Overrings of two-dimensional Noetherian domains

Overrings of two-dimensional Noetherian domains representable by Noetherian spaces of valuation rings

Bruce Olberding

Department of Mathematical Sciences New Mexico State University

June 2006

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Standing assumption: *D* is a two-dimensional Noetherian domain.

Let *H* be an overring of *D*.

Zar(H) := the set of valuation overrings of *H*.

The **Zariski topology** on Zar(H) is defined by declaring the basic open sets to be those of the form:

$$U(\mathbf{x}_1,\ldots,\mathbf{x}_n):=\{V\in \operatorname{Zar}(H):\mathbf{x}_1,\ldots,\mathbf{x}_n\in V\},\$$

where x_1, \ldots, x_n are in the quotient field of *H*.

A topological space is **Noetherian** if the open sets satisfy the ascending chain condition.

Finite character subset of $Zar(H) \Rightarrow$ Noetherian

...but the converse is not true.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Notation: If W is a valuation overring of D, then

- $M_W :=$ maximal ideal of W.
- $P_W :=$ ht 1 prime ideal of W. (If W is a field, set $P_W = 0$.)

For $\Sigma \subseteq \text{Zar}(D)$, define $\Sigma^* = \{V_{P_V} : V \in \Sigma\}$.

Proposition. Σ Noetherian $\Rightarrow \Sigma^*$ has finite character.

A partial converse is true...

Proposition. Suppose that $\Sigma \subseteq \text{Zar}(D)$, Σ^* has finite character and there are only finitely many essential prime divisors of *D* in Σ^* . Then Σ is a Noetherian subspace of Zar(D).

...In particular: Σ^* finite $\Rightarrow \Sigma$ Noetherian.

...Hence Noetherian \Rightarrow finite character.

(ロ) (同) (三) (三) (三) (○) (○)

Any domain that admits a Noetherian *R*-representation admits a strongly irredundant Noetherian *R*-representation (more on Friday).

Thus the uniqueness theorem discussed on Tuesday implies:

Theorem. If Σ is a Noetherian space, then $\operatorname{Rep}_R(H)$ is a Noetherian *R*-representation of *H* and it is the unique strongly irredundant *R*-representation of *H*.

The theorem is false if you assume only that Σ^* has finite character.

To see this, it is enough to find $\Sigma \subseteq \text{Zar}(D)$ such that

- $\Sigma^* \subseteq \{D_p : ht(p) = 1\}$ (a finite character set).
- *H* := ∩_{V∈Σ} *V* is a Prüfer overring of *D* for which every f. g. ideal is contained in infinitely many (i. e. 2) maximal ideals (Gilmer-Heinzer, 1968).

The last condition $\Rightarrow \operatorname{Rep}_R(H)$ is empty.

Let (D, \mathfrak{m}) be a local ring that is the localization of a two-dimensional affine *K*-domain, where *K* is <u>non</u>-algebraically closed of char. 0.

Let Σ be the set of all two-dimensional valuation overrings of D centered on \mathfrak{m} with residue field K such that $V \subseteq D_{\mathfrak{p}}$ for some height 1 prime ideal \mathfrak{p} of D.

Claim: $H := \bigcap_{V \in \Sigma} V$ is a Prüfer overring (\checkmark) such that every f. g. ideal of *H* is contained in infinitely many maximal ideals of *H*.

Let $I = (x_1, ..., x_n)H$, and define $B = D[x_1, ..., x_n]$. We want to replace *B* with a regular domain...

∃ smooth projective *K*-variety Y of F|K and a birational morphism $Y \rightarrow \text{Spec}(B)$ (Resolution of Singularities).

Hence $\Sigma \rightarrow Y \rightarrow \text{Spec}(B)$.

We have $\Sigma \rightarrow Y \rightarrow \text{Spec}(B)$

Since K is not algebraically closed, all the K-rational points on Y are contained in an open affine subvariety Spec(C) of Y (Bröcker-Schülting, 86).

Thus $x_1, \ldots, x_n \in C \subseteq H$ and C is regular.

Now $I \subsetneq H \Rightarrow \exists V \in \Sigma$ such that $x_1, \ldots, x_n \in \mathfrak{n} := M_V \cap C$.

Hence $K = C_n/nC_n$ (because $V/M_V = K$).

Since C_n is regular, there exist infinitely many prime ideals \mathfrak{p} of C such that $C_n/\mathfrak{p}C_n$ is a DVR.

...Only finitely many of these can be centered on m.

Choose infinitely many, say p_1, p_2, \ldots , that are not.

Then $x_1, \ldots, x_n \in$ center on H of $V_i := C_n + \mathfrak{p}_i C_{\mathfrak{p}_i} \in \Sigma$. \Box

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

What overrings of *D* have a Noetherian *R*-representation? Clearly Krull overrings have a Noetherian representation.

Theorem (Heinzer, 1969). Every Krull overring of *D* is a Noetherian domain.

Example. Let *R* be a Krull overring of *D*, and let V_1, \ldots, V_n be valuation overrings of *D*. Then $H := V_1 \cap \cdots \cap V_n \cap R$ has a finite character (hence Noetherian) representation.

Example. (J. Ohm, 1966) Let *p* be a prime, and define *v* on $\mathbb{Q}(X)$ by

$$v(X) = \pi$$
 and $v(p) = 1$.

Let V be the valuation ring corresponding to v. Then

$$H:=V\cap \mathbb{Q}[X]$$

is an irredundant intersection of an irrational valuation ring and a PID. Moreover, $M_V \cap H = \sqrt{\rho H}$. (More general: see Loper-Tartarone.) **Example**. (Abhyankar-Eakin-Heinzer, 1972; Loper-Tartarone) Let *p* be a prime. Let $V_1, V_2, ..., V_n$ be DVR overrings of $\mathbb{Z}_p[X]$ such that $V_i \cap \mathbb{Q} = \mathbb{Z}_p$ for each *i*. Let $H := V_1 \cap V_2 \cap ... \cap V_n \cap \mathbb{Q}[X]$. Then *D* is a <u>Dedekind domain</u> provided the residue field of each V_i is algebraic over the field of *p* elements. Otherwise, *D* is a two-dimensional Noetherian domain... Every f.g. abelian group arises as a class group of a Dedekind domain *H* with $\mathbb{Z}[X] \subseteq H \subseteq \mathbb{Q}[X]$ (Eakin-Heinzer, 1973).

Example. Let *U* be a hidden prime divisor of *D*, and let $\Sigma = \{V \in \text{Zar}(D) : V \subseteq U\}$. Then $H := \bigcap_{V \in \Sigma} V$ is a one-dimensional quasilocal domain with maximal ideal M_U . The ring *H* is clearly not a valuation domain nor a Noetherian domain. However, Σ is a Noetherian representation of *H*.

Example. If D = K[X, Y], where K is a countable field, then there exists a finite character collection Σ of two-dimensional valuation overrings of D such that for $H := \bigcap_{V \in \Sigma} V$, each V is a localization at a maximal ideal of H. However, H is not a Prüfer domain.

Main Example.

Let B = an integrally closed Noetherian overring of D of Krull dimension 2.

Let *J* be a height 1 radical ideal of *B* such that $J \cap D$ is a height 2 ideal of *D* and B/J is indecomposable.

Then the integral closure *H* of D + J is a quasilocal overring that has a Noetherian representation.

If also B is a finitely generated D-algebra, then H has a finite character representation.

...This example follows from the Main Theorem given later.

A consequence of the Main Theorem is that this is the only way that <u>non-Noetherian</u>, <u>non-valuation</u>, quasilocal examples which can be represented without irrational valuation rings can arise.

Notation. Suppose that $H \subseteq R$ are overrings of *D*. For a nonzero ideal *I* of *H*, we define

 $R(I) = \{r \in R : rI \subseteq I\}.$

Then *I* is an ideal of the overring R(I) of *H* with:

 $R(I) = \operatorname{End}(I) \cap R$ and $H \subseteq R(I) \subseteq R$.

Proposition. If $V \in \text{Zar}(H) \setminus \text{Zar}(R(I))$, then *V* has Krull dimension 2 and *I* is contained in every nonzero prime ideal of *V*.

...Thus $H \subseteq R(I)$ is a very "tight" containment with $H \subseteq R(I) \subseteq H^* :=$ c.i.c. of H.

We will use R(I) to decompose Noetherian *R*-representations...

It is possible to reduce to the quasilocal case and give for this case an intrinsic description (i. e. no reference to Σ):

Theorem (Main Classification–"coarse" version). Let $H \subsetneq R$ be integrally closed overrings of *D*. Suppose that *H* is a quasilocal domain with maximal ideal *M*.

Then H has a Noetherian (finite character) R-representation iff

- H is a valuation domain, or
- R(M)/M is a Noetherian ring (finitely generated H/M-algebra) and

$$R(M) = A \cap B \cap R,$$

where B = Noetherian integrally closed overring of H, and

- A = quotient field of H, or
- A = finite intersection of irrational valuation rings.

... \exists "finer" theorems that distinguish between the 2 possibilities for A.

Outline of proof

Define $X_R^1(H) = \{ P \in \text{Spec}(H) : H_P \text{ is a DVR and } R \not\subseteq H_P \}.$

Lemma. If there exists a Noetherian *R*-representation of *H*, then $B := \bigcap_{V \in X_{D}^{1}(H)} V$ is an integrally closed Noetherian domain.

(Proof: Show that $X_R^1(H)$ has finite character; use Heinzer's theorem.)

Next step: Carefully calculate End(M) to obtain: $R(M) = B \cap A \cap R$, where *A* is a finite intersection of one-dimensional valuation rings with residue fields algebraic over H/M... A useful observation is:

Lemma. Let *S* be an integrally closed domain, and let *N* be a maximal ideal of *S*. If *N* is a prime ideal of End(*N*), then there exists an integrally closed overring *T* of *S* with $S \subseteq T \subseteq \text{End}(N)$ such that *N* is a nonmaximal prime ideal of *T*.

This is a consequence of Zariski's Main Theorem (Peskine's version).

So far: $R(M) = B \cap A \cap R$, where B = integrally closed Noetherian domain and A = quotient field or A = finite intersection of one-dimensional valuation rings.

Lemma (Heinzer-Ohm, 1972). A rational valuation overring of a domain *S* that is an irredundant representative of *S* is a localization.

...Hence *A* is a finite intersection of irrational valuation rings.

(ロ) (同) (三) (三) (三) (○) (○)

Finally, with more work, using the fact that *H* has a Noetherian *R*-representation, along with the fact that *H* is an overring of a two-dimensional Noetherian domain, one obtains that R(M)/M is a finite subdirect product of Noetherian rings, hence Noetherian.

Furthermore, if *H* has a finite character *R*-representation, then one can, with work, pass to a finite direct product of function fields over H/M... Finite character \Rightarrow finitely many points at infinity for the curve that is the image of *H* in the product of these function fields.

Lemma. Let F|K be a function field of degree 1, and let A be a K-subalgebra of F. TFAE:

- (i) A is a finitely generated K-algebra.
- (ii) There are at most finitely many valuation rings $V \in \text{Zar}(F|K)$ that do not contain *A*.
- (iii) There exist valuation rings $V_1, \ldots, V_n \in \text{Zar}(F|K)$ not containing A such that $V_1 \cap \cdots \cap V_n \cap A \subseteq \overline{K}$.

...The equivalence of (i) and (ii) is due to Alamelu, 1978.

Thus...if *H* has a finite character *R*-representation, R(M)/M is a finitely generated H/M-algebra.

What about the converse? That is, suppose that R(M)/M is a Noetherian ring and

 $R(M) = A \cap B \cap R,$

where B = integrally closed Noetherian overring and A = field or A = finite intersection of irrational valuation overrings.

...Hence R(M) has a finite character *R*-representation.

Lemma. Let *A* be an integrally closed domain, and let *N* be a maximal ideal of *A*. Then End(N) is an integrally closed domain and End(N)/N is a reduced indecomposable ring.

Thus R(M)/M is indecomposable. Also, since R(M)/M is Noetherian, there exist finitely many prime ideals of R(M) that are minimal over M. Now we analyze $\Sigma := \operatorname{Zar}(H) \setminus \operatorname{Zar}(R(M))$.

Clearly $H = (\bigcap_{V \in \Sigma} V) \cap R(M)$.

Using that R(M)/M is an indecomposable Noetherian ring, along with Zariski's Main Theorem, one eventually obtains that Σ^* is finite.

Hence Σ is a Noetherian R(M)-representation of H.

Since $H = (\bigcap_{V \in \Sigma} V) \cap R(M) = (\bigcap_{V \in \Sigma} V) \cap A \cap B \cap R$, it follows that *H* has a Noetherian *R*-representation.

If also R(M)/M is a finitely generated H/M-algebra, then, viewing R(M)/M as contained in a finite product of function fields, the image of R(M)/M in each of these fields has finitely many points at infinity.

This is used to show: Σ is a finite set.

...Hence H has a finite character R-representation. \Box

Aside: Suppose that (H, M) is a quasilocal overring of D.

Let *R* be an integrally closed overring of *H*.

If R(M)/M has finitely many minimal prime ideals, then

 $\operatorname{Zar}(H) \setminus \operatorname{Zar}(R(M))$

is the unique irredundant R(M)-representation of H.

(Depends on technical lemmas that are behind Tuesday's talk.)

...Thus $H \subseteq R(M)$ is a very tight containment.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Special Case: R = quotient field of H.

If *M* is a maximal ideal of *H*, set $\operatorname{Rep}(M) = \{ V \in \operatorname{Rep}(H) : MV \neq V \}$.

Theorem. Let (H, M) be a quasilocal overring of D of Krull dimension 2 such that H has a Noetherian representation, but H is neither a Noetherian domain nor a valuation domain. Then:

- (i) $\operatorname{Rep}(M)$ contains only irrational valuation rings \Leftrightarrow *H* is completely integrally closed.
- (ii) Rep(M) contains only two-dimensional valuation rings ⇔ End(M) is a Noetherian domain.
- (iii) Rep(*M*) contains both irrational and two-dimensional valuation rings and valuation rings \Leftrightarrow End(*M*) \neq *H* and End(*M*) is not a Noetherian domain.

In fact, if *H* has a Noetherian representation, then *H* is Noetherian; a valuation domain; or satisfies exactly one of (i), (ii) or (iii).