Homage to Corrado Segre (1863-1924)
November 28-30 2013, Turin. | |
Stable Gorenstein surfaces with K2=1
Rita Pardini (Pisa)
Stable surfaces can be regarded as a generalization of stable curves: they have "well behaved" singularities (e.g., they are at most nodal in codimension 1) and,
by the theory developed by Kollar, Shepherd Barron and Alexeev, their moduli space is complete, and thus it provides a compactification of the moduli space of surfaces of general type.
I will report on work in progress with M. Franciosi and S. Rollenske on the fine classification of Gorenstein stable surface with K2=1, namely the smallest possible value.
Our work combines suitable generalizations of the classical technique of studying the canonical ring and the pluricanonical maps with the point view introduced by Kollar of
regarding stable surfaces as the result of glung a normal surface to itself along a certain divisor.
| |
.... .. .... .. | |
.... .. .... .. | |
Organized by:
Accademia delle Scienze di Torino, Università di Torino,
Politecnico di Torino,
Centro per la storia dell'Università di Torino, G.N.S.A.G.A. of I.N.D.A.M. Progetto PRIN Geometria delle Varietà Algebriche, Progetto PRIN Scuole matematiche e identità nazionale nell' Italia moderna e contemporanea Scientific Organization: Gianfranco Casnati, Alberto Conte, Letterio Gatto, Livia Giacardi, Marina Marchisio, Alessandro Verra |