Irredundant Intersections of valuation overrings

Irredundant intersections of valuation overrings of two-dimensional Noetherian domains

Bruce Olberding

Department of Mathematical Sciences New Mexico State University

June 2006

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Some basic questions... Let V and W be valuation overrings of a domain H, and let R be an overring of H.

- When does $V \cap R = W \cap R \Rightarrow V = W$?
- When does $V \cap R \subseteq W \Rightarrow V \subseteq W$ or $R \subseteq W$?
- How do the structures of V and R influence $V \cap R$?

Now rephrase all these questions where appropriate with collections of valuation rings... For example, the collections might be <u>finite</u>, <u>finite character</u>, <u>Noetherian</u>, etc.

Probably to say something interesting (i. e. non-tautological) about these questions you need to consider specific settings...

A D F A 同 F A E F A E F A Q A

Our setting is...

Let *D* be a two-dimensional Noetherian domain, and let $H \subseteq R$ be integrally closed overrings of *D* such that

$$H = (\bigcap_{V \in \Sigma} V) \cap R$$

for some Noetherian collection Σ of valuation overrings of *H*.

- (Today and Friday) Describe *H* extrinsically: Show that you may assume Σ is the unique strongly irredundant Noetherian *R*-representation of *H*... And Σ is a determined in a canonical way from *H*.
- (Thursday) Describe *H* intrinsically: What can you say the ideal-theoretic structure of *H*? (Note: *R* must be an "independent variable" in the answer.)

Given an overring R of H, Σ is an R-representation of H if

$$H=(\bigcap_{V\in\Sigma}V)\cap R.$$

Problem: When does *H* have a *unique* irredundant *R*-representation?

Better problem: When does *H* have a *unique* strongly irredundant *R*-representation?

Recall that the *R*-representation Σ is **strongly irredundant** if no member *V* of Σ can be replaced by a proper overring of *V*.

...We focus on the answer to this question when *H* is an overring of a two-dimensional Noetherian domain.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

First we relativize the notion of a strongly irredundant representative to handle the situation:

 $H \subseteq ?? \subseteq R.$

V is a **strongly irredundant** *R***-representative** of *H* if there exists an *R*-representation Σ of *H* such that $V \in \Sigma$ and *V* cannot be replaced in this representation by a proper overring.

 $\operatorname{Rep}_{R}(H) :=$ the set of strongly irredundant *R*-representatives of *H*.

Thus $V \in \operatorname{Rep}_R(H) \Leftrightarrow$ there exists an integrally closed overring R_1 of H such that

$$H = V \cap R_1 \cap R$$

and V is strongly irredundant in this intersection.

Note: If R = quotient field of H, then $\operatorname{Rep}_{R}(H) = \operatorname{Rep}(H)$.

We restate now the theorem of Heinzer and Ohm discussed yesterday...

Theorem. (Heinzer-Ohm, 1972) If *H* is a domain, *R* is an overring of *H* and Σ is a finite character *R*-representation of *H* consisting of one-dimensional valuation rings:

$$H = (\bigcap_{V \in \Sigma} V) \cap R,$$

then $\operatorname{Rep}_R(H)$ is the unique irredundant finite character *R*-representation of *H* of one-dimensional valuation rings.

Note: Since the valuation rings involved are one-dimensional,

irredundant = strongly irredundant

...Allowing valuation rings of dimension > 1 complicates things...

Standing assumption: *D* is a two-dimensional Noetherian domain.

(Abhyankar, 1956) Only three types of valuation overrings of D:

- rational = value group is isomorphic to a subgroup of \mathbb{Q} .
- irrational = not rational but its value group is isomorphic to a subgroup of ℝ.
- Krull dimension 2 (\Rightarrow V is discrete)

Special case: DVRs

- essential prime divisors $= \overline{D}_P$, where *P* is a height one prime ideal of the integral closure \overline{D} of *D*.
- hidden prime divisors = DVRs having maximal ideals contracting to a maximal ideal M of D such that the residue field of V has transcendence degree 1 over the field D/M.

Crucial fact: (Abhyankar) the residue field of a hidden prime divisor is a <u>function field</u> of transcendence degree 1 over the residue field of *D*.

Main Theorem. Suppose

- $H \subsetneq R$ are integrally closed overrings of *D*, and
- *V* is a valuation overring of *H* of Krull dimension 2.

Then

 $V \in \operatorname{Rep}_R(H) \Leftrightarrow V$ is a member of every *R*-representation of *H*.

Thus: V is strongly irredundant in some intersection

 $H = V \cap R_1 \cap R$

iff V must appear in every representation of H as an intersection of R and valuation overrings of H.

(ロ) (同) (三) (三) (三) (○) (○)

...This is special to <u>dimension 2</u>. It does not hold for strongly irredundant representatives of Krull dimension 1.

Define $\Sigma_1 := \{ V \in \Sigma : V \text{ has dimension } 1 \}.$

Corollary. (All rings are overrings of D.) Suppose that

$$H = (\bigcap_{V \in \Sigma} V) \cap R = (\bigcap_{W \in \Gamma} W) \cap R.$$

lf:

- *R* is integrally closed (e.g. *R* = quotient field),
- these *R*-representations are strongly irredundant, and
- Σ_1 and Γ_1 have finite character (e.g. Σ_1 and Γ_1 are empty), then

$$\Sigma = \operatorname{\mathsf{Rep}}_R(H) = \Gamma.$$

A D F A 同 F A E F A E F A Q A

If strongly irredundant is replaced with irredundant, the corollary is false.

Example. In general

$$V \cap R = W \cap R \Rightarrow V = W,$$

even when *V* and *W* are strongly irredundant in their respective representations. (By the corollary *R* cannot be integrally closed.) Let *F* = quotient field of $A := \mathbb{Q}[X, Y]/(Y^2 - X^3 - X + 1)$. Write $A = \mathbb{Q}[x, y]$, where $x, y \in A$ and $y^2 = x^3 + x - 1$. Let $U = \mathbb{Q}[x]_{(x-1)}$.

Then there exist two distinct valuation rings U_1 and U_2 with quotient field *F* such that $U = U_1 \cap \mathbb{Q}(x) = U_2 \cap \mathbb{Q}(x)$.

Let *R* be the pullback of $\mathbb{Q}(x)$ to an overring of $\mathbb{Q}[X, Y]$.

Let V_i be the pullback of U_i to an overring of $\mathbb{Q}[X, Y]$.

Then $V_1 \cap R = V_2 \cap R$ but $V_1 \neq V_2$.

Outline of proof of main theorem

Suppose $V \in \text{Rep}(H)$ has Krull dimension 2, and Σ is an *R*-representation of *H*. Thus:

$$H = V \cap R_1 = (\bigcap_{W \in \Sigma} W) \cap R$$

where $R_1 \subseteq R$ is integrally closed and *V* cannot be replaced by a proper overring. We claim that $V \in \Sigma$.

With a good bit of work we can reduce to the case that

$$H = V \cap R = (\bigcap_{W \in \Sigma} W) \cap R.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We have $H = V \cap R = (\bigcap_{W \in \Sigma} W) \cap R$.

Notation: If W is a valuation overring of D, then

- $M_W :=$ maximal ideal of W.
- $P_W :=$ ht 1 prime ideal of W. (If W is a field, set $P_W = 0$.)

Then Spec(
$$V$$
) = {0, P_V, M_V }.

With more work: If $P_V \cap H$ is a <u>nonmaximal</u> prime ideal of H, then $V \in \Sigma$. (Even better, $V = H_{M_V \cap H}$.)

Thus the interesting case is: $M := P_V \cap D$ is a maximal ideal of D.

Set $B = \operatorname{End}(M) \cap R$: $V \in \operatorname{Rep}(H) \Rightarrow \cdots \Rightarrow B = V_{P_V} \cap R \Rightarrow H \neq B$.

So $\exists W \in \Sigma \setminus Zar(B)$. Moreover, W must have dimension 2.

Thus $V \cap B = H \subseteq W$. We show this implies $V \subseteq W$. For then, since *V* and *W* have dimension 2, $V = W \in \Sigma$.

We have established that $V \cap B = H \subseteq W$.

Key Lemma. Let *A* be an integrally closed overring of *D*, and let *T* and *U* be valuation overrings of *D*. Then

 $T \cap A \subseteq U \Rightarrow T \subseteq U$ or $T_{P_T} \cap U_{P_U} \cap A \subseteq U$.

(Notice the lemma is trivial if U is one-dimensional.)

So $V \subseteq W$ or $B \cap W_{P_W} \subseteq W$.

However, some work shows that $B \subseteq V_{P_V} = W_{P_W}$.

Thus since $B \not\subseteq W$, we have $V \subseteq W$.

Since *W* has Krull dimension 2, we have $V = W \in \Sigma$.

...This proves the main theorem (modulo the lemma).

A D F A 同 F A E F A E F A Q A

Recall how the Key Lemma was used:

 $V \cap R \subseteq W \Rightarrow V \subseteq W$ or $V_{P_V} \cap W_{P_W} \cap R \subseteq W$.

The idea of the proof of this lemma is with a good bit of work reduce to the case that $R \subseteq V_{P_V} \cap W_{P_W}$ and $\mathfrak{m} := P_V \cap D$ is a height 2 (hence maximal) ideal of D.

Then:
$$D/\mathfrak{m} \hookrightarrow V/P_V \cap (R+P_V)/P_V \subseteq V_{P_V}/P_V$$
.

Also V_{P_V}/P_V is a function field of degree 1 over D/\mathfrak{m} .

The interesting case turns out to be where $W \subseteq V_{P_V}$. Then:

 $V/P_V \cap (R+P_V)/P_V \subseteq W/P_V \subseteq V_{P_V}.$

R integrally closed $\Rightarrow \cdots \Rightarrow (R + P_V)/P_V$ has quotient field V_{P_V}/P_V .

...And all of this is in the function field setting...

Lemma. Let F|K be a function field of transcendence degree 1. Let A be a proper K-subalgebra of F having quotient field F, and let Σ be a collection of valuation rings containing K and having quotient field F. Suppose that there is a valuation ring U having quotient field F such that $(\bigcap_{V \in \Sigma} V) \cap A \subseteq U$. Then $U \in \Sigma$ or $A \subseteq U$.

We use this lemma in the following way:

Recall: $V/P_V \cap (R+P_V)/P_V \subseteq W/P_V \subseteq V_{P_V}$.

Also, $(R + P_V)/P_V$ has quotient field V_{P_V}/P_V .

So by the Lemma, $V \subseteq W$ or $R \subseteq W$.

...Therefore, (modulo a proof of the Lemma), we have shown:

 $V \cap R \subseteq W \Rightarrow V \subseteq W \text{ or } V_{P_V} \cap W_{P_W} \cap R \subseteq W.$

(日) (日) (日) (日) (日) (日) (日)

Why is the lemma true?

Lemma Restated. Let F|K be a function field of transcendence degree 1. Let *A* be a proper *K*-subalgebra of *F* having quotient field *F*. Then

$$(\bigcap_{V\in\Sigma} V)\cap A\subseteq U \Rightarrow U\in\Sigma \text{ or } A\subseteq U.$$

Strong Approximation Theorem. If *F*|*K* is a function field of degree 1 and $\{v_1, \ldots, v_n\} \cup \{w_i : i \in I\} \cup \{v_\infty\}$ is the collection of all valuations on *F*|*K*, then for any integers e_1, \ldots, e_n there exists $x \in F$ such that $v_k(x) = e_k$ for all *i* and $w_i(x) \ge 0$ for all *i*.

The Strong Approximation Theorem is a corollary to the Riemann-(Roch) Theorem for curves.

So it is likely very important for our approach to uniqueness that the residue fields of the valuations be function fields. (This fails if *D* has Krull dimension > 2 (Zariski-Samuel).)

Recall the corollary to the main theorem:

$$(\bigcap_{V\in\Sigma} V)\cap R = (\bigcap_{W\in\Gamma} W)\cap R \Rightarrow \Sigma = \Gamma$$

whenever

- *R* is integrally closed* (e.g. *R* = quotient field),
- these *R*-representations are strongly irredundant*, and
- Σ_1 and Γ_1 have finite character (e.g. Σ_1 and Γ_1 are empty),

*necessary

Example. (Thanks to Bill Heinzer and Alan Loper) Let $H = K + Z K(X, Y)[Z]_{(Z)}$. Then *H* is a one-dimensional domain having many different strongly irredundant (Noetherian) representations.

...So the corollary does not hold in dimension 3.

Application: Let $H \subseteq R$ be integrally closed overrings of D, and let Σ be a Noetherian R-representation of H:

 $H=(\bigcap_{V\in\Sigma}V)\cap R.$

Friday: You can replace Σ with a strongly irredundant *R*-representation Γ of *H*.

In fact, applying the Main Theorem from today, it's possible to show that $\Gamma = \text{Rep}_{R}(H)$.

So by the uniqueness theorem proved today $\operatorname{Rep}_R(H)$ is the unique strongly irredundant Noetherian *R*-representation of *H*.

Thursday: We use $\operatorname{Rep}_R(H)$ to "decompose" H as a kind of pullback...