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We prove the impossibility of phase transitions for a class of infinite-range potentials extending recent
analogous results. We prove also a cluster property for the equilibrium state ¥ and apply some collateral
results to describe, in the case of finite-range interactions, the state ¥ in terms of a family of density dis-
tributions, and to verify a general variational property of .

1. INTRODUCTION

It has been conjectured that even in one-dimensional
systems a phase transition can occur if the range of
the potential in infinite (in the sense that the first
moment of the potential diverges) and the potential is
attractive.! [Note added in proof: A proof of this state-
ment has been given by F. J. Dyson in Commun.
Math. Phys. 12, 91 (1969).]

On the contrary, if the potential has infinite range
but the first moment is convergent, it is commonly
accepted that, at least if the potential is sufficiently
regular, no phase transitions occur in one dimension?;
in this case one can also conjecture that the pressure
has some analyticity properties with respect to the
chemical potential and the temperature, and also that
the correlation functions have some cluster property.

Most of these conjectures have been proved to be
true by Ruelle in the case of lattice gases®; using his
technique, it has been possible to obtain similar results
in the continuous hard-core case.? In fact, the possi-
bility of phase transitions has been excluded for the
class of continuous bounded-pair potentials, bounded
in absolute value by a decreasing function ¢(x) such
that

f+w¢(x)x dx < + o0, €))

and this extends considerably the well-known results
of Van Hove.?

In this paper we present an extension of these
results to more general unbounded and not necessarily

continuous potentials involving two or more bodies;
we also prove a cluster property for the correlation

1 M. E. Fisher, Physics 3, 255(1967); M. Kac, “Mathematical
Mechanism of Phase Transitions™ (to be published).

2 L.Van Hove, Physica 16, 137 (1950).

3 D. Ruelle, Commun. Math, Phys. 9, 267 (1968).

¢ G. Gallavotti, S. Miracle-Sole, and D. Ruelle, Phys. Letters
26A, 350 (1968).

functions and, using collateral results, we give a
description of the equilibrium state in the case of
finite-range forces in terms of a family of density
distribution, and we verify an extremum property of
the equilibrium state.

2. DESCRIPTION OF THE SYSTEM; RESULTS

Let us consider a one-dimensional system of hard
rods. A configuration will be represented by the set
X of the points of the real axis R occupied by the
centers of the rods. If @ > 0 is the length of the rods,
then X is restricted to verify the condition |x — x'| > a
ifx,x’eX, x#x'.

We say that a sequence {X,} of configurations tends
as a > oo to the limit configuration X if, for every
bounded interval (a, b) such that a ¢ X,, b ¢ X, the
configuration X, N (a,b) tends point by point to
X, N (a, b).

With this definition of convergence the set K of all
the configurations (finite or not) becomes a compact
space. It will also be useful to consider the compact
subsets K, , K_ < K built up, respectively, with the
configurations of K contained in R_ = (~— o0, 0] and
in R, = [0, +0). The symbols C(K), C(K,), and
C(K_) will denote the continuous functions, respec-
tively, over K, K, , and K_; Cp, ,, (b > 0) will denote
the set of continuous functions in C(K,), with the
property that f(Y) = f(¥Y N [0,b)) for all YeK,.
It can be shown that the set U, ., , Cyy 5, is dense in C(X,)
[in the sup norm on C(K)].

Suppose the rods interact through symmetric trans-
lationally invariant many-body potentials @®*)(x, , - -,
x;) and consider these as a function ® on the con-
figurations X € K defined as ®(X) = O®®(x,,-- -, x,)
if X={x, " ,%) 0<k< o and ®X)=0 if
k = 0, 4+ c0; the one-particle potential @ has to be
interpreted as minus the chemical potential, so the
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energy of a configuration is

Ux) = 3 0(S). @
ScX

We want to allow the potential @ to be of the form

)

where @, is a nonnegative measurable finite-range
pair potential (not necessarily bounded), while ® is
supposed to belong to the real space 3 defined as the
closure in the norm (4) below of the set B, of the real
finite-range bounded measurable potentials with the
“continuity” property that if 0 <A<k —1 and
%y, , X, are fixed, then the function ®¥*¥(x;, - -,
Xps> Xni1s® "> X) 1S continuous in the variables
X1, ", X, at the point %, -+, X%, for almost all
Xp1»©* " » Xy (Which is a further restriction on ®®
only for k& > 3). The norm with respect to which the
closure has to be taken is

|®] = sup > |D(T)|.
Xep T

<X
TAR+#* 2+ TNR-

®=(§0+&),

4)

One can convince himself that the condition that ®
should be in some closure of finite-range potentials can
be interpreted as a condition of decrease at large
distances and the fact that this closure has to be
taken with respect to the norm (4) is a condition
similar to that of having a finite first moment. In fact,
one can see that the requirement that ® € $ is in
general less restrictive than the requirement that @
verifies simultaneously a condition of type (1) and a
decreasing condition in the sense usually found in the
literature.® The “continuity” condition imposed on the
potentials is probably unnecessary and simple meas-
urability should be sufficient. In view of technical
difficulties we shall not deal with this point.

The thermodynamics of the system is described by
the partition function (grand canonical ensemble):

Z(bl,bz)((D) = e_’U(X) dX’ (5)
X ciby,bg)
where
f'dX=Z J‘_dxl-'-dxn
n=0 n!

and the inverse temperature factor § has been included
in the interaction energy.

The main result of this paper is the theorem below,
which will be proved in Sec. 4, using the preliminary
lemmas of Sec. 3, following the scheme used in Ref. 3
to prove the analogous results in the lattice case.

5 M. E. Fisher, Arch. Ratl. Mech. Anal. 17, 377 (1964).
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Theorem: Let the interaction potential @ be given
by ® = &, + &, where @, is a nonnegative finite-
range pair potential and ® € B. Then:

(i) The function

P(®) = lim

|be—b1| 0

lbz - bll_l lgz(bl,bg)(q))

has the property that, given Q- (i),, € B, then
P, A®,) is continuously differentiable in A€
[0, c0)and 4, -, 4, € (— 0, + 00).

(ii) If 7 denotes the probability measure (on the set
K of all the configurations) which represents the
equilibrium state relative to the potential ®, and if
Ay, Ay, -, A,€C(K) and 7, denotes the trans-
lation operator on C(K) [defined as (7, A)(Y)=
A(Y + x) for x € (—o0, +®), 4 € C(K)], then 7 is
translationally invariant and

"ToAn) = F(A ) F(4,).
©

lim  §(r,A; 7,40

lgi—zj| >0
i#j

This theorem excludes the possibility not only of
first-order phase transitions, but also those of higher
order in the sense that (i) and (ii) imply not only that
the density is continuous as a function of the tempera-
ture and the chemical potential, but also that the
equilibrium state is unique (given the interaction), and
that all the correlation functions are continuous with
respect to the interaction potentials and do not exhibit
long-range order.

3. STUDY OF A SEMI-INFINITE SYSTEM

In this section the symbols m, n, r, and k will denote
nonnegative integers and the symbol 7, will mean
the translation operator on the set of configur-
ations X € K defined by 7,.X = X + x.

Given @ as discussed in the preceding section, we
define a family of operators which map C(X,) into
itself linearly and continuously with respect to the
sup norm with which we suppose C(K,) to be equip-
ped. These operators are defined for all x > 0 as

(€ N)Y) = f e UXIRYf(X U7 Y)dX,
Xc<[o,x)
forYeK,, (7)
where U(R | W) is defined for R and W in K as

U(RIW)= > dSuT)
Z2#ESCR
W
= 3 OSUD+ 2 OO
2#8CR s #SCR
s+ W

= I(R| W) + U(R), ®
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ABSENCE OF TRANSITIONS IN HARD-CORE SYSTEMS

and where ®(S U T)has to be taken + 00if S U T¢ K.
One verifies, as a consequence of the assumed con-
tinuity properties of @, that £, maps C(K) into itself
and ||L|| < e'®Z, ).

The adjoint operators to £, are operators on the
space C(K,)* = {space of bounded measures on K.} =
{dual of C(K,)}:

E2)(dX dr,Y) = VXD 4xu(ay),

X< [0,x), YeK,. (9
A simple calculation based on (7) shows that
Qmﬁy = £m+y5 ﬁ:["t = £1*+y5 x,y 20. (10)

Let us call 7, the probability measure on K, which
describes the equilibrium state of a semi-infinite system
(contained in R,); then, formally, one expects that
£*5, = e*F'y,, where P is the thermodynamic pressure
and also (if there are no phase transitions) that 7, is
unique. Two steps towards the proof of such a prop-
erty are lemmas 1 and 2:

Lemma 1: There exists a probability measure
v € C(K,)* and 4 > 1 such that

Ly = Qv,

(1)
where a denotes the hard rod length.

In fact, let E be the set of probability measures on
K, ; then, since £*u(1) > 1if u € E, the mapping of E
into itself defined by u— [CXp(D] £Xu is unam-
biguously defined and weakly continuous. The set £
being convex and weakly compact, the Schauder—
Tychonoff theorem® applies to give a fixed point v € E
which verifies (11).

Lemma 2: There exists Cy > 0 such that, for all
integers n > 0,
Coe—uau < Z"Z[_ol,na) < e(lill; (12)
hence it follows that A = e*F, where P is the thermo-
dynamic pressure.

We have, if 1 denotes the function of C(K,)
identically equal to unity,

(€, DY) < e M)e—U(X)ellif)II dX = ell&)llzw’m).
(13)

8 N. Dunford and J. Schwartz, Linear Operators (Interscience
Publishers, Inc., N.Y., 1958), Vol. I, Chap. V, Sec. 10, item 5.
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We have also, if ra is greater than the range of (T)o,

D2

X<[0,na)

= (Ve 181Z 0, (14
where the function f,(Y) is defined to be 1 if ¥ <
[2ra, + o0) and zero otherwise. This function is a Borel
function, so we can integrate (13) and (14) with respect
to » and obtain (12) with Cy = »(f,). To prove that
Cy > 0 let m be an integer, m > 2r; then

5 fY) = r’"f

[o,ma

U X8I gx7(y)

e~U(X | r"“'Y)f;.(X) ax

> A—mJ‘ e U gxlal
- {ra,2ra)
Hence,

v(fr = V('T_m’:mafr) 2 A—me—ll E)”Z[m,2'ra) > 0

We now want to show that » is the unique solution
of the eigenvalue problem £*»y = e*Fy. We observe
that the “matrix elements” of £¥ are all nonnegative, so
it is tempting to try to obtain unicity on the same lines
of the proof of the Frobenius theorem for finite
matrices.” The key for that theorem is the study of the
adjoint eigenvalue problem, which in our case would
be £,i = Ah; this problem is solved by means of the
lemmas below.

(15)

Lemma 3: If fe C(K,) and »(|f]) = O, then [ f|| =
0. Hence, if {f,} is a conditionally compact sequence
of elements of C(K,), from the limit lim »(|£,|) = 0
as n-> o0, we can deduce that lim ||f,] =0 as
n— co.

Let f > 0 and »(f) = 0. Suppose f 7 0; thus there
éxists ¥ € K, and f{7) > 0. Given e < }f(¥), one can
find, because of the continuity of f and the nature of
the topology on K, , a k > 0 and a nonempty open set
G < K, such that

YeG— Y NIO, ka)eq,
YeG=f(Y)—fY)<e
If % is the characteristic function of G, we have

w(f) 2 v(fig) 2 ev(xq)- (16)

To prove that »(y4) > 0, let n be an integer greater
than (k + r) wherg r is chosen such that ra is greater
than the range of ®,. Then

oY) = A f

X<[0,na)

> A1l f

X <[0,ka)

e——U(X | r,,aY)xG(X) dx

e—U(X)xG(X) ax > 0,

" D. Ruelle, Statistical Mechanics. Rigorous Results (W. A.
Benjamin, Inc., N.Y.,1969), Chap. IV, Sec. 6, item 3.
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so that
Wxa) = (A7 "Lute)
> i1l f

[0.ka)

eV Xy (X)dX > 0.

Lemma 4: If r is so chosen that ra is greater than the

G. GALLAVOTTI AND S. MIRACLE-SOLE

range of @, and if g € Cpg, ) » there exists 4 > 0 such
that

£,a8(YV)/Lrg(Y) < A, forall ¥, Y eK, and

n>m+2r. (17)

In fact, if n > m + 2r, using Lemma 2, we have

£nag(Y) = f dXe—U(X)g(X)e—I(X[rMY))(Y___)Y/)~1
X<C[0,na)

£..8(Y")

-( [ emmgayan| e ep (=10 X, UraD X D (7 >y
X 1<[0,ma) X[ ma,na)

< sup

X1<[0,ma)

e2llollf dX,e U XD
X<[{ma,na)

( f dX,e U XY exp [—I(X,| X, UT,Y)] x e/ X2l ’n«“)(ya Yy
X 2 C[ma,na)

<

e—zllollf dX,e VX
Xa<[(m+r)a,(n—r)a)

where Y — Y’ means the same term as in the numer-
ator with Y replaced by Y.

Lemma 5: If f € Cig,mg and »(f) = 0, then, if r de-
notes an integer such that ra is greater than the range
of @y, we have

WAL f ) L (1= ASD, n>m+2r (18)

In fact, if f* is any positive function in Cpg, ) > then,

using the preceding lemma, we find, forn > m + 2r,
A f > inf A, f > A7 sup AT, f

> ATATLf) = A7), (19)
Now let f€ Cig,ma) ¥(f) = 0 and let £, f_ be, respec-
tively, the positive and negative parts of f [ie.,
[ = sup (f,0),f- = sup (—f, 0)]; then, using »(f,) =
wW(f2), »(|f1) = »(f.) + »(f.), and Eq. (19), we find
WA f1)
= 'V(M—'"ﬁ,mf_‘_ - l-"ﬁnaf—l)
= (A pafs — ATV — (e — A7)
S v(l_nﬁnaf'l' - A—l‘l'(f+)) + v()'_ngnaf-— - A_lv(f—))
= (1 — A fD.

Lemma 6. If f € C(K,), then, given a positive integer
N, there exists an integer m(N) such that all the
functions AL, f with n > m(N)can be approximated
within 1/N! by functions f, € Cio.mma; i-€., for
n > m(N), there exists f,, € Cpo, min)e) and

Since [[A-"L, || < e2I®1/C, (Lemma 2), it is sufficient
to prove Lemma 6 for f € Cig,jnq) - Let f € Cpo, ma; then,

< ot 1ol Zio,(n—ma)

P
Z[O, (n—m—2r)a) CO
ifn>m,
L f(0) = 177 [ OOt im0y ax.
[0,na)

Now denote @, the potential obtained from @ by
replacing ® with a potential §, € $ with range ka, and
such that |® — &, — 0 as k — o0 and |®,]| < |D|.
If r denotes, as everywhere in the paper, an integer
such that ra is greater than the range of ®,, let m (N)
be an integer greater than 2r and m and such that

- 1 o -
1® — ®meml < N Coe M0 | £1I72
Then for n > m(N) define

fuY) = i f U Xp(X) dX

[0,na)
X exp [—I(X | 7,,(Y N[0, m(N)a))].
We now have f, € Cio, mn)a) and

" f (¥) = £u1)]
<Al eTax

[0,na)
x [exp [—I(X | 7,,(Y N [0, m(N)a))]
- —I(Xlr,.aY)I

SIS T Xl 1D~ Byl
{0,na)
O 1
S A—"Z[O,na) "f" e”‘»" ”(D - ém(N)" S ]F .

Lemma 7: If f€ C(K,) and »(f) = 0, then
lim»(|A",.f1) = 0.

n—+ oo

(1)
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Let m(N) be the number defined in the preceding
lemma and k be an arbitrary integer. Let

n> 2§l(m(N + i) + 2r).

One has n — m(N + k) — 2r > m(N + k) + 2r, so
using Lemma 6, we can approximate within 1/(N + k)!
the function A-(n—mN+k-2ng =~ oo/ With a
function f; € Cpo, my+i)a; then, using Lemma 5 and the
bound AL, < e2l®l/C, (consequence of Lemma
2), we have

(|2 naf 1)

—~(m(N+k)+2r) ~{n—m(N+k)—2r)
= (A" "LmNrrngh

X Linemvm—2nafl)

etiel R S
Co N+ R ——— + (1 =AM A)
1 /e2dl
—— 1 — 47
<wrmile TO-4)

+ 1A= AP0 vr—ena D

and since n — m(N + k) — 2r > 2 3% 1 (m(N +i) +
2 k), we can iterate the above procedure and find

213 W\ (L= A7
Wi f) S 1+ (L= a7 ) Eous + ._)T)'
41— a2y gy

This proves the lemma since N and k were arb;trary.

Lemma 8: If fe C(K,), the following limit holds
uniformly in n:

lim A7, f(Y) = A7, f(Y).  (22)
Y'-¥

Since AL, || < e2I®ICS1, it will be sufficient to
prove this lemma in the case f€ Cig mq . Suppose
S€Comay and n > m; let ®,, @, be the potentials
introduced in the proof of Lemma 6. For fixedk > r
(where r is such that ra is greater than the range of
®,), we have

M—-—-ngnaf(y) - )'ﬂngnnf(yf)'
<[ evoax

{8,na)

X le~I(X {raa¥) _ —I(X ErnaY’)[

e
SETIfI | eV Pax

[0,na}
X lexp [—1a(X | 7,,Y)] — exp [—Io (X | 7,,V)]|

+ 2 A e U X gx

{0, na)
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X lexp [—1o(X | 70 Y")} — exp [~ Io(X | 7, Y]]

+Af]  dxe T

{0,%a)

X |exp [~ (X | e Y] — €xp [~I0,(X | 7, Y)]I
L2 £ A" Zg e | & — B,
+ 7 RZ o€ @ £

X }."‘f lexp [—Tp (X | 7, Y)]
[(n—k)a,na)

—exp [—Io(X | 7, Y] eV X dX,

when A-0"BZp, e has to be taken equal to one if
n — k < 0; now using Lemma 2, the chain of inequali-
ties ends as

82 ol -
<2171 22 15 - &,
FPTEaLLp f jexp [=Loy(X | 7y )]
0 [0,ka)

—exp [ Lo (X |, Y VX dX, (22)

and this proves the lemma because the function of ¥,
Y’ appearing in the last inequality tends to zero as
Y’ — Y (consequence of the continuity properties of
the potentials) and because lim [|® — || = 0.

Remark: This lemma implies that the set of functions
{A"L,,f} is equicontinuous and (since AL, | <
e21®lC51) norm bounded, so it is conditionally com-
pact’; in particular, there exists a subsequence
{n;} and a function h € C(K,) (depending on f and
{n,}) such that

lim |47, . f — k| = 0.

i 0

(23)

Lemma 9: There exists he C(K,), h > 0, v(h) = 1,
and

(1) ACh = h, (24)
(i) li_’m 147" ef = v(f)h] =0, feC(K,), (25)
i) lim Al — u(hyr = 0, peC(K,)*, (26)

where the hmit holds in the weak sense.

In fact, consider the function g =1 — A-€,1; we

have »(g) = 0. Thus, using Lemmas 7 and 3, we find

lim jA7"€,,(1 — A€, 1)) = 0, 27

and then (27) and (23) imply A — 27104 = 0.
Since clearly »(h) = 1, h > 0, (i) is proved.

8 N. Dunford and J. Schwartz, Linear Operators (Interscience
Publishers, Inc., N.Y,, 1958), Vol. I, Chap. 1V, Sec. 6, item 7.
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To prove (ii) consider a function fe C(K,) and
define § € C(K,) as § = f — »(f)h; clearly »(§) = 0.
Thus, using Lemmas 7 and 3,

0 =1lim |A7"C, gl =lim |A~"C, . f — »(f)h|.

n—>w n—+w

Part (iii) is simply the dual statement of (ii).

Remark 1. (ii) implies that £ is the unique solution
of the equation e**¥4 = £ h. Since the commutativity
of the operators £, implies that also £,/ is a solution of
the same equation, we must have £ 4 = A(x)h, and
(10) implies A(x)A(y) = A(x + y) x, y > 0; we have
also that A(x) is a finite-valued continuous function
of x because (£,f)(Y), as is easily verified, is a finite-
valued continuous function of x at fixed Y. Thus?
Alx) = %P,

An analogous argument holds for » which turns out
to be the unique solution of the equation £}y = ¢*Fy.

Remark 2: one can drop in (ii) and (iii) the con-
dition that n is an integer. This is a consequence of the
following inequality, holding for » integer and 0 <
x<a:

e PL ue Lo f — 2(f)h]
= €L L™ f — w(S)D)]
< eMO1Zpg o) ICnee™Ff = () b

4. PROOF OF THEOREM 1

To prove differentiability of P(®) it is necessary to
study the dependence of » and / on @. Let @’ be either
®, or an arbitrary element in B. Let us consider the
potential ® + z®'. Let us also emphasize the depend-
ence of £,, 4, », and A on @ by writing £, 4, /g, V¢,
and A4. From the proof of Lemma 8 and from the
continuity of A4, .5  in z (which follows® from the
convexity properties of A, as a function of @), it
follows easily that the limit

lim li;—ﬁz 5'£na,0+z$’f(Y’) = 2512 5’£na,¢+z3’f(Y)
Y=Y (28)

holds uniformly not only in », but also in z for zin a
bounded interval. This implies that (Lemma 9) the
limit

lim v4,,5(Nhor.5(Y') = vo1.5(Nhor.5(Y) (29)
¥'-¥

holds uniformly for z in a bounded interval. From this

equicontinuity property it follows that if {z,} is a
sequence z, ——> z,, there exists a subsequence {n;}
n—

® N. Dunford and J. Schwartz, Linear Operators (Interscience
Publishers, Inc., N.Y., 1958), Vol. I, Chap. VIII, Sec. 1, item 2.
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such that the limits

llm v(b+z,“- 6’(f)a (30)

=

11—1}2 ’/0+z,.i $'(f)h¢+z,.iz)' (31)
exist (the second in the norm sense). Since £4,,5. and
Ap+.3 depend continwously (in the operator norm
sense) on z, the limit (31) has to be an eigenvalue of
£12,0-and so it must be proportional to A4, , .. From
this it follows that

hm 1’d:t—}w':(‘l;’(f) = v¢D+zg ;)’(f)a fE C(K+)a

220

(32)

(33)

lim hdH—z o= h(b+zo o
Z=r2¢

L€, hpyi .3 s Voo AT, respectively, norm and weakly
continuous in z.
Now observe that the operator defined by

(aﬁa,mf)(y) — _f e UoX 17.1)
X<|0,a)

0P’
X Ug(X | . Y)f(x Ur,Y)dX (34)
is such that

So, using the just-proved continuity properties of v, &,
and A and the identity

£u,¢+z$’ — r'a,(D aca.d)

- — 35
z 00’ (33)

— 0.
z=0

2’¢D+z$’ — }'d) = 1J‘:p(f:a,dwza’ - f'a,d) h<D+z > ), (36)
z z vtb(h0+z 5’)
we find that
lim fotza — Ao _ Yo (aﬁgs"’ ho), (37)
z—0 zZ a !

which proves that

KPR ¥ Y (PR
otz 0’ = Yoz o4z

dz 0z

and also that this derivative is a continuous function of
z (since vg,,3 is weakly continuous in z and
0L, 0,,3/0z and hg, 5 are norm continuous in z).
Now part (i) of Theorem 1 follows easily.

To prove the cluster property we use a procedure
essentially contained in Ref. 2 and used there to prove
some ergodicity properties of the equilibrium state in
lattice systems.

We have first to construct the state ¥ which corre-
sponds to the equilibrium state of the system when it
occupies all R.
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In the remainder of this section the letters b and b’
with or without indices will denote finite real numbers.
Since the sets Cg5y < C(K) of functions 4 € C(K)
such that A(X) = A(X N (b, b)) are dense in C(K), it
is sufficient, in order to determine the probability
measure 7 on K, to find 7(4) for all A € Cy, ;) with
b < b’ arbitrary.

We remark that if 4 € Cy, 4, then 7,4 (translate of
A by a length b) can be identified with an element
(my4), € C(K,) defined for X € K, as

(134)1.(X) = (r, AYX N (0, 5" — b))
=AX (0,6 —B) +b). (3

With this notation and denoting 7, 4 the normalized
Gibbs measure on (c, d), i.e., the measure

?(c.d)(dX) = [e_U(X) dX/Z(c.d)]a X< (C> d)a
the value of $(4) can be defined as
‘}7(A) = lim 7(—1/.1/’)(14)
Y=+
Y’ 40
= lim §g,y44)(7,4)
Y=+
Y’ >+
= lim '}7(0,111+112)(Tu1(7bA)+)y (39)
Y1+
Y+

provided the limits exist.
To prove the existence of the limit (39), consider a

function fe€ Cy noy & C(K,) and n > m. Then one

easily verifies, using definitions (7) and (9) of £, and

£* that

(e Lrd2)(f)

(e Ly de)(1)

where d,, is defined by d,(f) = f(¥).
From the definitions (7) of £,, one verifies also that

Lra(maaf) = fLna]), fEC(KL), n 20, (41)

?(O,na)(f) = (40)

153
and so, using (40), (41), (25), and (26), we have
lim 7(0,1/14—112)(71/1(71)"4)-4—)
Y12
Yo ®©
i O 0) (70 A))
5;:2 (e‘“’”“’Pﬁl’lezég)(])
= (D) lim (e PL¥05)((r,A) (e L, 1)
it
= y(h(1,A),).
Hence we have found
P(4) = v(h(r,4),) if A€ Cpuy; (42)

this formula proves also the translational invariance
of .

Letnow 4, € Cyy, 3,15 A2 € Cy, 0,1 - Then, using the
following formula easily deduced from definition (9),
(T NX)(AX) = (L] m)dX), feC(K.), (43)
and the property that £*» = e*F», one can deduce
[taking also into account (25), (26), and (42)] that

= lim $((7y, A1) 7(75,42)1)

[ Andle]

[ Aadlee]

= lim f H(X) (4, Ar) (X, A) X X))

=lim | A(X)(ry,A) (XN *PL(7,,42),7)(dX)

- f h(X)(r,Ar) (X I(AX) f h(X)(ry, ), /(dX)

= P(A4,)7(4).

Now we prove the more general cluster property
(6) by induction. Suppose it is true for the product of
A, € Cppyy* An €V, 0, and let 4, €Cy 40
using (43) and the uniformity of the convergence
of (e=FL, h(r, A),) to hj(4,), and the fact that

“(szAZ)+ e Twz+'-'+z,.—1(7-bnAn)+“ < ”Az” e ”An"9
we have:

hm ‘}7(A1731A2 e Tw1+ R +xn—1An) = hm ?((TblAl)Ta:l(TbgAQ e Twz+ o ~+:c,,_1(Tb,,An))

2= &=

= lim
&y 0

= lim

Ti—> 0

h(X)(Tb1A1)+(X){e—-ZIP£:1 [(Tb2A2)+ T

fh(X)(TblAl)-i»(X){Tml[(szA2)+ T Tapte '+xn—1(7bnAn)+]}()()v(dX)

S Tagt- - +zn_1(Tb”An)+]v}(dX)

= lim | [e7FL,, (h(r, A)NX)[(70,45) 1 * * Tagi 4,1 (T2, A, ) (X IW(dX)

i~ ®

= lim

2i—r00i>1

= 77(A1) e ?(An)'

P(AD(75,42) (X)) * ** (Tapr s (To, A NV X)
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Finally the restrictive hypothesis that 4, € Co,.) can
be released by density arguments.

5. DESCRIPTION OF THE EQUILIBRIUM
STATE »

We have seen in the preceding section that 4 and »
determine completely the equilibrium state of the
system considered. In this section we describe 7 by
means of a family of density distributions!® in the case
that @ has finite range.

We remark that if the range of the interaction is
between na and (n + 1)a, then the function 4 has the
property that A(Y) = h(¥Y N [0, (n + 1)a));this is be-
cause & = lim, 2="L,,1 and A—"L,,1 depends only on
Ynio,(n+ 1a).

Now the state 7 can be described by the family of
density distributions f7(x) on [0, La) which have the
meaning of probability densities (with respect to the
measure dX, X < [0, La))for finding the configuration
X inside [0, La) irrespective of what happens outside.

If L > n + 1, these probabilities can be defined as

oK) = Tim ZZ e o f dx, dX,
X1<C[—mya,0)

my—* o0
X:2:<[Lga,(L+mgla)

mg—> 0
~U(X, |X)e-U(X)e"U(X2 | X)

X e (49

One can define a family of operators £, on C(K.)
which are the analogies of the £, for left-semi-infinite
systems as -

ENT) = et me-U‘X"—zY’f(X U r_Y)dX,
YeK_. (45

The theory of these operators is exactly the same as
that for €,, so there exists #e C(K_) such that
i = e*Ph, and R(Y)=lim, ., e=PL1(Y) (uni-
formly in Y € K_). An explicit expression for 4 in
terms of eigenfunctions of operators of the type of £
can be given by considering the potential $® defined
as the mirror image of @, and let A% be the eigenfunc-
tion of the operator £ corresponding to §®; then one
can prove that

F(r_z,Y) = lim (e *"FE, )(r_L,Y) = K (@Y), (46)
where §Y is the configuration obtained from Y <
[0, La) by reflecting 7_z, Y around the origin.

19 D. Ruelle, J. Math. Phys. 8, 1657, 1967.
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Now (44) can be written in terms of £ and £ as

fL(X) = lim (t(ﬁn1+m1+L)aaz)(1)_1(£m1a1)(Y)

myp—* oo
mg—* 0

x eV, D(r_r,Y); (47)
hence,

fi(X) = e PLep@) ()R Y)e U T, (48)

One easily verifies, using the properties of 4 and 4% as
eigenvectors of £ and f, the normalization and compa-
tibility conditions implicit in the meaning of f; .

If we consider now the functional on the set
E N £+ of the translationally invariant measures on
K defined as the difference between the mean entropy™
and the mean energy, then, as a consequence of the
differentiability properties of the pressure, one finds
that this functional attains its maximum at one unique
point of E N £+ which coincides with 5.12:13 The value
of this maximum is P.

This last property can easily be verified by writing

s(7) — U(¥)

=limLa™|  fi(0)[—lgfi(X) — UX)]dX,
Low [0,La)
and using (48).

We mention without producing the explicit calcu-
lations that one can find a sufficiently large class of
elements € = E N L. and suitably parametrize its
elements so that the variational equations corre-
sponding to the extremum problem max, . s(p) — U(p)
give rise to the integral equation Ak =h and
to the expression (48) for the state maximizing
s(p) — U(p). In this context one could use the results
of this paper to guarantee that the state in & maxi-
mizing s(p) — U(p) is the true equilibrium state.*

ACKNOWLEDGMENTS

We are deeply indebted to D. Ruelle for suggesting
the problem, for enlightening discussions, and for
reading the manuscript. We also thank M. L.
Motchane for his kind hospitality at IHES. One of us
(S. M.-8.) is indebted to CNRS for financial support.

11 D, Robinson and D. Ruelle, Commun. Math. Phys. 5, 324
(1967).

12 D. Ruelle, Commun. Math. Phys. 5, 324 (1967).

18 G. Gallavotti and S. Miracle-Sole, Ann. Inst. Henri Poincaré 8,
287 (1968).

14§, Miracle-Sole, Thesis, University Aix-Marseille, France,
1968.

Downloaded 07 Apr 2006 to 128.112.84.118. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



