Commutative Ring Theory Days 2010

May 19-20-21, 2010

Roma, Italy

ABOUT SUBSETS OF Z WITH SIMULTANEOUS ORDERINGS

JEAN-LUC CHABERT

The natural sequence $\{n\}_{n\geq 0}$ has the following nice property: whatever the integer $m \in \mathbb{Z}$ the product $\prod_{k=0}^{n-1}(m-k)$ is divisible by the product $\prod_{k=0}^{n-1}(n-k)$, that is, n! divides m!/(m-n)!.

Analogously, consider a subset S of Z. A sequence $\{a_n\}_{n\geq 0}$ of elements of S is said to be a *simultaneous ordering* of S when:

$$\forall x \in S \quad \prod_{k=0}^{n-1} (x - a_k) \text{ is divisible by } \prod_{k=0}^{n-1} (a_n - a_k).$$

There are two well known examples of subsets which admit simultaneous orderings: $\{n^2 \mid n \ge 0\}$ and $\{q^n \mid n \ge 0\}$ where q is any integer ≥ 2 . We are interested in finding other natural examples.

We characterize here the integer-valued polynomials f of degree 2 such that either $\{f(n) \mid n \ge 0\}$ or $\{f(n) \mid n \in \mathbb{Z}\}$ admits a simultaneous ordering.

We prove also that, for any $f \in \mathbb{Z}[X]$ and any integer $x \in \mathbb{Z}$, the orbit of x under the action of the iterates of f, that is, $\{f^n(x) \mid n \geq 0\}$ always admits a simultaneous ordering.

This is a joint work with David ADAM (Université Française du Pacifique) and Youssef FARES (LAMFA, Université de Picardie).

Université de Picardie

LAMFA, 33 RUE SAINT LEU, 80039 AMIENS, FRANCE *E-mail address*: jean-luc.chabert@u-picardie.fr