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Thursday’s talk: Let H ⊆ R be integrally closed overrings of a
two-dimensional Noetherian domain such that H has a Noetherian
R-representation.

We can reduce to the case that H is quasilocal...

We saw that H is built from four components:

• an indecomposable Noetherian ring of dimension ≤ 1,

• an integrally closed Noetherian overring,

• a finite intersection of irrational valuation rings, and

• R.

The proof depended on the fact that RepR(H) is the unique strongly
irredundant Noetherian R-representation of H...

...which depended on the fact that there exists a strongly irredundant
Noetherian R-representation of H.

...Today we want to settle this last detail.
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Let H be a domain, and let R be an overring of H. Recall that a set Σ
of valuation overrings of H is an R-representation of H if

H = (
⋂

V∈Σ

V ) ∩ R.

The R-representation Σ is strongly irredundant if no member V of Σ
can be replaced by a proper overring of V .

In this talk we outline a proof of:

Theorem. If Σ is an R-representation of H that is a Noetherian sub-
space of the space of all valuation overrings of H, then there exists a
strongly irredundant Noetherian R-representation of H.

The theorem was proved by Heinzer and Ohm (1972) in the case
where every member of Σ has Krull dimension 1. Brewer and Mott
(1970) proved the theorem for finite character R-representations in
the case R = quotient field of H.
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Corollary . If Σ is a finite character R-representation of H, then there
exists a strongly irredundant finite character R-representation of H.

Consider the map Σ → Spec(H). Then Σ has finite character ⇔ its
image has finite character and the map is finite-to-one.

Thus finite character representations arise from finite character
collections of prime ideals...

...But it is tricky to identify these collections of primes.

There are however some interesting applications:

• Building unusual Dedekind domains: Goldman (1964), Heitmann
(1974).

• Conforming spectra: Houston-McAdam (1975)

• Slender rings and modules: L. Lady (1975)
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Proposition . Here are two cases in which a domain has a finite char-
acter set of infinitely many maximal ideals.

• D is a countable domain with Jacobson radical 0.

• D is an affine K -domain, K = field (can be chosen so that each
maximal ideal has residue field algebraic over K ).

Proposition . Let {φi}n
i=1 be a subset of a transcendence basis over

R of the ring of analytic functions on R. Let I be an infinite compact
subset of R and define for each t ∈ I,

mt := (X1 − φ1(t), X2 − φ2(t), . . . , Xn − φn(t)).

Then {mt : t ∈ I} is an uncountable finite character set of maximal
ideals in R[X1, . . . , Xn].

...e. g. mt = (X1 − t , X2 − et , X3 − sin(t)).
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Returning to the original theorem, we actually prove something more
general...

Let H be a domain, let R be an overring of H, and let Σ be a collection
of integrally closed overrings of H such that H = (

⋂
A∈Σ A) ∩ R.

We say that Σ is an R-representation of H.

If no proper subset of Σ is an R-representation of H, then Σ is an
irredundant R-representation of H.

If Σ is finite, then by throwing out “extra” members of Σ, you can
obtain an irredundant R-representation of H.

...but this doesn’t work if Σ is infinite.

Technical Problem: Given a collection Σ of integrally closed overrings
of H, when does H have an irredundant R-representation consisting
of integrally closed overrings of members of Σ?

Special Case: Irredundant representations of valuation overrings.
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If Γ and Σ are collections of overrings of H, we say Γ ≤ Σ if every
member of Γ is an overring of a member of Σ.

Main Theorem . Let H be a domain, let R be a proper overring of H,
and let Σ be a collection of integrally closed overrings of H. If Σ is
a Noetherian R-representation of H, then there exists an irredundant
weakly Noetherian R-representation Γ ≤ Σ of H.

...The relevant topology will be introduced later...

From the proof of the Main Theorem, we derive: Domains having a
Noetherian R-representation Σ of valuation overrings have also a
strongly irredundant Noetherian R-representation Γ ≤ Σ.

...This special case of the theorem was used in the previous talks.
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Let H be a domain with quotient field F .

Recall: Zar(H) = the set of all valuation overrings of H. The Zariski
topology is given by declaring the basic open sets to be of the form
{V ∈ Zar(H) : x1, . . . , xn ∈ V}, where x1, . . . , xn ∈ F .

Define Over(H) := the set of all integrally closed overrings of H.

The Zariski topology on Over(H) has basic open sets

UH(x1, . . . , xn) := {R ∈ Over(H) : x1, . . . , xn ∈ R},

where x1, . . . , xn ∈ F .

Thus the Zariski topology on Zar(H) is the subspace topology
inherited from the Zariski topology on Over(H).

...We will introduce a finer topology on Over(H).
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Let I be a fractional ideal of H, and let R ∈ Over(H). Denote by clR(I)
the integral closure of I in R; that is,

clR(I) =
⋂

V∈Zar(R)

IV .

We define the b-topology on Over(H) to be the one induced by
declaring the basic open sets to be of the form

UH(I, J) := {R ∈ Over(H) : I ⊆ clR(J)},

where I and J are finitely generated H-submodules of F .

In general: Zariski topology ( b-topology...However:

Proposition . If H is a Prüfer domain, then

Zariski topology = b-topology.
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Let V ∈ Zar(H). Define a valuation ring in F (X ) by

V b := V [X ]M[X ].

If A ∈ Over(H), define

Ab :=
⋂

V∈Zar(A)

V b.

Then Ab is the unique minimal Kronecker function ring of A.

Proposition . The mapping Over(H) → Over(Hb) : A 7→ Ab is a home-
omorphism (with respect to the b-topology) onto its image.

...Thus Over(H) is homeomorphic to a collection
of overrings of a Bézout domain.

Corollary . On Zar(H), Zariski topology = b-topology.
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A topological space X is Noetherian if X satisfies the ascending
chain condition for open sets.

We say Σ ⊆ Over(H) is weakly Noetherian if Σ is a Noetherian
subspace of Over(H) in the Zariski topology.

We say Σ is Noetherian if Σ is a Noetherian subspace of Over(H) in
the b-topology.

Clearly a Noetherian collection is weakly Noetherian, since the
b-topology is finer than the Zariski topology on Over(H).

If H is a Prüfer domain or if Σ ⊆ Zar(H), then Noetherian = weakly
Noetherian.

Proposition . If Σ is a finite character collection of integrally closed
overrings of H, then Σ is a Noetherian collection.
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Proposition. If H is a domain and Σ is a subspace of Zar(H) such
that every member of Σ has Krull dimension 1, then Σ is Noetherian if
and only if Σ has finite character.

Proof: Pass to an overring of Hb, and apply known results about
Prüfer domains.

Proposition. Let Σ be a Noetherian collection of integrally closed
overrings of H.

(i) If Y is a flat H-submodule of F , then Y (
⋂

A∈Σ A) =
⋂

A∈Σ YA.

(ii) For every flat overring B of H, {BA : A ∈ Σ} is a Noetherian
collection of overrings of H.

Proof: This is not so easy to prove. Idea: Pass to Over(Hb), where
there are more tools since Hb is a Bézout domain. The Noetherian
property is used in an essential way here.
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...The mapping Zar(H) → Spec(H) : V → MV ∩ H is a continuous
closed mapping.

If also H is a Prüfer domain, the map is a homeomorphism.

...We need something similar for Over(H)...

Define Sat(H) := {
⋃

P∈X P : X ⊆ Spec(H)}.

We give Sat(H) the topology whose basic open sets are

UH(x1, . . . , xn) := {m ∈ Sat(H) : xi 6∈ m for some i}.

For each A ∈ Over(H), define mA := {x ∈ H : xA 6= A} ∈ Sat(H).

Proposition . If H is a Bézout domain, then the mapping

Over(H) → Sat(H) : A 7→ mA

is a homeomorphism.



Irredundant intersections of integrally closed overrings

Piecing everything together, we have:

Proposition . If H is an integrally closed domain, then the mapping

Over(H) → Sat(Hb) : A 7→ mAb

is a homeomorphism of Over(H) onto its image in Sat(Hb).

Thus a Noetherian collection in Over(H) gives rise to a Noetherian
subspace in Sat(H).

Returning to our original problem, we assume: H is an integrally
closed domain having a Noetherian R-representation Σ.

We want to modify Σ in some fashion to produce an irredundant
weakly Noetherian R-representation of H.
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Define HΣ =
⋂

A∈Σ Ab. Then HΣ ∩ R = H.

Let F = {B ∈ Over(HΣ) : B ∩ R = H}. (Note: R, not F .)

...Zorn’s Lemma ⇒ F contains maximal elements.

Let B be a maximal element of F , and define Σ′ = {BAb : A ∈ Σ}.

Continuity + previous results ⇒ A := {mA : A ∈ Σ′} is a Noetherian
subspace of Sat(B).

Next we need to “sharpen” A.

(This terminology comes from Gilmer’s condition (#).)

The focus now shifts from Σ to the collection A...

Ultimately, we want to find overrings of the rings in {Hb
H\m : m ∈ A}

that yield, when intersected with R, an irredundant R-representation.
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For B ⊆ A, we define∧
b∈B

b :=
⋃
{P ∈ Spec(H) : P ⊆

⋂
b∈B

b)}.

For each P ∈ Spec(B), define

m(A, P) =
∧
{m ∈ A : P ⊆ m}.

Finally, define A# = {m(A, P) : P ∈ Spec(H)}.

Lemma . A Noetherian ⇒ A# Noetherian.

Noetherian ⇒ A# has maximal elements. Denote this set by
Max(A#).
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We have obtained a certain set Max(A#)... When we localize B with
respect to members of this set and intersect with R, we will have an
irredundant R-representation of H (and be done).

The irredundance is a consequence of the following lemma... In fact,
the reason we sharpened A was to arrange for precisely this situation:

Lemma . For every m ∈ Max(A#), there exists x ∈ H such that x ∈ m
but in no other other member of Max(A#).

Taking the preimage (more or less) of Max(A#) under the mapping
Over(H) → Sat(B) yields now a weakly Noetherian irredundant
R-representation Γ of H such that Γ ≤ Σ.
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Note on proof: The reason for passing to Hb was to be able to work
with unions of prime ideals in a Bèzout domain rather than
integrally closed overrings of an arbitrary domain... In particular, this
allowed for the sharpening construction.
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