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Ahstract

STCHYERN TTIEORY O STLLIARINS = AN INTRODUCTION,
Phis papel presents an elementary ntrodueticn te the notions and ideas involved in the proof of the
ergadicity or hilliards,

BILLIARDS, DO YOU RECOGNIZE 1T 2

Let N =[0,1] ¥ [0,1] mod 1 be a two-dimensional torus., Let Q, Q.,
covy Qpbe m closed convex regions in N. Assume that Q) is a CY-smooth
curve with never vanishing curvature and assume also that (-Jl n Q= = By
i # ],

Let Vbe the Riemannian manifold (with boundary) obtained by taking out
of N the interior of Q., ..., Q4 the metric on V is the one inherited by
N (i.e., ds” = dx® + dy=).

Let T,V be the unitary tangent bundle of V.

The elements of T,V can be thought of as applied vectors or as couples
(q, 8), yeV and 0= 8 = 27, where g€V is the point of application of the
vector and 8 1s its angle with a fixed direction.

Define on T{V a probability measure u(dgdd) = (const) -« dg df and a flow
Sy, =¥ “t<+e, 500 TV = T.V, This flow is defined almost everywhere and
is constructed by means of the billiards rule as is shown in Fig.1 (where the
case £ 0 is considered):

One clearly recognizes in the dynamical system (T |V, 5,, u) an
"ordinary'' game of billiards with one ball on a periodic table with m
vhetacles., The measure y is preserved by 5;.

Now, the [ollowing theorem holds:

Theorem (Sinai): The dynamical system (T, V, 5, u)is ergodic and,
more precisely, a K-system,

To attack the problem of the proof of the theorem, first remark that the
flow 8, can be more simply described through a "'section' of itself, To
discuss this point and the following oneés, let us choose, fronm now on, a
geometrically simple game of billlards, i.e. let us consider the case in
which there is just one circular Q (with radius R).

Let M be the manifold of the applied vectors with point of application
on #Q and pointing towards the interior of Q. An element x€Q can be
deseribed by two co-ordinates x = (r, ¢) where 0 =< 27 R is the clockwise
abscissa, over #Q, of the point of application of x and ¢ is the angle which
the vector x subtends with the outer normal to 8Q inr: 7/2 = = 37/2,
The range of values of ¢ reflects the fact that M consists of vectors "heading'
against Q.
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FIG.1, Construction of flow.
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FIG.2, Transformation T.
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FIG. 3. « as a singular point for T,
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FIG &, Same clements of two famiHes of srmatl (0% jar iz bits,

Let us define a transformation T: M = M ag tollows: choose xeM,
think of it as the vector describinga bilhard ball hitvting #Q and follow this

ball back in time in the past until, at time 7(x) <0, il hits again 1Q in a
point x' = Tx (Fig,2),
It is guite easy lo check that the measure v (dr dg) = - (const) cos ¢ drd g

1s preserved hy T. The muapping T is unly slmoest everywhere defined,

Therelore, (M, T, ) is a dynamical system and it can be euasily
imagined that the propertics of (M, T, 1) could be translated into properties
of (T,V, 5, u): notice that ¢+ is the natural projection of u on M. TFor this
reason, we shall conecentrate our attention on (M, T, ) without insisting on
how to translate the information on it inte information on (T V, 5y, u).

The system (M, T, ¢) i still non-smooth since it has a boundary
5= (x/x€M, wix) =7/2, (3/2:7) (there is no boundary in r since thig co-
ordinate is periodic) and singularity poinls which consist in the set T°°S,
In Fig.3, x1is a singular point for T, One easily finds that the singularity
points lie on smooth (C)-curves divided into 8 families (il the radius R of
the ubstacle is not too small compared with the side ol the torus), See
Fig.4 where spme elements of twa such families are drawn.

Clearly, the curves in this figure are also discontinuity curves for
T(x), which, howewver, is continuous on thent from one side (denoted + In
the Jigure),

A region B which overlaps with the singularity lines is blown into pleces
by T (roughly as many pieces as the number of lines intersected by 13).

Sinai's idea is to prove that, in spite of its horrifying non-smoeothness,
(M, T, v) behaves much in the same way as a C-system (Anosov dilfeo-
marphism).

2. ARELATED PROBLEM

In this section, we shall first discuss the idea behind the prool of the
ergodicity of C-systems in a very simple case,

This proot will be used to illustrate the necessity and the meaning of
the various mathematical objects that have to be Introduced fo cope with
the problem of billiards (as well as with the theory of the C-systems).
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FIGo.  Comparisen system.
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The comparison system is going to be the much publicized — in many
other papers of the Proceedings — authomorphism of the torus N =
[0,1] x [0,1] mod 1 defined by 7 (x, ¥) = (x+y, x+2y) mod 1; see Fig.5.
Let e,, e.be the two eigenvectors of the matrix (] ;) and let A, A_= Al
be the two eigenvalues, It is easy to check that the directions e,, e_are
irrational, i,e, the tangent of the angle of these two directions with the
x-axis are irrational numbers. The first claim is that the system (N, T, v =
dxdy) is a C-system and that the contracting and expanding foliations £,
and £, consist of parallel straight lines (wrapped on the torus and parallel
to e, and e ). L.t us note that the irrationality of the directions e, and e_
implies that each leaf of the foliation is dense in N. In fact, let (x, y)EN
be a point and let C; (x, y) be the straight line parallel to e_and passing
through (x, y). Let (x!, yNEC, (x, ¥y} itis clear that 7"(x, y) and
70 (x", y') will be at a distance not exceeding their distance counted along
the line +" C, (x, y) which is

d g (T (5 ¥, ThxL Y = A d (5, ¥), (xhy")

T :’,.F %, ¥l G (5,y)
4 [

Similarly, one proves that the foliation £, is contracting in the past
(1, e. under 771 and that the line elements of £, locally expand in the past
while the line elements of £ locally expand in the future, The expansicn
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and contraction coefficients are always A, or A_, This fact, of course, is
responsible for the possibility of an easy treatment and visualition of the
above system.

We now show that (N, 7, v) is ergodie using a proof which, though
certainly not the simplest, is extremely instructive since it contains the
main ided, due to Hopf, at the base of the proof of the ergodicity of
C-systems and billiards,

3. PROOF OF THE ERGODICITY OF (] ).

Let [ be a continuous function €C(N). Then, by the Birkhoff theorem,
the limits

= 1
[ fse)e= limg — 39 F{rtay
fira r] =3
=0
i
f7(x) = lim -Il; Yy I{rix)

nEw Sh
exist almost everywhere and are almost everywhere equal: ['(x) = 7 (x) for
xelU, v(Uy=1,

We have to prove that [or all f€C(N) the functions f (x) and [7(x) are
constant almost everywhere, This, of course, implies the ergodicity of
(N, 7, 17,

Consider a covering ol N with squares Uy, U,, .... with sides not
exceeading 1 A/2 and parallel to e, uand e., We shall choose the squares in
such a way that they vverlap in chain (i.e. if P, QEN there is a chain Uh‘
Ui, ., Uy such that » (Uill"ll_l__I | )0 and Peu, , (QEUIr}.

The family {Ui} can be chosen te contain a finite number of elements.

Clearly, it will be sufficient to prove that I~ and {” are constant on each
U; (almost everywhere),

S0 let us lix €C(N) and show that its averages in the future and in the
past are almost everywhere constant on Uy, say. N

It PEU; let C¢ (P) be the expanding leal through P and let C, (P) be the
connected part of C; (P)NU; containing P; similarly, we define ét (B,
see Fig, 6. : -

In Uy, we use a system of orthogonal co-ordinates based on the vectors
e, and e., which are parallel to the sides of U;, If B is a measurable subset
of E—"'t- (P or E"FC(P‘), we denote by |B| its I;ebesguelueasur‘e with respect
to thé abscissa or the line; hence, In particular, |Cl (P}, = C, (‘1—’)| =
length of the side of 1. - *

Let us now consider the sei

| € (x)nu;nU | <
v, = x/xel, ————— =1
» 1€, ) '

where U = (x/x€N, [ (x)and i (x) exist, " (x)= " (x).
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Flen 7. Paand Q with local contracting and expanding leayes,

1

Since, by ithe Birkhoff theorem, v (U) =1 (see above) it follows by
Fubini's theorem that V, has full measure i.e. v(V,) = v (U).

Proof: v (U)) = v (UnlU,), hence if s and g' are the co-ovrdinates of PEU,,
P = (s, 8"), we find

v (U.) = [ds' [ds y (P) = [ds'|C, (0,s")nUNU, |

) S
which implies that for almost all s', we have |E:“{ (} synunu,; | = |C (D, g')|
and, again by Fubini's theorem, this implies that |C._(x)AUNU) =
€ L || for almost all x€U;: in words, we can say that almost all points

\.Elll are such that the line C, (x) lies almost entirely in UNU;.
Similarly, we can define V, and show that v (V.) = v (U,).
Liet us now consider the set

V = unu,nv,nv,

Clearly, V has full measure in U;: v (V)= (U;). It is, therefore, enough
for our purposes to show that *(x) = 7 (x) = const for xeV.

Let P, QeEV, then draw through P the local contracting leaf C (P) and
through @ the local expanding leaf (_E (Q) (see Fig, 7).

The point T may or may not lie in V. Inany case, it is possible to
find a point P'EE:CF (P) and a point Q'EC (Q) such that the points T', P!,
Q' are all in V (see Fig.7). Infact, by constructmn almost all pm.nts on
the two lines (“; (P) and C, (Q) lie in V (remember the choice of P and Q),
hence as P' runs over VI"’IC{L (P) and Q' over VNQ, .(Q) the point T'! spans
a set of full measure which, therefore, certainly intersects V.

Now, the game is over; in fact, by construction:

d(,.r['l P, T'I'I I.JT) — U

T %

d(r P, 71T — 0

= =

d{zn T, 'r”(\?') — ()

d(=7"Q', 777Q) —= 0
n— i«
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FIG. 4.  Sets overlapping in a chain,

(with exponential speed). Hence, by the uniform continuity of f,

f(‘?‘n Py - f('rnp'} q—_—- 0
f(r"PY) - {(77Q') —= 0 ete,
Ty o

Therefore, f'(P) = {7(P'); [(P') = (T') £ (T')={(Q'); (@) =1 (Q);
but, by (On:’:tructiol‘l, it is also true that P, P', Q, Q', T' are in VCU hence
FP) =17(P); IY(PY) =7 (P') £H(T') ={(T'); £7(@Q")=17(Q"); (Q)={(Q).

Hence, all the abovementioned values of f* and f~ coincide; in particular,
Py =17@) = £7(P) = 17(Q)

which means, by the arbitrarity of P and @, that {” and f~ are constant on
V (and, therefore, almost everywhere),

4, HOW TO GENERALIZE THE ABOVE ARGUMENTS

Obviously, in more general situations, things are not so nice and easy;
nevertheless, the proof of ergodicity for the case of C-systems or even
billiards systems proceeds along the same lines as the above proof of the
ergodicity of '[1 2)

It is possible, in those cases, fo construct a denumerable family of
measurable sets {U;}, forming a basis for the Borel sets, such that, given
any two points x, y in a suitable set of measure 1, one can find a finite
number of sets U, , U, , ..., U;,, overlapping in chain (i.e,

v (Ui N Uiy, ) > 0) such that x€l; and yeUj, (see I'ig.8).

Furthermore, to each of these sets U; the Hopf idea can be applied: in
tact, roughly speaking, the sets U; can be thought of as unions of pieces of
leaves of a contracting foliation and, at the same time, as unions of pieces
of leaves of an expanding foliation; furthermore, one can use a H system of
co-ordinates' based on the hypersurfaces Ce NU; = C and C§ NG =Gy,
and the measure of a set BCU; can be computed as a double mtEgral on the
product of the natural measures dpr o, d(, o induced by the Riemannian
metric on Cg or Cg fe

Mgre prcusely, it is possible to construct two measurable partitions
E and E for each set U; which are local contracting or local expanding
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leaves, and these two partitions are absolutely continuous with respect to
each other (see below),

The above discussion should be understood as an intuitive anticipation
of the precise definitions to be introduced in the next section.

5, MEASURABLE FOLIATIONS

Here we provide the precise definitions needed to fully understand the
sentences of the last section,
Let (M, 7, v) be a dynamical system,

Definition 1: a measurable set UcM is said to be measurably par-

titioned by a k-dimensional foliation £ ii:

1) & is & partition of U.

2) The elements C €% are open k-dimensional piecewise smooth manifolds
homeomorphic to an open k-sphere!,

3) If v denotes the restriction of v to the subalgeora Z‘, (€) of the Borel
algebra in U consisting of the measurable sets that are unions of
elements of £ then

J" P (W) d-é,ia VBCU

ne

e ~
v(B)= | v(dC,

)
el st

¥
where p> (u) > 0 almost everywhere with respect to the natural measure
(surface measure) d> 7 on the manifold.

“t

Remark: the above double integral has to be understood in the usual
sense; l.e,

/ px (W) dxo
=2 4 i

must make sense and must be an integrable function with respect to 1 for
all measurable BCU.

Definition 2: If in U there are two measurable partitions &, &,, we say
that & is ahsolutely continuous with respect to £, if every element of &,
intersects every element of £, in just one point and if all wey, (&) such that
v (W) > 0 are such that = (WnCh‘» 0 for all 6?1 € &, apart for a set of

C/'s which are, however, contained in a null set. In this case, we say
E € By

It 15 perhaps important to state explicitly what 15 meant by an epen plecewise smooth k-dimensional
inanifold isea Rel, [1]],

A closed 4-dimensional smooth suhmanifold of a manifold M is a -smoath submanifold N hameo-
morphic to a ¢losed k=sphere through a mapping which, in the neighbourhioed of each point of N, is given in
local co=ardinates by C* functions having a limit on the boundary of N together with their derivatives; further-
more, ifk = 2, the boundary d N must consist of a finite number of closed smooth k-1 dimensional manifolds.

A closed submanifeld is called a closed piecewise smooth submanifold if it consists of the union of a
finite number of closed smooth submanifolds and if it is homeomorphic to 4 closed k-sphere.

An open piecewise smooth submanifold is a submanifald which is homeomarphic to an open k-sphere such
that its closure is a closed piecewise smooth submanifold of the same dimensionality k.
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Remark: if & < £, and £, < & , then it is quite clear that, apart for a

"had" set uf local leaves C. and C,. contained in a null set, the inter-

sections of any set W of full measure in U with C. €& and C,_ €& have [ull
measure with respect to the natural measures d>~ ¢ and d~ o, 1.8,

o~ (WNC, ) zox (C, )

i
FI ‘1
. = Lot ’ "
if the C, are not exceptional .
1

Definition 3¢ Let (M, ¢, 7) be a dynamical system and let § be a
measurable decomposition of a measurable set UCM, Then £ is said to he
"eontracting” i1 for any two points x, y chosen almost everywhere (with
respect to the natural measure d o) on a leaf Ef, are such that
d{r" x, thy) — 0 with the possible exception of a set of C 's contained in

T

a null set.

Similarly, we define an expanding measurable partition, i,e. in the
above definition we replace 7 by 771,

From the above remarks and definitions we realize that (M, +, v) is
going to be ergodic if it is possible to construct enough sets U admitting
measurable foliations of contracting and dilating type which, furthermore,
are absolutely continuous with respect to cach other.

6. HEURISTIC CONSTRUCTION OF THE FFOLIATIONS FOR
BILLIARDS

Let us conclude by discussing how one can attack the problem of {inding
the contracting and dilating foliations in the case of billiards.

We shall only present heuristic arguments,

Suppose there is a contracting curve v through x€M. Then the
mappings T7, T™, ..., must all be smooth an y (remember that, by our
conventions, U sends back into the past and T sends into the luture).

From geometric arguments, it is easily shown that if ¢ = ¢(r) is the
equation of a smooth curve TTand ¢' = @' (r') is the equation of T I, then

E“EI— = =cos m"‘f 1 + 1 \'l
! ' A Reos ! 1 J
L R S =

cosy H o dr

Hence, if T™'is smooth on 3 fori=1, 2, ..., we find, by repeated application
i the above formiula,

e # 1 -
He = _coSe +
dr(x) cosg(x) \Reose(x)

+
Reosg(T™'x) (T +
= e
Reosg(T %)

= - k5 (%) cosw(x)



202 GALLAVOTTI

where k° (x) is the function defined by the continued fraction inside the

parentheses; it converges since |-.—{T”x] |z 7, 0 because QNQ =6, i #j.
tis also not difficult to see from the above equation that the curve

(if existing) must be such that the distance between the T images of any

two points on y tends to zero as i - o {i.e, 3 is actually a contracting curve),

The first real problem is to show that the above differential equation
actually has a solution; this seems to be a difficult problem since it is
easily realized that & (x) is discontinuous over a dense set and, on its set
of continuity, it is not at all nicely behaved.

However, it is possible to prove that if the distance of T 'x from the
singularity points of T does not tend to zero too fast as i - ¢, then the
equation for y has a solution in & neighbourhood of x,

A similar construction provides the pieces of the expanding leaves.

The set of the x in M for which T7'x does not get "too' close to the
singularity lines of T can be shown to have measure 1, so that the differential
equation defining the contracting leaves huas a solution for a set of initial
data having full measure | 3],

At this point une has to construct a tamily {U;} of measurable sets which
are measurably decomposable by expanding and contracting foliations.

The constructions and proofs related to this point are a very nice piece
of geometry and really at the heart of the theorem, They are rather similar
to the analogous constructions encountered in the theory of the C-systems
[2, 3]. However, let us note the basic conceplual differéence between
C-systems and billiards: for C-systems, each point x belongs to contracting
and dilating leaves of foliation and, furthermore, the dependence of the
leaf upon the point x is smooeth, In the billiards case, we have a situation
in which the leaves of both the contracting and dilating foliations cover M
only almost everywhere; furthermore, they typically end on singularity
lines of T or T™! or iterates of them and, if vi{x} is a leaf through x, its
dependence on x is [ar from being smooth.

The interested reader is referred to the famous papers [1-3],
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