Commutative Ring Theory Days 2010

May 19-20-21, 2010
Roma, Italy

ABOUT SUBSETS OF Z WITH SIMULTANEOUS ORDERINGS

JEAN-LUC CHABERT

The natural sequence $\{n\}_{n \geq 0}$ has the following nice property: whatever the integer $m \in \mathbf{Z}$ the product $\prod_{k=0}^{n-1}(m-k)$ is divisible by the product $\prod_{k=0}^{n-1}(n-k)$, that is, n ! divides $m!/(m-n)$!.

Analogously, consider a subset S of \mathbf{Z}. A sequence $\left\{a_{n}\right\}_{n \geq 0}$ of elements of S is said to be a simultaneous ordering of S when:

$$
\forall x \in S \quad \prod_{k=0}^{n-1}\left(x-a_{k}\right) \quad \text { is divisible by } \prod_{k=0}^{n-1}\left(a_{n}-a_{k}\right)
$$

There are two well known examples of subsets which admit simultaneous orderings: $\left\{n^{2} \mid n \geq 0\right\}$ and $\left\{q^{n} \mid n \geq 0\right\}$ where q is any integer ≥ 2. We are interested in finding other natural examples.

We characterize here the integer-valued polynomials f of degree 2 such that either $\{f(n) \mid n \geq 0\}$ or $\{f(n) \mid n \in \mathbf{Z}\}$ admits a simultaneous ordering.

We prove also that, for any $f \in \mathbf{Z}[X]$ and any integer $x \in \mathbf{Z}$, the orbit of x under the action of the iterates of f, that is, $\left\{f^{n}(x) \mid n \geq 0\right\}$ always admits a simultaneous ordering.

This is a joint work with David ADAM (Université Française du Pacifique) and Youssef FARES (LAMFA, Université de Picardie).

Université de Picardie
LAMFA, 33 rue Saint Leu, 80039 Amiens, France
E-mail address: jean-luc.chabert@u-picardie.fr

