Chouinard-1981) Let G be an abelian group. Then
there is a quasilocal Krull domain (R, M) with CI(R) = G.
Moreover, for any field K, the Krull domain R may be
chosen to have the form R = K+ M. O

Let R be a Dedekind domain. Then each nonzero ideal of
R is (uniquely) a product of prime ideals. So F(R) = Inv(R)
is a free abelian group on Spec(R) - {0} = XW(R).

Let R be a Krull domain. Then each I € D(R) may be

written uniquely as [ = (P4"t - P™), for some P; ¢ X*¥(R)
and nj € Z. This shows that a Krull domain R is a UFD &
each ht-one prime ideal of R is principal & CI(R) = 0.
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Define Div(R) to be the free abelian group on X% (R).
Then D(R) = Div(R), Prin(R) = { (np) | xR = (TTP"'P),, for some
0# x € K}, and

CI(R) = D(R)/Prin(R) = Div(R)/Prin(R).

For 1= (TTP"P),, (Il — (np) + Prin(R)

Star Operations

Def. A mapping * : F(R) —— F(R), ] — [ 1is a star
operation on R if the following hold for all 0# a € K, and
all 1I,J € F(R)

(1) (a)* = (a), and (al)* = al*,
(2) 1cl”, and 1cJ= "¢ J*,
(3) 1** = I*.

Iy = (1™ and Ig = I define star operations on R.
Def. (1) I € F(R) is a *-ideal if [* = 1. Thus [ is a *x-ideal
& [=J% for some J € F(R).

(2) 1 e F(R) is a finite type =-ideal if | = J* for some
fw Jil

MM
We have (IJ)* = (I*d)* = (I1*J*)* for all I, J € F(R).
Thus 7 ,(R) is a commutative monoid (with identity R)

with respect to the x-multiplication IxJ = (IJ)*



The v-operation induces a new star operation on R, called
the t-operation, by

,=U{J,l 0#JcClisf.g. ) for 1 e F(R

Cometin

We say that 1 € F(R) is a t-ideal if Iy = L. 'jr‘/-—zn/ubu‘ t\
Ca/p'{/"?’f"u{/‘ ﬁ)

Facts. (1) 1 c I, c I, forall T e F(R). Thus a v-ideal is also

a t-ideal.

(2) I4 =1, if 1 isf. g

(3) 1 is a t-ideal & 0 #X1,...,Xp €l =
(X1, ..., Xn)y C L

(4) Any proper t-ideal is contained in a (necessarily
prime) t-ideal which is maximal wrt being a proper t-ideal.
Let t-Max(D) € Spec(R) be the set of maximal t- 1dea15 of R.

(5) Any ht-one prime ideal is a t-ideal. < ¥ }m ¥ i
(6) 1= Npee-manmylp for I a t-ideal of R. ”‘“’“7’“" g

£ Mey(r)<

Fi(R) ={1e FR)II is a t-ideal } is a commutative

monoid (with identity R) under the t-multiplication
I%d = (IJ)t

Def. (1) An I € F((R) is t-invertible if (IJ); = R for some
J € F(R). Note that if I has an inverse J in F((R), then

Ji = I''. Hence 1 is t-invertible & (II'1), = R. (We will
say that an [ € ¥(R) is t-invertible if [; is t-invertible.)



(2) Let T(R) ={Ie FR)|(IJ) =R for some J € F(R) }.

Then T(R) is an abelian group under the t-multiplication
IxJ = (IJ)y. T(R) is the group of t-invertible t-ideals.

(3) Let Di(R) = {1 e F(R)II is a finite type v-ideal, ie.,
[ =Jy forsomef.g. Je F(R)}. Then D¢(R) is submonoid of

D(R) under the usual v-multiplication IxJ = (1J)- cLe

[
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Facts. (1) 1 e T(R) = 1 e D¢(R). S ( PVS

<
(2) TeTR) = I=x,RN --nx,R for some 0 7 x; € K.
(3) TFAE for a t-ideal I of R. L Ly d)

x

N

P
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(a) 1 is t-invertible, ie, (II'Y), = R. 7o
(b) I, 1T € DiR), and (I:1) = R.

(c) 1€ Di(R) and Ip is principal for all P ¢ t-Max(R).
(d I'' ¢ P forall Pet-Max(R).

]

. v TN
Prin(R) € Inv(R) € T(R) € D¢(R) € D(R) € F4(R) ¢ F(R)
hf«“‘f M
Def. For any integral domain R, we define Q(MM W

CI(R) = T(R)/Prin(R), the (t-)class group of R.

CR) is an abelian group and Pic(R) ¢ CI(R).



124

Def. For any integral domain R, we define

G(R) = Cl(R)/Pic(R), the local (t-)class group of R.

0 —— Pic(R) — C(R) — GR) — O

Does CI(R) = CU(R)7? (S R

(1) R is a Prufer domain.
t =d and T(R) = D¢(R) = Inv(R); so CI(R) = Pic(R).
CR) =0 & R isa Bezout domain.

v=t=4d if R isa Dedekind domain, and

CilR) =0 & R is a PID. ' W
' M A

(2) R is a Krull domain. (\& v et

t = v and T(R) = D(R) = D¢(R); so Cl(R) = CI(R).
Also, t-Max(R) = X®(R).

Thm. (Kang-1989) TFAE for an integral domain R. | Yo vi/MJ
(1) R is a Krull domain. WS t b o ”
(2) Every t-ideal is t-invertible (ie., T(ml'g = F.(R)).
(3) Every prime t-ideal is t-invertible.
(4) Every nonzero prime ideal contains a t-invertible

prime t-ideal.
(5) Every proper t-ideal is a t-product of (t-invertible)

prime ideals. -
(6) Ry is a UFD for each M € t-Max(R) and every

minimal prime ideal is a finite type t-ideal. O
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(3) R is a Mori domain (in particular, if R is Noetherian).

t = v and T(R) € D¢(R) = D(R)
(T(R) =D(R) ©& R isc.i.c. ©® R is a Krull domain)

Let R be a Mori domain. Then R = Ry N R, for
canonical overrings R4 and Rj,, where R4 is the “Krull
part” of R and R, is the “nonKrull part” of R, and CI(R) is
related to Cl(R4) and Cl(R,). This has been investigated in

several papers by Barucci, Gabelli, and Reitman in the late
80’s and early 90’s.

(4) R is a Prufer v-multiplication domain (PVMD) : '
v Lehs 7 Wﬂyﬁfr
(Recall that R is a PVMD if D¢(R) is a group under
v-multiplication, © Rp is a valuation domain for each

P ¢ t-Max(R).)

Prufer domains and Krull domains are PVMDs. i \
If R is a PVMD, then so are RS and R[> ,ﬁmft /1 > TR

i i B - _
R isa PVMD & T(R) = D¢(R). D,UD\)- I (R) pu 2/
W W\‘\ pap)e PR GGy s
<" CI(R) = 0 & R is a GCD-domain.

= gl et Fr) 6
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(5) R is a weakly Krull domain.

(Recall that R is weakly Krull if R = Npex(WryRp and
this intersection has FC.)

Any Krull domain or one-dimensional integral domain is
weakly Krull.
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Def. An integral domain R 1@ factorial if each
nonzero, nonunit of R is a product of primary elements.

Thrm (DDA, Zafrullah- 1990) An integral domain R is
( weakly\factorial « R is ‘weakly Krull and CI(R) = O

Lt o \/—“””DL

(6) R is completely integrally closed. W.

D(R) is a group; thus Cl,(R) = D(R)/Prin(R) is an abelian|

group. However, T(R) may be a proper subgroup of D(R), \
and thus Cl(R) may be a proper subgroup of Cl,(R).

Cla
Ex. Let R be a one-dimensional valuation domain with '
value group Q. Then CI(R) = Pic(R) = since R is a Bezout
domain (or R is one-dimensional and quasﬂoc_) Also, D(R)
is a group since a one-dimensional valuation domain. is
completely integrally closed. However, R has nonpr1nc1pal
divisorial ideals since its value group is Q. Thus Cl,(R) # Q

’f, \‘MKE ML - LL\
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When does CI(R) = Pic(R), i.e., when is G(R)
Thm. Let R be an integral domain such that each %aximal
ideal of R is a t-ideal. Then CN(R) = Pic(R). In particular,
CI(R) = Pic(R) when R is one-dimensional. GM W{
Proof. Let M be a maximal ideal of R and [ ¢ T(R). If

i M, then R = (11—1)t C M, = M, a contradiction. Thus

II_:L = R; so [ € Inv(R), and hence CI(R) = Pic(R).
If R is one-dimensional, then t-Max(R) = Max(R). O
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Thm. (DDA-1978) TFAE for a Krull domain R.
(1) CI(R) = Pic(R).
(2) Rp is a UFD for each maximal ideal M of R,

(3) For each P ¢ X(R), P ¢ Inv(R). ——y
(4) I,Jd e D(R) = 1J e DR). 113'@(@\ S
(5) The intersection of any two (principal) invertible

1deals 1s invertible. O

Def. An integral domain R is a generalized GCD domain
(G-GCD domain) if the intersection of two principal ideals is

invertible. L 'D{UL'\_J =2 erF\\J By . RN M?
Thm. Let R be a PYMD. Then CIR) = Pic(R) & R isa
G-GCD domain. O \}{,,;:r@f-cm STlEN > Brtl) - Go

s
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Thm. Let R be an integral domain. Then CI(R)
I,JeT(R) = 1Je T(R). O k@\ T/H /ETk

Thm. (DDA-1982) Let R be an integral domain. Then
G(Ryp) = 0 (e, CI{Rpy) = 0) for all maximal ideals M of R =

G(R) = 0 (i.e, CI(R) = Pic(R)). O

When is CI(R) torsion?

Def. An integral domain R is an almost GCD domain if for
all 0 # %,y € R, thereisan n = n(x.y ,¥) 2 1 such that

|

xR N y"?R is principal. /
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Thm. (Storch-1967) TFAE for a Krull domain R.
(1) R is almost factorial, i. e, CI(R) is a torsion, group. ol
(2) R is an almost GCD domain. xR (91 preerd Bl
(3) Each subintersection of R is a localization of R/ ",
(4) Some power of each nonzero, nonunit of R isa
product of primary elements. i
(5) For P ¢ X®(R), P = rad(xR) for some x ¢ R. O

Thm. (Zafrullah-1985) A PVMD R has CI(R) torsion <«
R is an almost GCD domain. O

Def. An integral domain R 1is almost weakly factorial if
for each nonzero, nonunit x € R, thereisan n = n(x) > 1

such that x" is a product of primary elements of R.

Thm. (DDA, Mott, Zafrullah-1992) An integral domain R is
almost weakly factorial & R is @ea@ Krull and CI(R) is
a torsion group. O N

) et R
( }U. {’-!. ) J

So we have for a Krull domain R

CI(R) = O: R is factorial

G(R) = O: R is locally factorial

CI(R) torsion: R is almost factorial

G(R) torsion: R is almost locally (or locally almost)

factorial
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Thm. (DDA-1978-82) TFAE for a Krull domain R.

(1) R is almost locally factorial, i. e,, G(R) is torsion.

(2) R is locally almost factorial, i.e., Cl(Rpg) 1s torsion for
each maximal ideal M of R.

(3) Some power of each invertible ideal is a product of
invertible primary ideals.

(4). For all I,J € Inv(R), I N J" is invertible for some
n = n(l,J) > 1.

(5) Each P ¢ X(R) is the radical of an invertible ideal.
O

Thm. (DDA-1982) Let R be an integral domain. Then
G(Rpg) is torsion for all maximal ideals M of R = G(R) 1is

torsion. O F 0 ( BW
CL U _ - s bt A L‘\“
e Y,,mn{,}.._/ ___'\ 1)) | W’L\}f’
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The early history of CI(R)

1. A. Bouvier, Le groupe des classes d’'un anneau intégré,
107 eme Congres National des Societe Savantes, Brest, Fasc.
IV(1982), 85-92.

2. M. Zafrullah, A general theory of almost factoriality,
Manuscripta Math. 51(1985), 29-62. (received 3/26/84)

3. A. Bouvier and M. Zafrullah, On some class groups of an
integral domain, Bull. Soc. Math. Grec. 29(1988), 46-59.
(This is a revised version of “On the class group”
(1984/85) by Bouvier and Zafrullah.)
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Maps between class groups, I
Let A C B be an extension of integral domains.

Then I € Inv(A) = IB € Inv(B) and xA — xB;so | — IB
induces a homomorphism Pic(A) —— Pic(B) by [I] — [IB].

For 1 € T(A),is IB € T(B)? Is IB even a t-ideal?
(The localization of a t-ideal need not be a t-ideal.)

Suppose that A C B is a flat extension. Then for [ e T(A),
I=x1AN " NxA s0o IB=x4yBn - nNx B is av-ideal
(and hence a t-ideal) of B.

Lemma. Let A C B be a flat extension of integral domains.
(1) (B),, = (I,B), for all f.g. I ¢ F(R).

(2) (IB); = (I,B); for all I e F(R).

In particular, for S € R multiplicatively closed.
(IRg),, = (I, Rg), forallf g. I € F(R) and (IRg), = (I,Rg),

for all 1T e F(R).

Proof. (1) Let I =(xq,...,x%,). Then I * = s~ il offy - o
Nx, 14;s0 171B = x171B N - nx,71B = (IB)"! since A C B
is flat. Then x € I, implies xI't ¢ A:so xI B C B, and
Bt = @™t = (B),. Thus I, ¢ (IB)y, and

hence (I B),, ¢ (IB),,. The other inclusion always holds; so we
have (IB)y = {1 Bly O

hence x € (I



Note that (IB), = (I4B); & I, € (IB)y.

Thm. Let A C B be a flat extension of integral domains.
(1) If 1€ T(A), then IB ¢ T(B).

(2) 1 — IB induces a homomorphism CIl(A) — CI(B)
given by [I] — [IBL

Proof. (1) Let I e T(A); so (II'Y), = A. Thus ((IB)I 'B)) =

(117'B), = (11I™HB), = (AB), = B, = B; so IB ¢ T(B).

(2) By (1), we have the map ¢ : T(A) —— T(B), given by
(1) = IB, which is a homomorphism since @(IxJ) = ¢((1J),) =

(10),B = ((10),B); = (IJB); = ((IBYJB)); = @(Dx@(J) for all

I, J € T(A). We also have ¢(xA) = xB for all 0 # x € gf(A).
Thus we have an induced homomorphism CIl(A) —— CI(B)
given by [I] — [IB]. O

The following commutative diagram has exact rows.

0 —— Pic(A) — Cl(A) — G(A) — O

T R

@ === Pig(B) === CUHB) === G(B) = {

two special cases
CI(R) — CIR[X]), (1] — [IR[X]]

CI(R) — Cl(Rg), i
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Thm. Let R be a Krull domam%men CI(R) = CI(R[X]. O

Pic(R) — Pic(R[X]) is always a split monomorphism] U

ClI(R) — CU(R[X]) 1is always a monomorphism.

Def. An integral domain R with quotient field K is
seminormal if x2, x3 ¢ R for x € K implies x € R.
(R c.i.c. = R integrally closed = R seminormal.
No implication is reversible )

Thm. (1) (Gilmer, Heitmann-1980) PIC(R)\}IC(R[X) &
R is seminormal. L~

(2) (Gabelli-1987) CI(R) .'CI(R[X]) & R is integrally
closed. O :

An application to the D + M construction

Let T be an integral domain of the form T = K + M,
where K is a field containedin T and M 1is a nonzero
maximal ideal of T. Let D be a proper subring of K with
quotient field K and S =D-{0}. Then R=D+M isa
subring of T with Rg = K + M = T. Also, R is never a Krull
domain, and M is a divisorial ideal (and hence a t-ideal) of
R. (This will be generalized to general pullbacks later.)

We have DC R =D+M CRg=K+M =T, all are flat

extensions, so we have induced homomorphisms



|
Y

(

.

,C

x @ Cl(D) — CI(D + M), [I] — [IR] = [I + M], and
A : CI(D + M) —— CI(K + M), [J] — [Jg]
Thm. (A, Rycaert-1988)

(1) 0 — Pic(D) —— Pic(R) —— Pic(T) — 0 1s exact.
« (2) 0 — CI(D) —— CI(R) — CI(T) is exact.

({\' (3) If T is either quasilocal or CIUT) = O, then

Pic(D) = Pic(D + M) and CI(D) = CI(D + M).
Proof. (3) Suppose that T is quasilocal. Then Rg = Rpp = T.

We show that p : CI(R) —— CUT), o(1]) = [Ip], is the zero

map. Since M is a t-ideal of R, we have 1I'* ¢ M for all
Il € T(R). Thus Iy is principalin Ry =T;s0 p =0. O

Cor. Let D be an integral domain with qf(D) = K. Then
(1) Pic(D + XK[X])) = Pic(D) and Pic(D + XK[[X]]) = Pic(D).
(2) CUD + XK[X]) = CI(D) and CID + XK[[X]]) = CI(D). O

This corollary can be used to construct nonKrull domains
with given class group. For example, if D is a Dedekind
domain, then D + XX[X] will be a two-dimensional PVMD
which is neither a Noetherian demain nor a Krull domain.

Ex. In general, p : CI(R) —— CI(T) is not surjective. Let

T = @[XQ,XY,YQ](XQJXY’Y% = Q+ M. Then T is a Noetherian
two-dimensional local Krull domain with CIT) = Z/2Z. Let

R = 7Z + M. Then by the above theorem, we have CHZ + M) =
Cl(Z) = 0. Thus p is not surjective.



¢g : CR) — Cl(Rg), [I] — [Ig], is a homomorphism.

Two questions

(1) How do CI(R) and Cl(Rg) compare?
(2) What can we say about ¢g? When is @g injective

or surjective?

Nagata’s Thm. Let R be a Krull domain and S € R be
multiplicatively closed. Then the homomorphism
pg : CI(R) — Cl(Rg) is surjective and ker ¢g =

<[Pl P e X(R) with PN S # & >. O

Cor. Let R be a Krull domain. Then the homomorphism
pg is injective (and hence an isomorphism) if and only if the

saturation of S 1is generated by principal primes. O

Thm. Let R be a PVMD. Then ¢g: CI(R) —— Cl(Rg) is

sur jective.
Proof. Let J € T(Rg) = Di(Rg). Then J = (IRg),, for some

f.g. 1 € F(R). Thus I, € D¢(R) = T(R) and I,Rg = (I ,Rg)y =
(IRg)y, = J. Hence T(R) — T(Rg) is surjective, and thus

(g 1is surjective. O

Ex. Let G and H be any two abelian groups. Then there is
a Krull domain D with CI(D) = G. Let qf(D) = K. Also, there
is a quasilocal Krull domain T = K+ M with CUT) = H. Let
R=D+M and S=D-{0}). Then Rg=K+M =T, and

CI(D + M) = CI(D) = G and Cl(Rg) = CI(T) = H. Note that in this

case, g : CI(R) — Cl(Rg) is the zero map since Rg = Ry,



2|

Now we go back to: when does CI(R) = Pic(R)?

/= vy
Does CI(R) = Pic(R) & ClRpp) = 0 for each maximal ideal

M of R? (=) No, choose CI(R) = 0 (so CI(R) = Pic(R)), but
Cl(Rpp) # 0 in the above example.

Thm. TFAE for an integral domain R.
(1) Cl(Rp) = O for each maximal ideal M of R.

(2) CI(R) = Pic(R) and @ : ClI(R) —— Cl(Rpy) s

surjective for each maximal ideal M of R.
(Thus G(Rpp) = 0 for all maximal ideals M of R &

G(R) = 0 and each @) is surjective) O NJ)\L
A W

Cor. Let R be a PVMD. Then CIR) = Pic(R) & Ry is a

GCD-domain for all maximal ideals M of R.
Proof. Each ¢p is surjective when R is a PVMD. O

Thus, in general, we can’t say anything about Cl(R) and
Cl{Rg). So we put extra conditions on R or S to try to get

better results.

Thm. (AA-1988) Let S C R be a multiplicatively closed set
generated by principal primes. Then ¢g : Cl(R) — Cl(Rg)

is injective. Thus Pic(R) — Pic(Rg) is also injective. O
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CI(R) —— Cl(Rg) injective = Pic(R) — Pic(Rg) injective?
fe pradd 1ol e

CI(R) —— CI(Rg) surjective = Pic(R) — Pic(Rg) surjective
Pic(R) —— Pic(Rg) injective = CI(R) — Cl(Rg) injective?

Pic(R) — Pic(Rg) surjective = CI(R) — Cl(Rg) surjective’
wn R

The case where S is generated by principal primes has
been investigated by many authors.

Ex. (Gabelli, Roitman-1990) They gave two examples of an
integral domain R where S is generated by principal
primes, but ¢g : CI(R) — Cl(Rg) is not surjective.
(1) R is quasilocal and S = <p> for p a prime of R.
(2) R is a c.i. c. quasilocal domain and Rg is a Krull

domain.

Def. An integral domain R is archimedean if N (7)) = {0)
for all nonunits r € R. :
(R c.i. c, R satisfies ACCP, or dimR =1 = R archimedean)

Thm. (GB-1990) Let S € R be generated by principal
primes. Then ¢g :CI(R) — CI(Rg) is an isomorphism if
(1) R satisfies ACCP.
(2) R 1is archimedean and S is finitely generated.
(3) t-dimR = 1 (i.e, each P ¢ t-Max(R) has ht one).
(4) n((pM) = {0} (equivalently, ht(p) = 1) for each prime
p € S and N(py) = {0} for any infinite family {p,} of
nonassociate primes p, € S. O
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Ex. Let S={1, %X X% ... }cRIX]. Then X is prime and
R[X]s = RIX,X 1. By (4) above, CI(R[X] = CI(R[X,X ']), and

CI(R) = Cl(R[X,Xﬁl]) if R is integrally closed.

Thm. (Nour El Abidine-1990) Let S € R be generated by
principal primes. Then ¢g :CI(R) —— Cl(Rg) is an

isomorphism if R is v-coherent (i.e, I, N J,, is v-finite for
any nonzero f. g. ideals I and J of R). O

Many of the above results are special cases of the following
theorem.

Thm. (A, Chang-2003) Let S € R be a multiplicatively
closed set generated by principal primes. Assume that if P is
a prime t-ideal of R such that PN S = &, then (PRg); # Rs.

Then ¢g :Cl(R) — Cl(Rg) is an isomorphism. O

For an arbitrary multiplicatively closed set S C R,
conditions for ¢g : CI(R) — Cl(Rg) to be surjective have
also been investigated by many authors. For example, ¢g is
sur jective if

(1) R is a Mori domain such that htP = 1 for each
P ¢ t-Max(R) which intersects S. (GR-1990)

(2) dimR = 1. (GR-1990)

(3) t-dimR = 1. (AHZ-1993)

Thm. (AHZ-1993; A, Chang-2003) Let S C R be
multiplicatively closed. Assume that for P ¢ t-Max(R):
if PN S =4,then (PRg);7# Rg; andif PN S ¥ &, then

htP = 1. Then ¢g:Cl(R) — Cl(Rg) is surjective. O



I

R(X) = R[Xlg where S
R<X> = R[X]r, where T

(feRIX)IAf =R, and
{fe R[X)|f is monic }.

I

Thm. (A, Chang-2003). Let R be an integral domain.

(1) If R is integrally closed, then CI(R) = Cl(R<X>).

(2) 0 — Pic(R) — CI(R) —— CI(R(X)) is exact.

(3) If in addition, R is integrally closed, then we have th
SES 0 —— Pic(R) —— CI(R) — CI(R(X)) — 0. O

Splitting sets

Def. (1) Let S ¢ R be a saturated multiplicative set. The
m-complement of S is N =N(3) = {0 #x ¢ RIxR N sk =
xsR for all s € S}. Then N is a saturated multiplicatively
closed set with S N N = U(R).

(2) S is a splitting set of R if SN = R - {0}, ie, if for
each 0 # x € R, we have x = st for some s €S and t € N
(this representation is unique up to unit factors).

(3) S is an lem splitting set if sR N xR is principal for
all s e€ S and x € R.

x. (1) Let S = U(R). Then the m-complement of S is

= R - {0}, and S is a splitting set of R. _
(2) 1f S 1is a splitting set, then sois N, and N(N(S)) = S.
(3) Let T = {p,) be a set of nonassociate primes of R

E
N

such that N(pn) = {0} for each p ¢ T (equivalently, each
ht(p) = 1) and N(py) = {0} for each infinite {py} € T. Then

S = <T> 1is an lem splitting set. Moreover, if R is atomic (i.e,,
every nonzero, nonunit of R is a finite product of irreducible
elements (atoms) of R), then a saturated multiplicatively
closed set is an lecm splitting set & it is generated by
principal primes.



Facts. (1) xRN sR =xsR & (x,5s), = R.
(2) S is an lcm splitting set & Ry is a GCD domain.

(3) Let P be a prime t-ideal of R. Then either
PNS=& or PNN= g,
(4) Let 1 be a t-ideal of R. Then Ig N Iy = 1.

(5) Let sq,...,sp €S and tq,...,ty € N. Then
((Sl, Ce Sn)(ti, o, tn))‘v' = (Sltl’ L B d i Sntr‘l)\f‘

Thm. (AAZ-1991) Let S be a splitting set of R with
m-complement N. Then ClR) = CI{Rg)®BCHRy). In

particular, ¢g : Cl(R) —— Cl(Rg) is surjective. Moreover, if
S is an lcm splitting set, then @g 1is an isomofphism.

Proof. Define a homomorphism ¢ : CI(R) —— Cl(Rg)®CH(R )
by w(ID = ([Is], [IyD.

(injective) Suppose that Ig = tRg and Iy = sRy for some
se€S and t € N. Then I =1IgN Iy =tRg N sRy = stRgN
stRy = stR; so ¢ 1is injective.

(surjective) Let ([I], [J]) € CHURg)®CIH(Ry). Write I = ((tq, .

o, thdgdy and J = ((sq, ..., sy)y)y, for some sq,...,s, €S
and tq,...,t, € N. Let L = (sqtq,...,sptp)y = ((sq, ...,
sp)(tq, ..., tp))v . Then L € Di(R), Lg =1 and Ly = J. Hence

L € T(R); so ¢ is surjective.
If S is an lem splitting set, then ClH(Rpy) = 0 since Ry is
a GCD domain. Thus ¢g is an isormorphisn. O

Note: @wg may be an isomorphism for a multiplicative set S
generated by principal primes which is not a splitting set.



Does Pic(R) = Pic(Rg)®Pic(Ry)?

The above proof shows that Ylpjir) is injective, but
Vlpic(r) need not be surjective. For example, let R = D[X]
and S be the lem splitting set generated by the prime X.

Then Rg = DIX,X %] and Ry is a GCD domain. If D is
seminormal, but not quasinormal, then Pic(D) = Pic(D[X]) #

Pic(D[X,X *)); so Vlpic(r) 1s not surjective.

We can also generalize splitting sets by considering
multiplicative sets S such that SN = D - P, for P a prime
(t-)ideal of R. The “splitting set theory” works here because

(1) If 1 ¢ P,then I =(I-P), and

(2) If 1I't ¢ P, then we can assume | ¢ P by replacing
I by ul for suitable u € I_l.

Thm. (A, Chang-2003). Let R be an integral domain, P a
prime t-ideal of R, S C R a saturated multiplicative set, and
N the m-complement of S such that SN = D - P. Then

CI(R) = CIRg)®CIRy) & II'' ¢ Pg and JJ'! ¢ Py for all
t-invertible ideals I and J of Rg and Ry, respectively.

In particular, this holds when either R 1is v-coherent, htP
=1, P = (aR :bR) forsome 0 #a,be¢ R,or R isa PVYMD. O

Thm. (A, Chang-2003) Let R be an integral domain, P a
prime ideal of R, 5 € R a saturated multiplicative set, and
N the m-complement of S such that SN = D - P. Assume
that for each maximal ideal Q of R, either Q N S =% or
QNN = &. Then Pic(R) = Pic(Rg)®Pic(Ry). O
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One can also define almost splitting sets. A saturated
multiplicatively closed set S c R 1s an almost splitting set
if for each 0 # x ¢ R, thereisan n = n(x) > 1 such that

X" = st forsome se€S and te N = N(S). In this case, CI(R)
Is torsion if and only if CRg) and Cl(Ry) are both torsion.

Maps between class groups, II

We have seen that if A ¢ B is a flat extension of integral
domains, then we have an induced homomorphism
Cl(A) —— CIB) given by [I] = [IB]. What if B is not a flat
A-module or A is not a subring of B?

For any extension A ¢ B of integral domains, we have a
map F(A) — F((B) given by I — (IB)¢. It seems natural

to define T(A) —— T(B) by | — (IB);. Butis (IB),

t-invertible? It is easy to see that this map is a well-defined
homomorphism if (I,B), = (IB)y for all 1 e F(R). However,

this map may fail to be a homomorphism, and yet it induces
a homomorphism Cl(A) —-s Cl(B).

Ex. Let K be a field and A = KIX,XY] c KIX,Y] = B, Then
(X, X¥)y = A since ht(X,XY) = 2, but (X, XY)B), = (XB), =

#B. Let 1= (X,XY) C A Then (I,B), = (AB), = B, = B, but
(IB)y = (XB), = XB, However, A and B are both UFDs; so
CI(A) = CI(B) = 0 and Cl(A) —— CI(B) is the zero map.



Def. An extension A C B of integral domains is t-linked
(or B is t-linked over A)if (IB)™}
I of A with I'" = A(e,l,=A = (B), = B)

= B for each f. g. 1deal

In the above example, the extension K[X,XY] c K[X,Y] is-
not t-linked. For I = (X,XY), we have I, = A, but (IB),, = XB.

Thm. (DHLZ-1989, AHZ-1993) TFAE for an extension A C B
of integral domains.

(1) A C B is t-linked.

(2) Let 1 e F(A). If Iy = A, then (IB); = B.

(3) If Q € t-Max(B) with QN A # 0, then (Q N A); # A.

(4) If 1, € T(A), then (IB)y = (I{B);. O

Thm. (AHZ-1993) Let A C B be a t-linked extension of
integral domains. Then T(A) —— T(B), I — (IB); induces a

homomorphism CI(A) —— CI(B) given by [I] — [(IB)). O

Thm. (DHLZ-1989) Let R be an integral domain.

(1) Any flat extension of R is t-linked over R. In
particular, any localization of R 1is t-linked over R.

(2) The complete integral closure of R in its quotient
field is t-linked over R.

(3) Anvy intersection of t-linked extensions of R is
t-linked over R. In particular, any intersection of
localizations of R is t-linked over R. O

However, the integral closure of R need not be t-linked
over R.



For Krull domains, there are (at least) two distinct ways to
define homomorphisms between class groups, depending on
how we consider CI(R). First, define ¢':D(A) —— D(B) by
I — (IB),, and then define ¢ : Cl(A) —— CI(B) by I[I] —

[(IB),,]. This map is always well-defined; but is it a
homomorphism? It is if A C B is t-linked.

Def. An extension of Krull domains A C B satisfies (PDE) if
ht(P N A) <1 for each P e XY(B).

Note that A € B satisfies (PDE) & A C B is t-linked.
If A C B is either integral or flat, then it satisfies (PDE).

Let A C B be an extension of Krull domains. Then for
each P ¢ X(1)(A), there are only a finite number Qq, .., Q, €

X(1)(B) with Qg N A = P. Define o" Div(A) —— Div(B) by
(P) — a4(Qq) + =+ + ap(Qp), where PBg = Q"¥Bq,. If ACB

satisfies (PDE), then ©'(Prin(A)) C Prin(B); so there is an
induced isomorphism

g : Cl(A) = Div(A)/Prin(A) —— Div(B)/Prin(B) = CI(B).

If A C B satisfies (PDE), then mpg = 91, where mp is
the canonical isomorphism D(R)/Prin(R) —— Div(R)/Prin(R).

¢
Cl(Ay s===== CI(B)

TTA' ’TTB

Cl{ly) == CIB)
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Subintersections

Def. Let R be a Krull domain with quotient field K. Then
for B#Y c XP(R);let Ry = NpcyRp. Then R C Ry C K is

a Krull domain, called a subintersection of R. Moreover,
R € Ry is a t-linked extension.

Let B be an overring of a Krull domain R. Then
B is a localization of R = gB isflat = B isa

subintersection of R. Moreover, Rg = Ry, where Y =
(PeXR)IPNS=g)

Nagata’s Thm. Let R be a Krull domain and g # Y C
XM (R). Then ¢ : CI(R) —— Cl(Ry), given by [1] — [(IB),],

1s a sur jective homomorphism with ker¢ =
<[P1IPeXPR)-Y> O

Thm. (AHZ-1993) Let R be a PVMD, X be the set of prime
t-ideals of R, & # Y C X, and Ry = Np.yRp. Then

¢ : CI(R) —— CI(Ry), [I] — [IRy] is a surjective
homomorphism. O

Thm. (AHZ-1993) Let R be a weakly Krull domain and
Z+#Y c XPR)., Then Ry = Np.yRp is a weakly Krull
domain and the homomorphism ¢ : CI(R) —— CI(Ry),

[I] — [(IB)4], is surjective with ker¢ = < [P]| P is a

t-invertible t-ideal primary to primes from X®Y(R) - Y >. O



3)

Pullbacks

R T
l © l (o)
D K

= T/M

We can define 5 homomorphism o' : T(D) —s T(R) by
o(I) = o 1(p). However, ' induces a (well-defined)
homomorphism o : CD) —s CUR), o([I]) = [o72(D]), o

the induced homomorphism ©: U(T) —0 K*/U(D), given by
0(x) = xU(D), is surjective. Also, R ¢ T s a flat extension

(in fact, T is a localization of R when 5 is surjective): so
we have g homomorphism B:CUR) —— CUT), given by
pUJD = [UT]. In this case, we have
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Thm. (Fontana, Gabelli-1996; Khalis, Nour El Abidine-1997)

Consider a pullback of type (O) with ¢ : U(T) —— K* /U(D)
sur jective. Then we have the following commutative diagram
with exact rows and columns.

0 0 0

Y .4 l

0 —— Pic(D) —— Pic(R) —— Pic(T) — 0

2 X v B l

0 === CKD) === CHR} == CUT)

Moreover, if p is surjective, then the SES

X p
0 — CI(D) —— CI(R) —/— CUT) — 0 splits. O

When are ¢ and p surjective?

Thm. (FG-1996) The map ¢ is surjective if either T is
semiquasilocal or T = K+ M. 0O



e
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We have already seen that B need not be surjective in
general and that p is surjective if R is a PVMD.

We always have Pic(T) € imp. In many cases (but not
all) imp = Pic(T), and in this case, CI(R) = CI(D)®Pic(T). This
would be the case if either T is a Prufer domain or if every
maximal ideal of T is a t-ideal (e.g.,, dimT = 1).

Def. An integral domain R 1is v-coherent if [, N J, is
v-finite for each pair of f. g. fractional ideals I, J € F(R).
R is v-coherent & [ T is v-finite for each f. g. 1 € F(R)

(this is property P* introduced by Nour El Abidine-1992).

Ex. (FG-1966)

We summarize in a diagram the principal implications among the classes
of domains that we are considering: -

U-coherent

N

PVMD Mori quasi-coherent

s e | I

G-GCD Krull coherent

| l

CGD Prilfer Noetherian

|

Bézout

Thm. (FG-1996) The map Pp is surjective if R is

v-coherent. Moreover, in this case, all the rows are split
exact. O



Thm. (D + M version) Let T =K+ M be an integral
domain, where M is a nonzero maximal ideal of T and K
is a field contained in T. Let D be a proper subring of K
and R =D+ M. Then R is a Prufer (resp., Bezout, GCD,
G-GCD, PVMD) domain if and only if K = gf(D), D and T ar
Prufer (resp., Bezout, GCD, G-GCD, PVMD) domains, and TM

is a valuation domain. O

Thm. (Pullback wversion) Let M be a nonzero maximal
ideal of an integral domain T with residue field K = T/M
and ¢ : T —— T/M = K the natural projection. Let D be :
proper subring of K and R = ¢ 1(D). Then

(0) R is a Prufer domain & K =qgf(D) and D and T
are Prufer domains.

(1) R is a PVMD (resp., G-GCD domain) <« K = gf(D),
D and T are PVMDs (resp. G-GCD domains), and Ty is a

valuation domain.
(2) R isa GCD domain & K = gf(D),D and T are GCD

domains, Ty is a valuation domain, and @ : U(T) — K* /U(D)

is sur jective.
(3) R is a Bezout domain ¢ K =qgf(D),D and T are

Bezout domains, and @ : U(T) — K* /U(D) is surjective.
Proof. (3) Suppose that R is a Bezout domain. Then R is
a Priufer domain; so K = gqf(D) and D and T are Prufer
domains by (0). By a result in [FG-1996], ® is sur jective.
Thus there is a SES 0 — CI(D) — CI(R) — CI(T) — 0. Then
CI(R) = 0 since R is a Bezout domain, and hence CI(D) =
CUT) = 0. Thus D and T are Bezout domains.

Conversely, suppose that K = qf(D), D and T are Bezout
domains, and © is surjective. By (0) again, R is a Prufer
domain. There is a SES 0 — CI(D) — CI(R) — CI(T) — 0.
Then CI(D) = CI(T) = 0 since D and T are Bezout domains.
Thus CI(R) = 0, and hence R is also a Bezout domain. O
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This result can also be obtained via “generalized” splitting
sets. Let S=U(T) N R ¢ R. Then the m-complement of
SinRisN={x€Rl(p(x)€U(D)}andSN=R—M<=>

¢ : U(T) — K*/UD) is surjective. In this case, T = Ra.
@ S

Thm. (A, Chang-2003) Consider a pullback of type (O) with
¢ : U(T) — K*/U(D) sur jective.
(1) CUR) = CI(D)Bimp.

(2) CUR) = CUD)BCUT) if and only if 1™ ¢ M for all
t-invertible t-ideals [ of T,

(3) If either CUT) = Pic(T) or M is a t-ideal of T, then
CI(R) = CI(D)®BCUT). O

Graded integral domains

J
[

Ro®R1BRy®H- - = ®Bnez,Rn and R = ©&,c7Rp

R = DIX] and R = DIX,X '] with deg(dX™ = n for 0#d e D

Thm. Let R be an integral domain.
(1) Pic(R) = Pic(R[X]) if and only if R 1is seminormal.
(2) CHR) = CURIX]) if and only if R is integrally closed.

(3) CHR) = CURIX, X)) if and only if R is integrally
closed. O



Def. An integral domain R is said to be quasinormal if

Pic(R) = Pic(RIX,X 1.

c.1.c. = integrally closed = quasinormal = seminormal
(no implications are reversible)

Monoid domains

Let I be a commutative (additive) monoid. Then the
monoid ring R[] = { ZrgX% Irq € R and o« € [} with

X*XP = X**P is an integral domain if and only if R is an
integral domain and ' is cancellative and torsionless (i.e.,

nx =ny for n21 and x,y € I’ implies x = y). We call
such a monoid ' a grading monoid. Then [ is a grading
monoid & <> ={a-plx,p e} isa torsionfree abelian
group < [ may be totally ordered. Also, note that U(R[T))

={rX%|re UR) and o € U(I) =T n -T}.

For example, R[X] = R[Z,], R[X,X_l] = R[Z], and R[XQ,X3] =

R[{0, 2, 3, .. .}]. More generally, let A be a subring of
R{X,}] generated by monomials cver R. Then A = R[],

where T = { (n,) | TTX, " ¢ A }.

Def. Let [' be a grading monoid.

(1) T is seminormal if 2«, 3¢ € ' for o € <I™>
implies o« € I.

(2) I' is integrally closed if nx € I' for some n > 1
and o € <['> implies « ¢ I.

(3) I is a Krull monoid if " is c.i. ¢c. and satisfies ACC
on divisorial ideals.
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Facts. (1) R[I] is seminormal & R and [ are each
seminormal.

(2) RI[I] is integrally closed & R and [' are each
integrally closed.

(3) RI[I'] is a Krull domain « R is a Krull domain, I' is
a Krull monoid, and «<I'> (equivalently, U(I")) satisfies ACC on
cyclic subgroups.

Thm. (A-1990) Let R be an integral domain and ' a
grading monoid with group of units U(I') = ' n -T.

(1) Pic(R) = Pic(RIT]) if and only if R[] is seminormal
and Pic(R) = Pic(R[U(IN)]).

(2) Suppose that U(I') = 0. Then Pic(R) = Pic(R[T]) if
and only if R is semminormal and [' is seminromal.

(3) Suppose that U(I') # 0. Then Pic(R) = Pic(R[T]) if
and only if R is quasinormal and [’ is seminormal. O

Cor. Pic(R) = Pic(R[I'D for all seminormal grading monoids I
if and only if Pic(R) = Pic(R[Z]). O

Thm. (El Baghdadi, Izelgue, Kabbaj-2002) Let R be an
integral domain with quotient field K and ' a grading
monoid. Then CI(R) = CI(R[T']) if and only if R[] is
integrally closed and CUK[T]) = 0. O

Facts. (1) If R[] is a Krull domain, then CI(R) = CI(RI[T])
1f and only if K[I'] is a UFD. However, we have CI(X[Q,]) = O

since K[Q,] is a Bezout domain, but K[Q,] is not a UFD.



(2) It is possible to have CI(R) = CURIT]) and CIK[TD) # @
even when R[] is a Krull domain. For example, let R and
I be such that CI(R) = Bnhez,Z and CUK[I')) = Z. Thus

CIRIT) = CUR)BCUKIT)) = (Bnez,2) BZ= Bnez,Z.

The Krull domain case

Thm. Let R be an integral domain and G a torsionfree
abelian group. :
(1) (Gilmer, Parker-1974) RI[G] isa UFD & R isa UFD-
and G satisfies ACC on cyclic subgroups. _
(2) (Matsuda-1975) " RI[G] is a Krull domain & R isa
Krull domain and G satisfies ACC on cyclic subgroups. 0O

Thm. Let R be an integral domain and [’ a grading
monoid.

(1) (Gilmer, Parker-1974) R[I'] isa UFD & R is a UFD,
" is a factorial monoid, and U(I') satisfies ACC on cyclic
subgroups.

(2) (Chouinard-1981) RII'] is a Krull domain & R is a
Krull domain, [’ is a Krull monoid, and U(I') satisfies ACC on
cyclic subgroups. O "

Facts. (1) A torsionfree abelian group G satisfies ACC on
cyclic subgroups & each element of G has type (0,0,0,...).
(2) A factorial monoid I' has the form G &F,, where G

is a torsionfree abelian group and F is a free abelian group
with the usual product order.

(3) A Krull monoid I' has the form G®T, where G is a
torsionfree abelian group and T is a submonoid of a free
abelian group F with the usual product order such that
T=<>nNnF,



(4) Thus a UFD semigroup ring is a polynomial ring over a
UFD group ring, and a Krull semigroup ring is a subring of a
polynomial ring over a Krull group ring generated by
monomials.

(5) Let I' be a Krull monocid. Then <I'> satisfies ACC on
cyclic subgroups & U(I") does.

(6) Let R[I'] be a Krull domain. Then CI(RI[I]) =
CI(R)®CI(KIT)), and CI(KI[I)) is independent of the field K.

Def. Let ' be a Krull monoid. Define the divisor class
group of ' to be the abelian group CI(I") of divisorial
fractional ideals of ' under v-multiplication modulo its
subgroup of principal fractional ideals.

Thm. (Chouinard-1981) Let R[I['] be a Krull domain. Then
CI(RITD = C(R)&BCUI). O

Let F =@ _,Z be a free abelian group with the usual
product order, and let each pr, be the natural projection
map. If ' F, with T'=«<I>n F,, then ' is a Krull
" monoid, and if the prgl,’s are distinct essential valuations
on [, then CUI) = F/<I>.

This construction can be used to show that for any abelian
group G, there is a quasilocal Krull domain R with CI(R) =
G. A Krull domain A with CI(A) = G can be constructed to
have the form A = K[I'] € K[{X,}] (for any field K) and be
generated by monomials over K. Then N = A N ({X,}) isa
maximal ideal of A and A = K+ N. Let R = Ay = K+ Ny,

Then R is a quasilocal Krull domain, and CI(R) = G by
Nagata’s Theorem.
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Def. Let [’ be a grading monoid. We define the t-class
group of ' to be the abelian group CU(I') of t-invertible
fractional t-ideals of ' under t-muliplication modulo its
subgroup of principal fractional ideals.

Thm. (BIK-2002) Let RI[I'] be an integrally closed domain.
Then CURIT]D = CI(R)®BCUT). O

What if R[I'] is not integrally closed? ¢ _._.},_U»,”(‘wf D

It is wellknown that CIK[XZ2, X)) = Pic(K[X2 X ) = K
(as an additive abelian group) for any field K. More
generally, for any integral domain R with quotient field K,

we have CI(R[XQ,XS]) = CI(R[X])®BK. Recall that a numerical
semigroup [' is an additive submonoid [' of Z, such that

Z, - I' is finite. This previous example is a special case of

Thm. (A, Chang-2004) Let R be an integral domain with
quotient field K and I' a numerical semigroup. Then
CI(RIT]D = CURI[X]D®BPic(K[T']). In particular, if R is integrally -
closed, then CI(RI[I']) = CUR)BPic(K[T].

Proof. Let S={X%|la e} and N =D - {0). Then the
natural homomorphism CI(R[T']) — CUR[T']g)®CIURIT]y) =

CIRIX, X n@cukIr), (11 — ([Ig], [IND), is an isomorphism.

Then CIRIX,X 1)) = CURIX]), and CUKIT)) = Pic(KIT])
because K[['] is one-dimensional; so the result follows. If in
addition, R is integrally closed, then CI(R[X]) = CI(R). O

Note that Pic(K[I']) can be computed.
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[-graded integral domains, R = @ 4e¢T'Ry«

Let R = @4¢rRy be an integral domain graded by a

grading monoid ['. Let H be the multiplicatively closed set
of all nonzero homogeneous elements of R. Then Ry is a
<I'>-graded integral domain with deg(a/s) = dega - degs;

Ry is called the homogeneous quotient field of R. Note
that (Ry)g is a field. If R is Z,- or Z-graded, then Ry =

(Rpy)olX, X! is a UFD. But in general, Ry is a twisted group
ring over (Ry)g and is just a c.i. c. GCD-domain.

Ex. The monocid domain R[T] is -graded with deg(rX%) =
o forall 0 #r € R and o € I'. The homogeneous quotient
field of R[I'] is K[G], where K = qf(R) and G = <[>,

Note that if [ is a homogeneous (fractional) ideal of R,

then 1_1, I, and I; are all homogeneous and each is

contained in Ry. We can thus define HPrin(R), HInv(R),

HT(R) in the obvious way. We define the homogeneous
Picard group and homogeneous class group of R to be

HPic(R) = HInv(R)/HPrin(R) C Pic(R)

HCI(R) = HT(R)/HPrin(R) c CI(R)

Note that HCI(R) = CI(R) & for each integral I € T(R),
I = xJ for some homogeneous J € T(R) and x € Ry.



Thm. Let R = B4R« be a graded Krull domain. Then

HCI(R) = CI(R).
Proof. Let H be the multiplicatively closed set of nonzero
homogeneous elements of R. Then Ry 1s a UFD since R 1is ¢

Krull GCD-domain; so Cl(Ry) = 0. Hence ker(CI(R) — CI(Rp))

= CI(R). Thus by Nagata’s Theorem, ClI(R) is generated by the
classes of the ht-one prime ideals of R which intersect H.

Such a prime ideal is necessarily homogeneous since it has ht-
one. Hence HCI(R) = CI(R). O

Ex. Let K be a field and R = KIX%,XY,Y?). Then R isa
two-dimensional Krull domain with CI(R) = Z/2Z. We can
consider R as a Z,-graded subring of K[X,Y] in the usual

way with degX = deg¥ = 1; but it is better to think of R as
being a Z,xZ,-graded subring of K[X, Y] with degX = (1,0)

and deg¥Y = (0,1). In this case, R has only two homogeneous
ht-one prime ideals, namely P = (XQ,XY) and Q = (XY,Yz).
% sl B A S S 2 i
Then (P2, = (X% X°v, X%v%, = x%4(x?, xv,v%, = (X?);
@Y, = Y22, XY, YD, = (¥YD); and (PQ), = (XY, %x%v2 XYY,
- XY(X2, XY, Y?), = (XY). Thus CI(R) = HCI(R) is generated

by [P] and [Q] with 2[P] = 2[Q] = [P] +[Q] = 0; so Cl(R) =
<[P]> = Z/2Z.
Note that R is just the monoid domain K[I['], where

F'={(m,n) € Z,xZ, | m +n iseven ), and CHR) = Z°/I"> =
2°/<(2,0), (1,1)>. Similarly, the Krull domain R,, =
KIX",XY,Y"] has CUR,) = Z/nZ for any n = 1.

Thus R = KIX;"1,X.Y4,Y4"L, ..., X, X, Y,, Y, "] has
Cl(R) = Z/n4Z® - - - B®Z/n,Z for any n4,...,n

r 2 4.
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Def. Let R = B4Ry be a graded integral domain with
homogeneous quotient field Ry.

(1) R is almost seminormal if whenever x2, x3 ¢ R
for homogeneous x € Ry with degx # 0, then x ¢ R.

(2) R is almost normal if whenever x 1is integral over
R for homogeneous x € Ry with degx # 0, then x ¢ R.

(3) Rg € R is an inert extension if xy € Rg for

x, v € R implies that x = ua and y = u™lb for some
u € U(R) and a, b € Rg.

Facts: (1) R seminormal (resp., integrally closed) = R
almost seminormal (resp., integrally closed).

(2) R is seminormal (resp., integrally closed) & R is
almost seminormal (resp., almost normal) and Rg is
seminormal (resp., integrally closed) in (Rpy)g.

(3) RII'] is almost seminormal (resp., almost normal) if
and only RI[I'] is seminormal (resp., integrally closed).

(4) R c R[I'] is always an inert extension.

(5) RgC R = @gerRy isinertif TN -T=0. In
particular, Rg € R = ®ne¢z,Rn is always an inert extension.

Ex. Let R = K[X,Y,Z, W] with K a field. Then R is a
Z-graded integral domain with degX = deg¥ = 1 and degZ =
degW = -1 and Ry € R is not an inert extension. Note that
R is a UFD, but Rg = k[XZ,XW,YZ,YW] is not a UFD. In fact,
Cl(Rq) = Z.

The next several theorems are based on “content” results
(cf. (Querre-1980), (AA-1982), (BIK-2002)). For x = Zx, € R

= B xeR«, its content ideal is the homogeneous ideal
C(x) = (x,). Next we give a sampling of such results.
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Thm. (AA-1982) Let R = B4¢rRs be a graded integral
domain and H its set of nonzero homogeneous elements.
Then TFAE

(1) Each integral v-ideal of R which contains a nonzero
homogeneous element of R is homogeneous.

(2) Clzy),:= (C(x)Cly)) forall @ # & v g R,

(3) xRg N R = xC(x)"* forall 0 # x ¢ R.

(4) If 1 is an integral v-ideal of R of finite type, then
I = xJ for some x ¢ Ry and homogeneous v-ideal J of R

of finite type. O

Thm. (AA-1982) Let R = ®4TR4 be a graded integral
domain.

(1) If R isintegrally closed, then C(xy),, = (C(x)C(y)),,
for all 0 # %,y € R.

(2) If Clxy)y:=({C(IC(y))y forall O ¢ x,¥ & B, then
R 1is almost normal.

(3) Let Rg € R be an inert extension. Then C(xy),, =

(C(x)C(y)), forall 0 #x,y € R & R is almost normal. O

Thm. (AA-1982) Let R = @ 4R« be a graded integral
domain.

(1) If HPic(R) = Pic(R), then R is almost seminormal.
Suppose, in addition, that Ry € R is an inert extension.

(2) Pic(Rg) = HPic(R).
(3) If R is almost normal, then Pic(Rg) = Pic(R). O

The inert hypothesis is needed in (2) and (3) above.
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We now show the earlier stated result of El Baghdadi-
[zelgue-Kabbaj (2002) that CHR[I]) = C(R)®CUT) when R[I]
is integrally closed.

Thm. (BIK-2002) Let R = ®4¢rRy be a graded integral
domain such that Ry € R is inert. Then HCI(R) = CI(R) &
R 1is almost normal. In particular, if R is Z,- graded, then
HCI(R) = CI(R) & if R is almost normal. O

Thm. (BIK-2002) Let R be an integral domain with quotient
field K and I' a grading monoid.

(1) HCURIT)D = C(RIT'])) <« RII'] is integrally closed.

(2) HCURIT) = CI(R)8BHCIKIT]D. O

Thm. (BIK-2002) Let K be a field. Then HCI(KI[T']) = CUT).
Thus CUK[T']) = CI(I") when [ is integrally closed.
Proof. The map is [K[Y]] — [Y]. O

Thm. (BIK-2002) Let R[I'] be an integrally closed domain.
Then CURIT]) = CHR)BCIKI[T']D = CI(R)BCII).

Proof. By the above results, CI(R[[']) = HCI(RI[T]) =
CI(R)®BHCI(K[T']) = CI(R)®CIKI[T]) = C(R)®BCUI). O

Cor. (BIK-2002) Let R be an integral domain and G a
nonzero torsionfree abelian group. Then CI(R) = CI(R[G])) <
R is integrally closed. O



Homogeneous splitting sets

Def. Let R = B4R« be a graded integral domain and H

the multiplicative set of nonzero homogeneous elements of R
(1) A multiplicative subset S C R is homogeneous if

S C H.
(2) For a homogeneous multipicative set S, its
homogeneous complement is Nu(S) = {x e H|(d,s), = R

for all s € S }.
(3) A saturated homogeneous multiplicative set S is a
homogeneous splitting set if H = SN}(S).

Ex. If S is a splitting set of R, then S* =S N H is a
homogeneous splitting set with N, (S*) = N, (S) = N(S) n H.

Thm. (A, Chang-2005) Let R = @©4¢rR« be a graded integral
domain, and let S be a homogeneous splitting set of R with
homogeneous complement N = N,(S). Then HCIR) =

HCI(Rg) ®HCI(Ry). O

Cor. Let R = @4¢rR« be a graded integral domain, and let

S be a homogeneous splitting set of R with homogeneous
complement N = N (S).

(1) If R is a Krull domain, then CI(R) = Cl{Rg)@®CIR).
(2) If Rg € R is an inert extension and R is almost
normal, then CI(R) = CI(Rg)®CI(Ry). O

We recover the BIK result.



Cor. Let R[T'] be an integrally closed domain. Then
CI(RI[T] = CUR[<I>DEACUKITD.
Proof. Let S be the saturation of R - {0} in R[[']. Then

N = Np(S) - {uX%lueUR) and xe ). So S isa
homogeneous splitting set. Note that R[['lg = K[I'] and RI[I'ly

- RI<I>]. Thus CIRIT) = CURITIBCURITG) =

CUR[«TH>DBCIKIT]D. Note that CI(R[<I'>]) = CI(R) since R[I'] is
intergrally closed. O

Cor. Let R = ®4c[Ry be a graded integral domain, and let

S be a splitting set of R with S* = SN H. If either R isa
Krull domain, or Ry € R is an inert extension and R is

almost normal, then Cl(Rgx) = Cl(Rg). O

The R = Rg®BR1®BRo® -+ = Bpcz,Rpn case

Thm. (A-1982) Let R = ®Bpez,Rn be a graded integral

domain. Then Pic(Rg) = Pic(R) & R is almost seminormal.
In particular, Pic(Rg) = Pic(R) when R is seminormal. O

Very rarely does Cl(Rg) = CI{R) even when R is a Krull
domain. We may have Cl(Ry) = 0 and CI(R) # 0. Is

Cl{Rg) — CI(R) even a homomorphism?
Let R = &phez,Rn be a Krull domain. The map

Cl{Rg) — CI(R), given by [l1]= [(IR)], is always defined,

and is injective since (IR),, = I® '+ 1is homogeneous. Is it a
homomeorphism?



The A + XB[X] and D + XDg[X] constructions

Let A CB bean extension of integral domains. Then
R = A+ XBI[X] = { f(X) ¢ B[X] 1 £(0) € A} ¢ BIX] is a graded
subring of B[X]. This is called the “A + XB[X]” construction.
It has been very useful for constructing examples.

Facts. (1) A + XB[X] is almost seminormal & B js
seminormal.

(2) A + XB[X] is almost normal & B js integrally
closed.

(3) A C A+ XB[X] is always an inert extension.

(4) If B is a flat A-module, then A c A + XB[X] is a flat
extension; so the mapping ¢ : ClI(A) — CI(A + XB[XD),
[1] — [IR], is an injective homomorphism.

(5) ¢ :Cl(A) — cl(A + XB[XD), [1] — [(IR){], is always

injective. Is it a homomorphism?

Thm. (A, E] Baghdadi, Kabba j-1999-2002) Let R = A + XB[X],
(1) Pic(A) = Pic(R) if and only if B is seminormal.
(2) CIR) = HCIR) if and only if B is integrally closed.
Thus if Cl(A) = CI(R), then B must be integrally closed.
(3) If B isan integrally closed flat overring of A, then
CI(A) = CI(R).
(4) If B is integrally closed and qf(A) C B, then
CI(A) = CI(R),
(5) If A is integrally closed and B = A[{X,}], then

CI(A) = C(R). O



43

Ex. In (3) above, it is not enough to just assume that B is
an integrally closed flat A-module. Let A =7 ¢ Z[i] = B; so
R = Z + XZ[il[X). Then 7Z[i] is integrally closed and is a flat
Z-module (but not an overring). Then CI(A) = 0, and it may
be shown that CI(R) = Z/2ZEB(EBH€Z+Z).

Thm. (ABK-2002) Let R - A+ XB[X] and S = A - {0}.
(1) Suppose that gf(A) c B. Then CI(A) = HCI(R).
(2) Suppose that B I1s a flat overring of A. Then

CI(A) = HCIUR).

(3) Suppose that A ¢ B is inert, Cl(Bg) = 0, and

af(A) N B = A. Then HCI(R) = CI(B). O

A special case of the A + XB[X] construction is when
A =D is an integral domain, S ¢ D is multiplicatively closed,
and B = Dg; the “D + XDg[X]” construction. In this case,

D C Dg is always a flat overring; so we have an Injective
homomorphism CI(D) — C1(D + XDglXD), [11 — [I + XIDgIX]].

Cor. (ABK-1999-2002) Let D be an integral domain and
S cCD multiplicatively closed.
(1) Pic(D) = Pic(D + ADglX]) & Dg is seminormal.

(2) CUD) = cuD + XDglX]) &  Dg is integrally closed.

In particular, Pic(D) = Pic(D + XDglX]) when D is
seminormal and CI(D) = CI(D + XDglX]) when D is integrally
closed. O



Thm. (A, Chang-2003) Let S be a splitting multiplicative
subset of an integral domain D with m-complement N.
Then CI(D + XDg[X]) = CI(Dg[X]DBCI(Dy) and Pic(D + XDg[X]) =

Pic(Dgl X)) BCl(Dy).

Proof. Let D(S) = D + XDg[X]. If S # U(D) is a splitting set o
D, then ST = D(S) - XDg[X], where T is the m-complement of
S in D®) (and N =T N D) and CKD®)) = Cl(Dy). Thus
CUD) = cUDE))BCUDE);) = Cl(Dg[X)BCIUDY). O

Generalizations

There are usually many star operations other than the
d-, t-, and v-operations defined on an integral domain R.
(However, for R a Dedekind domain, v = d; so all star
operations on R are the same.) Recently the w-operation
has received considerable attention, where

o ={x € KlxJCl for some f. g ideal J with J!=D).

Let &(R) be the set of all star operations on an integral
domain R. Then &(R) may be partially ordered by x; < =,

& "1 c 172 forall I € F(R). Moreover, &(R) is then a
complete lattice with least element d and greatest element
v,le,d < x <v forall = ¢ 3(R).

For example, let R be an affine domain with dimR > 2
(e. g., if R =k[X4,...,X,] for afield k with n > 2).

Then |3(R)]| = 2|R}.



Def. (1) A star operation * on R has finite type if

[*=U{J* |10 #JC 1l is f.g.} forall I € F(R). Note that the
d- and t-operations always have finite type, and the
v-operation has finite type & v =t

(2) Let * be a star operation on R. Then x defines a

finite type star operation x, on R by

I*s= U(U* |0 £Jcl is f. g )

Note that v =t and that d = x <t for any finite type

star operation x on R.

Let = be a star operation on an integral domain R.
We define Inv (R) ={1e F, (R)|(IJ)* =R for some J ¢
F(R) } to be the abelian group of *-invertible x-ideals of R

under the usual *-multiplication IxJ = (IJ)*.

For star operations x4 < x5, we have ¥, (R) ¢ ¥, (R)

and Inv*l(R) C Inv, (R). Thus Invg(R) = Inv(R) € T(R) =
Inv(R).

Def. We define the *-class (local *-class) group of R by

Cl, (R) = Inv_ (R)/Prin(R)

G4(R) = Inv (R)/Inv(R) = Cl, (R)/Pic(R)

We have Pic(R) = Cl3(R) and CI(R) = Cli(R), and
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Cle,(R) € Cl4(R) if x4 < 5. In particular,

Pic(R) c Cl1,(R) € Cl,(R) and
Pic(R) ¢ Cl,(R) € Cl4(R) if x has finite type.

Def. Let A C B be an extension of integral demains with
star operations x, and xp, respectively. We say that xp

and xp are compatiable if (IB) B = (1"AB) B for all

I ¢ F(A). We then have an induced homomeorphism
’ 1
d' ‘}-J“j ﬂ if,n.,-P._ ‘HLJ..E‘ B

@ : Cl, ,(A) — Cl, ,(B) given by o(lI) = [(1B) B)).

Ex. (1) Let R be an integral domain with quotient field K
and = a star operation on R[X]. Then x induces a star

operation * on R by I* = (IR[XD* N K for [ € F(R),

which satisfies (IR[X])* = (I*R[X])* for all I € F(R). Thus
the two star operations are compatiable; so there is an
induced homomorphism ¢ : Cl,(R) —— Cl_.(R[X]) given by
[1] — [IR[X]]. Clearly ¢ is injective, and ¢ is surjective if
R is integrally closed.

(2) Let T=K+ M,D beasubringof K,and R =D+ M.
A star operation * on R induces a star operation * on D

by [* = (1+M)* n qf(D) for 1 € F(D). Then the two star

operations are compatiable; in fact, (I + M)* = [* + M for all
[ € F(D). So we have an induced homomorphism
@ :Cl,(D) — Cl,(D + M) given by [I] — [l + M]. Then ¢ is

always injective, and is an isomorphism if T is quasilocal. .



x-splitting sets

Let R be an integral domain and S € R a saturated
multiplicatively closed set. Then a finite type star operation
x on R iInduces a finite type star operation xg on Rg by

defining (J)*S = (J N R)*Rg for all nonzero integral ideals J
of Rg, and then extending to fractional ideals, which satisfies

(IRS)*S = [*Rg for all 1 ¢ F(R). Thus * and xg are
compatiable, and the localization of a x-ideal 1s a *xg-ideal.
Note that dg = d, but we only have tg <t (the localization of
a t-ideal need not be a t-ideal). In fact, tg is the t-operation
on Rg © ([4)Rg = (IRg)y for all I ¢ F(R). However, tg = t
when S 1is a splitting set.

Def. Let R be an integral domain, S € R a saturated
multiplicatively closed set, and % a finite type star operation
on R.

(1) The *-complement of S is N,.(S) = {0 # x ¢ R
(x,s)* =R forall s eS)cC N(S). Then N, (S) is a saturated
multiplicatively closed subset of R with S N N_(S) = U(R).

(2) S is a %x-splitting set if SN_(S) = R - {0}). Thus a
t-splitting set is just a splitting set.

Facts. (1) Let x < %' be finite type star operations on R. If
S 1s a =-splitting set, then S is a *'-splitting set. In
particular, a *-splitting set is a splitting set.

(2) A splitting set S is a x-splitting set & N_(S) = N(S)

< PNS=g or PNN-=g for all prime *x-ideals P of R.
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(3) Any splitting set generated by principal primes is a
*-splitting set for any finite type star operation x.

Thm. (A, Chang, J. Park-2005) Let « be a finite type star
Ooperation on an integral domain R, P a prime *-ideal of R,
S a saturated multiplicatively closed subset of R, N =

{0 #xeR| (s, t)* = R for all s € S} its *-complement,
and  xg (resp., x ) the star °peration on Rg (resp, Ry)
induced by . Suppose that SN = R - P. Then

Cle (D) = CI*S(RS)@CI*N(RN). Thus the natural homomorphism
Cl4(R) — CI*S(RS) Is surjective. In barticular, the above

holds when § js a x-splitting set. O

If S isa splitting set, then the t-operation on R induces
the t-operation on Rg, ie., s = t. Also, a splitting set S is a
d—splitting set &  either M N S=dor MNN = Z  for
each maxima] ideal M of R, the d-operation on R Induces
the d-operation on Rg, and Clg() = Pic(). Thus

Cor. Let S bpe a splitting multiplicative subset of an integral
domain R and N={0#x% €RI(s, t), =R forall se S }.

(1) D) = ciRgIBCIR ).

(2)  Suppose that either M NS = g o MNN=g fo
each maximal idea] M of R. Then Pic(D) = Pic(RS)EBPic(RN).

O



A star Operation x on R induces star Operations *p on
D and («); on T by

170 = Ay YOy 1)) |y ek 1 ¢ yD} for I e F(D)

19T L% (7 (T2D) for 1e (1) (c F(r))

If % =1t then *o = t, but ()7 need not be t.

Thm. (Fontana, M. Park-2005) Given a pullback of type ()

with @ @ U(T) — K* /U(D) Surjective and x 4 finite type
star operation on R, there is a split exact sequence
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Some Problems

Investigate CI(R[X]).

Is CI(R) —— CH(R[X]) a split monomorphism?
Describe CI(R[X])/CI(R).

Investigate CIU(RI[I']) for arbitrary grading monoids.

Investigate the map CI(Ry) —— CI(R) when R is a
graded domain.

Investigate CI(R[[X]]).
Note that Pic(R) = Pic(R[[X]]) for any integral domain R.

However, R is a UFD does not imply that R[[X]] is a UFD.
So even for Krull domains, we may have CI(R) # CUR[[X]]).

Investigate Cl,(R) for arbitrary star operations.
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