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A variational principle for the equilibrium
of hard sphere systems

G. GALLAVOTTI and S. MIRACLE-SOLE (*)
(Institut des Hautes Etudes Scientifiques,

91 - Bures-sur-Yvette).

Ann. lnst. Henri Poincaré,

Vol. VIII, nO 3, 1968,

Section A :

Physique théorique.

ABSTRACT. - We show that the equilibrium state of an infinite system
of interacting hard spheres can be obtained in the grand canonical formalism
by means of a variational principle. We give also a simple application
deriving the Salsburg-Zwanzig-Kirkwood expressions for correlation.

functions of the equilibrium state of one dimensional systems of hard
spheres.

§ 1 INTRODUCTION AND NOTATIONS

The aim of this paper is to prove the validity, for a system of classical
hard spheres, of a variational analogue to that established in ref [1] in the
case of lattice systems.

Let us consider a system of classical identical particles in R" interacting

through a symmetric translationally invariant many body potential 
i. e. let the energy of a configuration X = { ~i, ..., R" be given
by -

(*) The results of this paper will be included in the thesis (« doctorat d’Etat
es Sciences Physiques ») of one of us (S. M. S.) to be submitted at the Aix-
Marseille university (June 1968, C. N. R. S. reg. AO 2290).
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We shall consider only interactions having a hard core of fixed radius a;
this means that we suppose

where x2) - 0 if ~2 ! ~ ~ and èPa(Xl’ x2) - + 00 if

I jci - X2 I  a and ..., x~) = 0 if 2 and the potential 4Y(X) is
defined to have arbitrary but finite values if the configuration X contains
two points, at least, at a distance smaller than a.
We call Ea the space of « physical » configurations i. e. the space of finite

(void or not) configurations X such that I &#x3E;- a if i ~ ~ j and E X ;
we introduce a metric topology on Ea by defining

We call E c Ea the space of physical configurations contained in A c RV.
Note that the presence of hard cores implies that (if Pcp denotes the close
paking density, N(X) the number of points in X and V(A) the volume of
the region A) we have

and s(A) can be chosen to be a decreasing function approaching 0
as V(A) - oo if we restrict us to consider only cubic A’s. On Ea we introduce
a measure dX as

this means that if f E C(Ea) and has a compact support 1 i. e. f (x) z 0
if N(X) &#x3E; no and I(X) = 0 Ao where Ao is a bounded set) and
if we regard f (X) as a symmetric function on then :

The potentials restricted to X E Ea can be regarded as functions on Ea
(putting 0) which we continue to call 1&#x3E;. Let B0 be the set of
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continuous finite range potentials which are then described by a continuous
function on Ea with compact support.

E 93o we have, if 0 denotes the origin of R~ :

It is easy to see that 93o is a separable normed space in the norm defined
by (6). Let B be the Banach space obtained by completing 93o in the
norm (6).

§ 2 THE THERMODYNAMIC LIMIT
AND THE CORRELATION FUNCTIONALS

Let 03A6 E 93, then from (6) it follows that U03A6(X) is defined VX E EQ and
is continuous on Ea. Hence we can define the partition function 
associated to a bounded region A as

and the pressure as

where the inverse temperature 03B2 and the chemical potential  are absorbed
in the interaction.

Then we can state the following theorem.

THEOREM 1: 

i) the limit

exists on the net of increasing cubes A (1)
ii) the functional 4J ~P(03A6) is convex and continuous on B and

where Pcp is the close paking density.

(1) Because of the hard core one could obtain here and in what follows the
same results considering _1-~ oo in more general ways [12].
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To prove this theorem we observe that

but using (6) :

hence:

now the proof runs exactly on the same way as the proof of Theorem 1

ref [2] if one notes that for finite range hard core many body potentials
statement i) is well known [3] [4].
Now we study the relation between the correlation functionals and the

tangent plane to the graph of P~ and P : the functional E ~~‘ defined

by:

defines the unique tangent plane to the graph of P~ and we can interprete
it as the averaged correlation functional [2] [5].

It follows from (12) that

Let now T c 93 denote the set of potentials such that the graph of P has
a unique tangent plane at 03A6 E T : i. e. the set of 0 E 93 such that there exists

an unique functional x~ E ~~ such that

we have then.

THEOREM 2: Let C E ~3

exists and defines the tangent plane to the graph of P(.) at 4Y.
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//’) If, for a given P(03A6+03BB03A8)/ 
; = =03B103A6(03A8) exists, then for such a T

and a necessary and sufficient condition in order that C E T is that

d P(03A6 + 03BB03A8)|03BB=0 exists ~03A8 E B.

iii) The set T contains a countable intersection of open dense subsets
of -

iv) If we separate the chemical potential (}&#x3E;(l) form the many body poten-
tial 4Y’ (defined as = 0, cf)’(k) = 1) and consider the potential
03B203A6 = then there is a dense set T’ c $’ (where 93’ denotes the
space of potential C’ such that ~’~ I ~ = 0) such that, if C’ E T’, the poten-
tial (03B203A6(1), 03B203A6’) E T almost everywhere in 03B2 and 1&#x3E;(1) with respect to the

Lebesgue measure on the plane (fl, ~t 1 ~).
The proof of this theorem follows the same path of that of theorerns 2, 3

of ref [2] and will be omitted.

Remark : All the results obtained until now can be derived, without any

change, substituting the norm (6) on B0 by sup and considering

instead of B the completion of B0 with respect to this new norm.

§ 3 VARIATIONAL PRINCIPLE FOR EQUILIBRIUM

In recent works [6] [7] it has been shown that the states of a classical

system can be regarded as states over a certain C*-algebra 91 subjected
to certain conditions whose physical meaning is that the probability of
configurations having an infinite number of particles in finite regions is

zero.

In the case at hand the algebra ~ can be defined as follows : let A be an

open set, let Co(E~) be the espace of continuous complex functions on E~
having compact support contained in Ea. If f~ C0(Ea) we define S f E C(Ea)
as
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As a consequence of the hard core sup I  + oo: if M f is the
x

maximum of fthen

where k is the maximum number of hard spheres which can be contained
in A.

The algebra ~ is defined as the closed (in the sup-norm) subalgebra
of C(Ea) generated by the functions of the form Sf, f~C0(Ea)~~ Rv,
A bounded and open.
Now suppose that for each A c R~, bounded and open, we are given

a measure ~c~ &#x3E; 0 on E~ such that :

it) If ’~ A and f~ Co(Ef) then :

then iff E the formula

which as is easily seen is independent on the arbitiarity of A, can be used
to define, by linearity and continuity, a state over 9t since the set of elements
of the form S f is dense in ~ as a consequence of the relation

where

Let ~’ o be the subset of the set E of states over 9t obtained in this way.
The following theorem holds :

THEOREM 3 : :F 0 = E.

The proof has been given by Ruelle [6] under more general conditions
but a slightly different formalism. The technical part is considerably
simplified taking into account that we are interested only in the hard core
case. The spirit of the proof of this theorem is to observe first that in our
case the set E introduced in the mentioned reference coincides with E
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and secondly use theorem 5.1 of the same reference (taking the group G
to contain only the identity) and prove that .~ _ We leave to the

interested reader the translation in the formalism of this paper of the

referred points of ref [6].
On the algebra 9t one can define the space translations as automor-

phisms of  into itself through :

this operator can be interpreted as the translation by x.
Let E n L-L be the set of states on 9t invariant under all Tx, Vx E Rv.

Then the following theorem due to Robinson-Ruelle [7] holds:

THEOREM 4: It is possible to define a functional p - S(p) on E 
such that

i) S(p) = - 00 for all pEE m Li such that is not dX-continuous
of every A open and bounded.

iii) p ~ S(p) is afline on E and upper semi-continuous in the 

logy over E f1 C-L.

We observe only that the proof of this theorem can be simplified with
respect to the more general proof given in the paper [7] taking into account
the hard cores and theorem 3. Again the formalism of the reference in
question is slightly different than ours, in particular if we call So(p) the
functional defined in ref [7] it differs from the S(p) introduced in theorem 4
by an additive constant S(p) = So(p) + 1.
Now the variational principle we are going to prove will be that the

equilibrium state p is such that S(~) 2014 U(p) = max, where U(p) is the

mean energy. Hence in order to formulate it we need of the definition
of U(p) which is given through the following theorem :

THEOREM 5: Let 03A6 E S, the limit

exists VpeE n ~,1 and defines an affine functional U4lp) on E n ~’1,
which is also continuous in the 8l-topology over E n ~’1.
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Since U~(p) = V(A)’’ is such that

it will be sufficient to prove the theorem in the case 03A6 E Let b  4 a
and let Oo(X) be a function which is zero where Sb is the sphere
with radius b and center at the origin and Oo(X) = 8(x;) if xi E X n Sb
where E(~) &#x3E; 0 is a continuous function with support in Sb and such that

B(ç)dç = 1. 00 is a continuous function on Ea. Let us define A03B8003A6~ as :

where defined as (Ø~fI))(X) = ?o(X) ~~ 4&#x3E; and zero if X = ø

and ifAo is a sufficiently great cube centered at the origin.

Now it is easily seen that if A ::&#x3E; X E S~ then:

Let pEE then if A is a cube centered at the origin and A =3 Ao

but if I is the largest cube centered at the origin such that A + Ao c A

we can write (since supp Tx (°§f) c A) :XEA

if now A is the smallest cube centered at the origin such that A + Sb c A,
we have that (26) can be written as
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but the second term in the last equality can be majorized by :

hence letting A 2014~ oo we get

this formula shows the existence of the limit and also that the functional

p - is 91-continuous on 
We can now discuss the variational principle :

THEOREM 5: Let 03A6 E 9’., then

the proof of this theorem is exactly the same as that given in the case of
a lattice system [7] [11].

This allows us to prove the following form of the Gibbs phase rule :

THEOREM 6: If èP E T, where T is the set introduced in theorem 2;

i) the function p 2014~ S(p) - U~(p) on E n Cl. reaches its maximum P~ at
exactly one point p, E E n C-L,

ii) if ~ E T and is the functional defined by theorem 2, then

iii) if 4Y E T the « equilibrium state » corresponding to the interaction ~
is an extremal point of E n L-L.

The proof of this theorem is again the same as that given by Ruelle
in the case of a lattice system if we remark that the set of translates of the

elements 93o is dense in the subset of ~ determined by the
functions f which are zero on the empty set.

§ 4 APPLICATIONS

In this section we study a particularly simple application of the varia-
tional principle: we shall find the pressure and the correlation functions
of a one dimensional system with nearest neighbour interactions.
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Let a be the radius of the hard core of a system of hard spheres on a line.
Let ~(.x) be a two-body potential defined for x a a, continuous and zero
for x &#x3E; 2a.

Let C be the class of states of the system which have the property that
the probability of finding a particle at x, knowing that there is a particle
at xo  x and that there are no particles between them, depends only
on x - xo and not on the possible positions of other particles located
at points y  xo.
Hence a state Pa E C can be described uniquely by giving a function

&#x3E; 0 which represents the probability for a particle to be at x &#x3E; 0

knowing that there is a particle in 0 and that there are no particles between 0
and x. The function 6(x) cannot be assigned arbitrarily (for instance

one should have 1 and  + ex): the first constraint

expresses the fact that u(x) is a probability density and the second one
that the specific volume in the state pa is finite).
At the thermodynamic equilibrium we expect that, as a consequence of

the nearest neighbour caracter of the interaction, the equilibrium state p
belongs to C; hence we can find it by maximizing S(p~) 2014 
over C.

To avoid convergence problems we consider only the variational problem
on a smaller set Co  C of states : i. e. for the set Co of states pQ such that u
verifies the following inequalities

If [0, L] is a finite interval then the functions fL(X) introduced in (22)
which define the measure J1L(dX) are given, as a consequence of the physical
meaning of 7, by

where the function go(x) is an unknown function whose meaning is to be
the probability density of finding a particle at x knowing that there are
no particles between 0 and x.
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If we impose the normalization and compatibility conditions (18), (19),
we find

Then applying the definitions (22) and (23) we find

where is the chemical potential and ~y = ) / ~+00 is the density.BJo /
The variational equations for cr give for the function o-o maximizing
S(p~) - the expression:

where p is the value of at paw

Equation (32) then gives the equation of state

or also

We verify easily also that ~p ~ =03B403C30. The physical interpretation of (7o

shows that the two point correlation function is given by :

where is the kth power of (1 in the convolution product; we observe
that, as a consequence of the fact that O"o(x) = 0, x  a, the sum appearing
in (37) is a finite sum for each x. -

ANN. INST. POINCARE, A-Vlll-3 21
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More generally if we put

we have

From the integral representation

which follows from (38), if = we find

which proves that the p(n) are clustering.
If we confront all these results with the known state equations and cor-

relation functions [8], [9], [10] we find a complete agreement which is an
a posteriori confirmation of the correctness of the procedure.

This procedure can be generalized to states with a « memory » longer
than one but the results are not so simple as in the presented case (« memory »
one) and the variational equations are much more complicated, but anyway
these techniques could be used to obtain lower bounds for the pressure
and approximate correlation functions in given models.

§ 5 REMARK ON ROTATIONAL IN VARIANCE

Generally in the continuous case one requires not only translational
invariance but also rotational invariance. The results obtained until
now do not allow us to deduce immediately any interesting result about
rotationally invariant potentials. To obtain again the results obtained

in this paper for translationally invariant potentials one has to introduce
the rotationally invariant potentials at the beginning by defining 93 as the
set of many body potentials satisfying (6) and invariant under the euclidean
group.
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At this point all the results of § 2 can be obtained in the same way, one
only has to note that the functional introduced in formula (13) will
correspond to correlation functions averaged on the euclidean group and
not only on the translation group. The results of § 3 will be obtained by
taking the set E to be set of states invariant under the euclidean group.
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