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Effects of Boundary Conditions on
Irreversible Dynamics

Aldo Procacci, Benedetto Scoppola and Elisabetta Scoppola

Abstract. We present a simple one-dimensional Ising-type spin system
on which we define a completely asymmetric Markovian single spin-flip
dynamics. We study the system at a very low, yet nonzero, tempera-
ture, and we show that for free boundary conditions the Gibbs measure
is stationary for such dynamics, while introducing in a single site a +
condition the stationary measure changes drastically, with macroscopical
effects. We achieve this result defining an absolutely convergent series ex-
pansion of the stationary measure around the zero temperature system.
Interesting combinatorial identities are involved in the proofs.

1. Introduction

In this paper, we discuss a very simple one-dimensional spin system in order
to point out the crucial effect of boundary conditions on the invariant measure
of irreversible dynamics.

Irreversible dynamics turn out to be a challenging problem since they
are the main ingredient in the study of non-equilibrium statistical mechan-
ics. Indeed many interesting physical systems cannot be described in terms of
equilibrium: for instance non-Hamiltonian evolutions, systems with external
non-conservative forces, or systems with thermostats or reservoirs. Such sys-
tems exhibit nonzero currents of matter or energy flowing in an irreversible
way. For this kind of problem, it is necessary to consider non-equilibrium sta-
tistical mechanics. Actually we can say that the description of non-equilibrium
systems represents one of the “grand challenges” in statistical mechanics.

In this frame, the main point is to describe non-equilibrium stationary
states (NESS), “in understanding the properties of states which are in station-
ary non-equilibrium, thus establishing a clear separation between properties of
evolution toward stationarity (or equilibrium) and properties of the stationary
states themselves: a distinction which until the 1970’s was rather blurred.” as
mentioned in the beautiful book by Gallavotti [7].
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Irreversible dynamics play in this context a crucial role. The invariant
measures of irreversible dynamics are stationary states, but they describe
nonzero currents of probability, and hence they are NESS. A famous example
is given by the TASEP model, in which particles hop only to the right, entering
from a left reservoir with a given rate and leaving the system from the site L
with another rate.

In the context of Markovian dynamics, given any two states ¢ and j in
some configuration space X, the irreversibility is defined by transition proba-
bilities P(i,7) violating the detailed balance condition

*()P(j,i) = n(i)P(i,j)  Vi.jE€X

This means that there are nonzero probability currents. Indeed given a pair of
states i,j € X define the probability current (or flow of probability) from j to
7 at time t the antisymmetric function on X x X"

Ki(j,i) = P'(j)P(j, i) — P'(i) P(i, j)
where P'(-) represents the probability of the state - at time t.
The continuity equation for P*(i) gives

PY(i) — P(i) = Z P'(j)P(j.i) — P'(i) Z P(i, )

=Y (Pt(j)P(j,z') — Pt(i)P(i,j)) = Ki(j.i)
g g7
= —(div Ky)(4)

Stationarity implies

0= (v()PG.i) ~ 7()PG.J) = S K(Gi) Vi (1)
J#i J#i

where K (j,i) = w(j)P(j,i) — (i) P(4,J) is the stationary probability current
(or stationary flow of probability) from j to 4, a divergence-free flow. This flow
K is proportional to the antisymmetric part of the conductance associated with
the chain, and it is also considered for instance in [8]. Actually the presence of
currents can be used to detect irreversible dynamics without using the invariant
measure. This is done by the Kolmogorov criterion for reversibility [9]: The
Markov dynamics with transition probabilities P(4, j) is reversible if and only
if for any loop of states: ig, i1, %2, ..., in, io We have

P(io,i1)P(i1,i2) - P(in,i0) = Pl(io,in) - - P(iz,i1)P(i1, o).

This means that the dynamics is irreversible if there is a loop with a stationary
current. Actually, it is natural to set the stationary probability of the sequence
of states ig,i1,...,4y,,10 as

W(io)P(io, ’il)P(il, ig) s P(in, io)

and so a stationary probability current

(i) [P(io,il)P(il,ig) < Pin,io) — Plio,in) - - P(is,i1)P(i1, io)]
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This means that at the loop g, 41, ..., in, %0, without a fixed starting point, we
can associate a stationary probability current

> wlin) [ Plios 1) Plinsia) -+ Plinsio) = Plio,in) -+ Pliz, 1) Plia, o) |
k=0

As noted in the rich review by Chou et al. [2], the presence of stationary
current loops suggests to associate magnetostatics to irreversible dynamics as
electrostatics is associated to reversible dynamics. This is an evocative and
effective association since magnetostatics is related to stationary currents and
electrostatics to stationary electric charges.

Beside their crucial role in the understanding of non-equilibrium statis-
tical mechanics, irreversible dynamics have been frequently considered in the
literature in order to speed up simulations. Indeed, in some cases, rigorous
control of mixing time of irreversible dynamics has been obtained. See for
instance [5].

Several problems arise when considering irreversible dynamics. Indeed
some tools frequently used in the study of convergence to equilibrium are
strongly related to reversibility, such as spectral representation or the potential
theoretical approach. Recently, some progress has been made to extend some
of these tools to non-reversible dynamics. See for instance the extension of the
Dirichlet principle to non-reversible Markov chains obtained in [8].

In this paper we want to stress the main difficulty related to irreversibil-
ity: While detailed balance is a crucial tool to control the invariant measure of
reversible dynamics, in the irreversible case the control of the invariant measure
can be quite complicated, and in particular it is difficult to study its sensitivity
to boundary conditions. Very recent results have been obtained in this direc-
tion in [6] where irreversible dynamics are constructed with a given Gibbsian
stationary measure by exploiting cyclic decomposition of divergence-free flows.

In some cases, it is possible to verify that the equation for the invari-
ant measure (1) is satisfied by a suitable Gibbs measure, as proved below in
the (easy) case of free boundary conditions. This is also the case of the two-
dimensional Ising model with asymmetric interaction and periodic boundary
conditions discussed in [11]. In general, due to the presence of probability
currents, the verification of Eq. (1) typically involves non-local argument; see
Remark 3 below, and so the invariant measure strongly depends on boundary
conditions.

We consider a one-dimensional spin system on the discrete interval [1, L] =
{1,2,...,L} with a single spin-flip Markovian dynamics {X;}+cn, defined on
X := {—1,1} by the following transition probabilities

. 1
P(O_,O_(l)) — *G_QJ(aiai’l-i—l) (2)
L
where ¢ is the configuration obtained from o flipping the spin in the site

i € {1,2,...,L}. This means that at each time a site ¢ is chosen uniformly at
random in {1,2, ..., L} and the spin is flipped in this site with probability one if



446 A. Procacci et al. Ann. Henri Poincaré

it is opposite to its left neighbor, o;_1, or with probability e=*7 if it is parallel
to ;1. We will consider two different boundary conditions:

— the free boundary condition corresponding to o¢ = 0;
— the + boundary condition corresponding to o9 = +1.

The chain is irreducible and aperiodic so that in both cases there exists
a unique invariant measure. We will consider a particular low-temperature
regime, the chilled regime, (see definition below) where the inverse tempera-
ture J is proportional to log L. This is of course a strong assumption that we
will use in order to easily compute the invariant measure of the process. We
stress again that our goal is just to point out that in irreversible dynamics
the boundary effect does not act simply as a conditioning, like in the Gibbs
measure, but changes completely the structure of the invariant measure.

To this end we shall prove that while in the case of free boundary con-
ditions the stationary distribution is the Gibbs measure, in the case of +
boundary condition the stationary measure changes drastically. Due to the
particular low-temperature regime we are able to write the stationary distri-
bution as an absolutely convergent expansion in e~*7. This expansion is easily
controlled in this case, but it could be a general tool in order to handle the
invariant measure at a very low temperature in more general contexts. We
control completely the first order of such expansion, and we show that it has
several interesting features. The boundary conditions actually modify the sta-
tionary distribution and the effect of their presence decays very slowly in the
distance ¢ from the boundary, namely as % Moreover, the presence of bound-
ary conditions makes the probabilities of interval of minus spins dependent on
their length, producing macroscopical effects on the magnetization.

The paper is organized as follows: In Sect. 2 we define the models, compar-
ing them with the usual reversible Glauber Dynamics for the 1d Ising Model,
and we state the main results of the paper. Section 3 is devoted to the control
of the expansion of the invariant measure in terms of the quantity e~*/. Sec-
tion 4 contains the proof related to the characterization of the first order term
of the invariant measure. Some concluding remarks and future perspectives
are discussed in Sect. 5.

2. Models and Results

As mentioned in the introduction, our model is defined via an irreversible
markovian dynamics on a one-dimensional discrete spin chain with states o €
X = {—1,+1}{12L} We consider two different boundary conditions, namely
the free boundary conditions, having oy = o141 = 0, and the + boundary
condition oy = o1 = +1. The dynamics is defined by the following transition
matrix

Lo-2J(7i0i-1+1) if 7 = o
Plor)=01- 1% e 2ot jfr =4 (3)

0 otherwise
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where ¢(?) is the configuration obtained from o by flipping the spin in the site
i. We fix boundary conditions both in 0 and in L+ 1 in order to consider also
the reversible case (see below) for comparison. However, we note that for the
dynamics defined in (3) just the boundary condition in 0 acts on the dynamics.
This dynamics is irreversible, but in the case of free boundary conditions, it is
easy to find its stationary measure. Indeed, consider the Gibbs measure

—H (o)

7% (o) = Sl , 79 = Z e H() (4)

7G
gEX

where H(o) is the usual Ising Hamiltonian with free boundary conditions.

L
o)= _Jzaiaifl (5)
i=2

Let us show that 7%(o) is the unique stationary measure of dynamics (3).
The dynamics is clearly irreducible and aperiodic, and hence the stationary
measure exists and it is unique.

Moreover, it is immediate to verify the following equalities:

ﬂ_G(U(i)) — 7TG(o,)e—QJ(aioi,l—&-aiaH]) (6)
- 1
PI(O'(”,O') — ZGQJ(oia,;,l—l)- (7)

To prove that 7& is the invariant measure of the process satisfying

Z 7% (1) Pl(r,0) = 7% (0), ()

TEX

it is sufficient to verify the following condition, obtained from (8) by canceling
the diagonal terms in both sides of the equality, which is equivalent to Eq. (1):

L
Z’/T P (oW, o) = 7% (o) ZPI(O',O'(i)) (9)

Equation (9) immediately follows from (6) and (7) since, by the free b.c, we
have

L L—-1 L
§ efzJ(UiJiJrl) — E 672‘](0‘10'7;4,1) — § e*2](0'i710'i)'
i=1 i=1 =2

It is a standard task to define a reversible markovian dynamics having the
same stationary measure, i.e., the well-known Glauber dynamics, given by the
following transition probability matrix

Le-[H@)—H @)+ if 7 =o®
PRo,1) =1 =%, Lo HE-H@L i — o (10)
0 otherwise

where []; means the positive part.
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For both dynamics, the one-dimensional stationary measure 7 (o) is well
known. We have
872JZ(U)

2(1 n e*QJ) o

where £(o) is the number of pair {i,7+ 1} such that o;0,41 = —1 (i.e., £(0) is
the total length of the Peierls contours).

We conclude this short discussion of the free boundary conditions by
checking the irreversibility of the dynamics defined in (3), i.e., the presence
of nonzero probability currents. Indeed, for example, for ¢ > 1 and m > 1
such that ¢ +m < L, let us consider the configuration ¢ with o; = —1 for
j=1t4t+1,...,04+m—1and o; = +1 elsewhere and observe that 71'G<0') =

7% (™) while P(0,0") = + and P(cW,0) = # Therefore,

7% (o) =

i i i 41 7%(0)
76 (0)P(0,0®) — 76 (cD)P(6®, ) = {1 e 4J} L 0.

The effect of irreversibility clearly appears looking at typical trajectories of
the dynamics, where the interface between spins with different orientations,
i.e., the Peierls contours, are moving rightward.

In order to control the invariant measure in the case of plus boundary
conditions, we introduce a particular regime, which is assumed throughout
the paper, defined as follows.

Definition of chilled regime

We say that the one-dimensional discrete spin chain on [1, L] with states o €
{—1,+1}{1+L} subjected to the irreversible dynamics (3) or to the Glauber
dynamics (10) is in the chilled regime of parameter ¢ > 0 if

J=clogL

Note that the Gibbs measure 7¢ for ¢ large enough is concentrated on
the configurations ¢ = B (0; = 1 Vi) and ¢ = B (0, = —1 Vi), while for the
other configurations o, we get

7TG(0') ~ %e_Q‘M(U)

The chilled condition defined above mimics a phase transition, in the
sense that the volume-dependent low temperature (high .J) defined by e 27 L <
1 forces the system in a nonzero (in particular, very close to +1) magnetiza-
tion. It is very easy, yet quite interesting, to study the mixing time of the two
dynamics defined above, which is proportional to the expected value of the
tunneling time, namely the time needed to pass from the configuration H to
the configuration BH.

It is not difficult to identify in the reversible case the typical path of
the tunneling. By chilled condition e™2/L < 1, a spin flip on the boundary
occurs after a time of the order of Le?/ and a spin flip inside a region of
spins having all the same sign occurs after a time of the order of e*/. Both
times are much longer than L, and the shorter one, giving the typical path
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of the tunneling, is the first, Le?>/. The interface between two regions with
opposite spins may move in a time of order L, with equal probability on the
right and on the left. A random walk of such surface reaches eventually the
other boundary with probability 1/L in a number of steps of order L?, and
hence in a time of order L3. Hence the expected time that one has to wait for
the tunneling, since typically one has to try L times before the random walk
hits the opposite boundary, is L?e?” plus the time L?, which has to be added
to the previous one. The leading order of such time is hence L2e?’. which is
precisely the tunneling time. In the irreversible dynamics, the spin in the site
1 is flipped after a time of the order Le?’. The boundary between the + and
the — regions, then, typically moves only on the right, doing L steps, each of
which is performed in a time of the order L, giving a total time of the order L2.
Again, this ensures that the tunneling time is of the order of Le?”, because
the (added) time L? is smaller than Le?/. Hence the tunneling time in the
irreversible case is shorter, polynomially in L, than the one in the reversible
case.

In what follows, we will consider the case of 4+ boundary conditions,
namely o9 = o411 = 1. With the reversible Glauber dynamics (10), the in-
variant measure with plus boundary conditions is just Gibbs measure 7¢ con-
ditioned to o9 = or4+1 = 1. If we consider now the irreversible dynamics (3),
we will see ahead that its invariant measure changes dramatically with respect
to the free boundary conditions case.

For notational simplicity, we will also use the notation P, = P(c,7) and
T = (o) in computations below.

2.1. Results

Before stating our results concerning this particular regime, we need to intro-
duce the main technical tool which consists in writing the invariant measure
of the irreversible dynamics with + boundary conditions in the chilled regime
J = clog L in terms of a series in e/, We will omit for simplicity hereafter
the suffix I, standing for irreversibility.

Denoting with £(o) the number of antiparallel adjacent pairs of spins for
each configuration o and recalling that og = 1, we can write the transition
probability matrix in the following form
if r=0® and g;0,_1 = —1

1
L
o 47

L
P(O’,T): 1_@_(1_@)6_4‘]

I
—

if r =0® and 00,1
ifr=o0

otherwise
We can define the dynamics above for zero temperature (J — o)

% if 7=0® and oy0,_; = —1
PO, r)=¢1-42 jfr=¢
0

otherwise
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obtaining
P(o,7) = PO (o, 7) + e * AP(0,7) (12)
where
% if 7 =0 and g;0,_1 =1
AP(o,7)={ -1+ %9 if7 =4 (13)
0 otherwise

The state o corresponding to (o) = 0, i.e., 0 = B (0; = +1 V 9), is
clearly absorbent for the zero-temperature dynamics. Hence

1 ifo=H
w<°><o>={ hera

0 otherwise

We can use now the following formula for the perturbations on Markov
chains:

o)=Y e *hrh(g) (14)
k=0
where
®) (o Z?T 7)D¥(r,0)  D=Y APPO) (15)
j=0

Again for notational simplicity, we will write P(0)7 = (P(®)J. Note that

by its definition
7 ()=0 Yo: l(o)>2k (16)
Formulas (14) and (15) may be easily proved in general. Indeed, let 7T§0)
the stationary measure of a Markov chain Pi(jo). Consider the ergodic chain

P = Pi(jo) + ¢AP;;. Denote with m; the stationary measure of the chain P;;.
By ergodic theorem, we have

™= hm ZW() )Y = hm ZW (0)+6AP O

Then defining

Dy = Z Z AP (POY,,

>0 k

T = Wfk)€k
Ek: :

we have that

with
= Z 7'('l(0) (Dk)[z
l

A similar expansion is used for instance in [3] for the blockage problem.
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We define the expansion of the stationary measure up to the first order
as

2(ED — 0) | g4 (1) (17)

Note that 7(=1) is a probability measure. We want to remark that at zero order
there are no currents because the system is frozen in the configuration H. But
at each subsequent order, it is immediate to see that currents are present and
the dynamics is irreversible (see Remark 3 below).

We can now state our main results. The first is an immediate consequence
of the convergence of the perturbative expansion (14). Let

dpy (m, 71'(51)) = Z ’77(0) - 71'(31)(0)

be the total variation distance between the measure m and its first-order ap-
proximation 7(=. Then the following theorem holds.

. ‘ _ 1 ;
Theorem 2.1. In chilled regime of parameter ¢ = 5+, with v > 0, we have
that

(<1) const

dTV(ﬂ',ﬂ' - ) < W

(18)
Theorem 2.1 shows that it is meaningful, in the chilled regime with v >
1/2, to compute the first order in e=*’ of the stationary measure, since it will
be the leading one.
As it is clear from the perturbative approach, by (16), up to first order the
only configurations admitted are the ones with at most one connected interval
of sites having o; = —1, while all the rest of the configuration has o; = +1.

Remark 1 The first-order perturbative expansion introduced above underlines
another way to see the impact of boundary conditions on irreversible dynamics.
In the first-order picture the only possibility to construct an interval of — spins
in the sea of + spins, of a given length and in a given position, is to flip a single
— spin and then to let evolve the system according to the zero-temperature
dynamics until such evolution covers exactly the desired interval. The sum
of this kind of evolutions is exactly the meaning of the matrix D;; defined
above, and hence this sum is a way to define the stationary measure up to
the first order. It happens that with free boundary conditions (or, as it is
easy to see, on a ring, with periodic boundary conditions), this picture of
the stationary measure in terms of sum over trajectories is equivalent to the
(more familiar) Gibbs measure. Fixing a + boundary condition the number
of possible trajectories is drastically cut when the — interval is close to the
boundary, and then this equivalence is lost. This is due to the fact that Peierls
contours at zero temperature move only rightward. The Gibbs measure, in this
case, has nothing to share with the stationary distribution of the system.
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Let t € 1,...,L—1and m € 1,...,L — i and let us denote (i;m) the
state having

+1 forl1<k<i1
op=4¢—1 fori<k<i+m
+1 fori+m<Ek<L

In other words ;0,1 = —1, G44mTitm-1 = —1, opor—1 = 1 Vk # i,i + m.
That is, the state (i;m) is a single interval of m spins equal to — 1 starting
at 1.

Let us denote (i) the state having

+1 forl1<k<i
O =
"Y1 fori<k<L

In other words (i) = (4; L + 1 — i), i.e., 0,0i—1 = —1, opor_1 = 1 Vk # i.
Theorem 2.2. For any fized m > 0 and i large, we have
(1) _ —4J Cm 1
7T(z’;m) =¢ (1 - W + 0<\ﬁ)> (19)

where Cyy, is a constant depending on m. For every i,m we have

(<1) —4g S
T <4e e 26Fm) m (20)
i;m)
Moreover, for every i
i
(1) _ (<1)
T = 2L (21)
1=1
Remark 2 Note that (19) gives a precise quantitative meaning to the comments
in Remark 1: we get WE_;)) — e % as i — oo, so that very far from the
boundary condition the stationary distribution at the first order in e™*/ is

equal to the Gibbs one, giving the same weight to every interval of minus
spins independently of its length and its position. This convergence to the
Gibbs measure, however, is very slow, and it does not occur on a well-defined
scale. Moreover, the exponential decay with the length m of the interval of
— spins given by (20) produces macroscopic effects, as the following theorem
shows.

Theorem 2.3. The average value of m(o) := ZiLzl 1{5,=—1y with respect to the
Gibbs measure, 7€, and with respect to the irreversible measure up to the first
order, 7=V is given by

=D(m) 1
T m
lim ——— < - 22

LLH;O 7¢(m) ~ 4 (22)

Remark 3 Looking at simulations the presence of a current in the system up
to the first order in e=*/, as discussed above, is absolutely evident: The typ-
ical evolution is given by a single interval of — spins moving rightward. The
irreversibility is, up to this order, crystal clear.
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3. Proof of Theorem 2.1
By (15) we have

dTv(’/T,T((Sl)) = Z

g

7

o0 [eS)
§ :ef4Jk7rc(fk) < 2 ef4Jk §
k=2 k=2 o

For J = clog L the condition ¢ = % +~ implies e */F = [=(+4k and then it
is enough to prove that

> |5 < oz (23)

Since

(o)

S [r] = |30 o attvar., (pom)
o o |m=0rt,0' 7

we have that (23) is recursively proved if we are able to prove that

supz i ZAPT"' (P(O)m)

o |m=0 o’

<CL? (24)

oo

Note first that
Z AP, =0 (25)

for all 7. Then define the matrix II(?), having all the rows equal to the station-
ary measure (), and hence having on the column related to the configuration
o = H, say on the first column, all the entries equal to 1, while all the other
entries are zero. Observe that, due to (25), we have

S ar, ) =0 (26)

for all o and 7. Finally define
R, = PO™ _11(® (27)
Due to (26) we have that

S AP, (P(O)’”)U,U =N APy (R, (28)

Now using (28) we split the sum over m in two terms:

i Y Ar, (P<0>m)

m=0 o’

by

o

oo

212

<Y S ar. (X por
o o’ m=0

g

53] SEVT IS Say S

m=2L2+1 ,

(e g o

(29)

’
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The first term is estimated as follows

212 o2
Z ZAPT”' Z pO)m < Z AP, Z pO)m
o o’ m=0 Y ool 0 .
212
<> IAP Y S (PO
o’ m=0 o g

For each m, the sum over o is 1, and then

2L?

> [Sar X po
o o’ m=0

<Y |AP| (207 +1)

’

[oaNen

Due to the definition of AP/, we have

Slap|=20- ) <2 (30)

we obtain the following estimate

2L?

Z Z AP, Z ploym <AL?+2 (31)
o o’ m=0

’

g'o

Now we are left with the estimate of the second term in (29):

Z Z APTO'/ i R’m S Z APTO'/ i R"L

m=2L2+1 , m=2L2+1 ,

o'o [oaNen

Let us first of all consider the entries of the matrix R,,. Calling Tm(o’)
the hitting time to the state B starting from the state o/, we have that, since
H is an absorbent state,

(Rm)a’,Bﬂ = PU(?’)EEL -1= *P(TEE(U/) > m)

For the same reason

and therefore



Vol. 19 (2018) Effects of Boundary Conditions 455

Hence
oo o0
D AP | Y Ra| [<2) AP )Y P(Tw(o') >m)
o0’ m=2L2+1 oo o’ m=2L2+1
(oo}
<2(sup D P(Tw(o)) >m) | > |AP|
a’ m=2L2+1 o’

o0
< 4sup Z P(Tg(o") > m)
o m=2L2+1
where in the last line we used again (30).

We are left with an estimate of the quantity P(Tg(c’) > m) uniformly
in ¢’. Recall that the (zero temperature) dynamics chooses u.a.r. a site and
tries to update it. Call &; the time needed to choose for the first time the site
1, then & the time needed, after the first choice of the site 1, to choose for
the first time the site 2, and so on so forth. Calling £ = Zle & we have that
& > Tw(c') for all ¢’ . This is granted by the fact that after the time &, we
have definitively that oy = +1, and after the time & + &>, we have definitively
that oy = 0o = +1 and so on. Hence we have for all o’

P(Tg(o") > m) < P(§ > m)

Being &; a geometrical variable of probability p = %, and hence having E(§;) =
L, Var(¢&;) = L? for all i, we have that ¢ is the sum of L independent geometric
identical variables, and therefore E(¢) = L2, Var(¢) = L3.

By Chebyshev inequality

P(€>m) = P~ B(E) > m— B(©) = Ple~ B(O) > m— 1) < o o
We have then proved that
00 o 3
sup Z P(Tg(o’) >m) < Z (mfiLQ)z <L
7 m=2L241 m=2L2+1

which finally gives

Z ZAPTU/ i R <AL (32)

m=2L2+1 ,

oo

Combining (32) and (31) we get (24).

4. Proof of Theorems 2.2 and 2.3

Let us denote with A\((k; 1), (i;m)) a sequence of spin flips, allowed by the zero
temperature dynamics, that brings the configuration (k; 1) into the configura-
tion (i;m). Since at least one — spin has to be present in all the steps of the
sequence, the latter can be described by partial Dyck words, and the number
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of such sequence is given by the elements of the so-called Catalan’s triangle
(see, e.g., [1,13]).
We have

o _ I, 1y = (0)s
Tiym) = Dy (ism) = iz Zzp(k;l),(i;m) L Z Z P(k;l)»(i§m)
k=1 s=0 k=1 s=2i+m—2k—1

i~ 1 X (2i4m—2k-1+¢ 2\
- f; [2itm—2k—1 Z Z ( s/ ) (1_L)

(i1, (i5m)) 5'=0

i 1 L 2i4+m—2k

=N - (= Cltm—h1.ie
Z 2itm—2k ( ) i+m—k—1,i—k
k:lL 2

i 1 2i+m—2k
=> <2> Citm—k—1,i—k; (33)
k=1

where in the second line we defined s’ = s —2¢ — m + 2k + 1, and in the third
line we used the Taylor expansion, convergent for |a| < 1, of the function

(L)N—H
11—«
N+1 o]
1 N
() ()
1 -« = s

In Eq. (33), Ciym—k—1,—k denotes the number appearing in the position 7 +

m — k — 1,7 — k of the Catalan’s triangle, i.e.,

(n+k)!(n—Fk+1)
El(n 4+ 1)!

Cok = (34)

Calling | = i — k, we have

. i—1 1 2l4+m
ﬂ-Ei;)nz) = Z (2> Clym-1, (35)

1=0
We will now prove the following lemma.

Lemma 4.1. For every positive integer m, we have

%) 1 2l+m
Z (2> Ciym-11=1 (36)

=0

Proof. The quantity W((il;)m) can be written in terms of a one-dimensional sym-

metric random walk (SRW), S, = > | X;, with X; independent Bernoulli
variables X; € {—1,+1}. Indeed Cjjp,—1, is the number of paths of the
random walk {S,}nen such that S; = 1, Soyp, = m and S, > 0 for any
n = 1,...,2l + m. For the duality principle for random walks, we have that
(X1, Xo, ..., X,,) has the same distribution of (X, X,,—1, ..., X1), so that the
path (0,S57,955,...,5,) has the same probability of the time reversal path
(0,8, — Sn—1,5, — Sn—2,..., 5, — 0). This implies that by denoting with 7,
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the first hitting time to m for the random walk starting at 0, we have for every
positive integer m

1 2l+m
<2> Cl+m—1,l = P(Tm =2l + m) (37)
so that
1—1
Ty = 3 Pt = 2+ m) = P(r, < 2i +m), (38)
1=0

Formula (36) now immediately follows from (38) since for the SRW the hitting
of any state is finite with probability one. O

Remark. The proof of (36) can also be obtained in a purely combinatorial
framework. See for instance Lemma 18 in reference [10].
We now prove (19). From (35) and Lemma 4.1, we have
L %) 1 2l4+m
o =1-2(5) s )
1=i

with

1\ 2+m 1\ 2+m @+m)  m
= Ciom—1,=1|z .
2 meh 2 (+m)! 204+m

Using upper and lower Stirling’s bounds for the factorials [12] valid for all
n>1

2mn (%)neﬁlﬂ <n! <V2mn (Z)Tbeﬁ7
we have, for any [ > 1 and any m > 1,
<1)21+m Clim11 < etz (1+ %)ZHm m

T T Ve (1+ %)Hm VI +m)(2L +m)

l
<méC+$ylu+m2 m
T V2 \1+ 7 1+ VI +m) (20 +m)

<eﬁ (l+”21>m 1+7) m
T V2r \l+m L/ Jll+m) 2L+ m)

B o1z 1 m mﬂ l+m
Ver 20+m)) B2V 2+m

where in the last line we have used the trivial bound (1 — ) < e™* valid for
all x > 0. Hence, for any [ > 1 and any m > 1, we may roughly bound

1\ 2 m 1
<2> Crem—1,1 < 5 P (40)
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A similar computation gives, for any [ > 1 and any m > 1,

1 )2l+m

m

<1)2l+mc =% (1+2l
2 brm= “_\/7(14_ ) U+ m)(20+ m)
NOEE A UES i

Z3<1+’;ﬂ> ( 1t m ) S m)@l +m)

1 <l + > m
—3\Il+m VI +m)(2l +m)
Therefore, we may roughly bound for any [ > 1 and any m > 1

2l4+m
1 2-m 1
(2) Cl+m ll = 3\/> ZS/Q (41)

From inequalities (40) and (41), the first statement (19) of Theorem 2.2 im-
mediately follows.
In order to show (20), we write

m 1—1 2l+m |
e 1 N Z 1 2L+m)! m
m) = 2 2 (+m)lll 20 +m

=1

Using now (40) and recalling that Y27 | —z = ((3/2) < 3, we get

m i—1
(1) 1 1 2::3 m 1 62(m+’)
Tim) < (2> T3 Ze oy 13/2 < 5 Z 13/2

1 m 2 o2 a2
< (2> + 3me2mF < (14 3m)e2mFn < 4me2tm+d (42)

and inserting (42) inequality into (39) we get (20).
The computation of 7T(l.1) is similar, but it is necessary to choose the time
in which the spin in the site L is flipped to o, = —1. We have

T = D LZZP((/SU

k=1m=0

k=1 1=k A(k 1 L-1))

I
)=
h

h
+

Tl =
[
N

\/ A

h

+

|

[\

=

|

—

+

3

v
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This ends the proof of Theorem 2.2. O

To prove Theorem 2.3, we first observe that in the chilled regime the
Gibbs measure 7% (o) is such that

672‘][(0)

Gy —
™) = T om
where o(1) denotes any function of L such that limy,_. o(1) = 0. So if we let

%G (0) _ ef2J€(a)

)
we have clearly that

(g1)<m) 7r(Sl)(m)

™
lim ————= = lim ———~. 43
ey 7C(m) e (m) (43)
We start computing 7 (m). Observe that
L L—i L/2
SCORTSI 35 WRS wED SRR

i=1 m=1

where n(k,m) is the number of configurations with k disjoint intervals of mi-
nus spins with a total number m of minus spins. Due to the rough estimate
n(k,m) < L**~1 we get

—4J

e L3674J

6

7% (m) < { (L3 - L)+ L3e4Jo(1)] < (1+0(1))  (45)

We next estimate the difference 7€ (m) — 7(=Y (m). Observe that by (44)

L L—i

2 Y m

i=1 m=1

and that by (16) and (20)

so we have

Then note that, due to (39) we have that 1 — 7TE ) m) > 0, s0 we are allowed to
restricted the sums over ¢, m above to a subset in which ¢ < m. Recalling also
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bound (20) we get

L/2 L—i
)~ 1) > 3" 3 ma -l
i=1 m=1
L/2 L—i R
>SN (mae T )
i=1 m=i
w L2 L—i w e VLB
>e” —4e 1 > 1 1
(46)
Hence, from inequalities (45) and (46), we get
7¢(m) —7(EV(m) _ 3
> (1 1
L = S+ o)
whence
(<1)
lim FA (m) Sl
L—oo T (m) 4
and from (43) Theorem 2.3 immediately follows. O

5. Conclusions

In this paper, we have considered an example of a single spin-flip irreversible
dynamics for a very simple system, but yet quite difficult to study in presence
of boundary conditions. With explicit estimates we have shown that, expand-
ing in series the stationary measure around the zero temperature, it is possible
to control for very low temperature the convergence of the expansion and to
compute, up to the first order, the stationary probability distribution. The
latter has non-trivial features: It has an explicit dependence both on the rela-
tive distance and on the position of the changes of sign in the state. Moreover,
the memory of the boundary conditions has a very slow decay and crucial
macroscopic effects.

There are several questions opened by this result. The generalization of
these computations to PCA dynamics, like the one presented in [4] and [5],
should be straightforward. It should be possible also, with some extra effort,
to understand the features of the higher terms of the expansion, and it would
be very interesting to generalize this technique to higher dimensions. All these
questions will be the subject of further investigations.
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