Quantum Cohomology of $Hilb^2(\mathbb{P}^1 \times \mathbb{P}^1)$ and enumerative applications - Dalide Pontoni

I describe the Hilbert scheme $\operatorname{Hilb}^2(\mathbb{P}^1 \times \mathbb{P}^1)$ and its Big and Small Quantum Cohomology rings, QH^* and QH_s^* respectively. Both of them are deformations of the usual cohomology ring $H^*(\operatorname{Hilb}^2(\mathbb{P}^1 \times \mathbb{P}^1), \mathbb{Q})$. They are obtained by introducing some formal variables and defining the so called *-product which extends the usual \cup -product. To give an explicit presentation of QH_s^* I need to know almost all the Gromov-Witten Invariants of $\operatorname{Hilb}^2(\mathbb{P}^1 \times \mathbb{P}^1)$. These invariants are enumerative; they encode information on hyperelliptic curves on $\mathbb{P}^1 \times \mathbb{P}^1 \subseteq \mathbb{P}^3$ of given genus and bidegree satisfying some incident conditions. I present a result about this enumerative significance.