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Recently some research has been devoted to the problem of the microscopic defi- 
nition of the surface of separation between two phases (1). Most of the published results 
have been obtained for the two-dimensional Ising model (2). 

In  this case it  has been proven that  the problem of studying the line of phase sepa- 
ration is equivalent to the s tudy of ensembles Uq(h r) of edge self-avoiding random 
walks ~ lying on a strip of a square lattice with, as base, a segment of hrA - 1 lattice points. 
By edge self-avoiding random walks we mean random walks which may re turn to lat- 
tice points which have been passed previously, but  may not repeat a previous step, 
neither in the same nor in the opposite direction. The ensemble Uq(N) contains all 
random walks which start at the origin and end at the point  R = (N, q) (seeFig. 1). 
If a random walk 2 belongs to Uq(s its statistical weight in this ensemble is (2) 

1 
(1) W(2) ---- exp [-- fll~l --/~(~)].  

U~(E) 

0=(0,0) 

R=(N,q) 

Fig .  I .  - A phase  s epa ra t i on  l ine on a l a t t i ce  w i t h  a base  of 13 la t t i ce  points ,  d r a w n  as  a r a n d o m  walk .  

(1) a .  A.  MINLOB ancl YA. SINAi': Math .  USStr  Sbornik,  2, 355 (1967). 
(,) G. GALLAVOTTI and -&.  ~[ARTII~-LSF: Comm. Math .  PhyS. ,  25, 87 (1972); D.  ABRAHAM, G. GALL&- 
VOTTI a n d  A.  ~VIARTIN-LSF: Lett .  Nuovo Cimento, 2, 143 (1971). 
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[t I is the length of 1,/~(2) is a function which describes the interaction of ~ ~ i th  the pure 
phases which are separated by it. Uq(N) takes care of the normalization of W(I). 

As the statistical weight of a random walk is not only determined by its length but  
also by its geometrical shape (unless ~ (2 )~  0), we call Uq(N) an ensemble of non- 
free random walks. 

The function ~(~) has some nice properties which are qualitatively equivalent to 
the following: 

(2) /~(;t)---- ~ r 
r,r'~,~ 

runs over the centres of the uni t  segments the union of which builds ~. For  the func- 

t ion r which also depends on fl, the following inequali ty holds: 

(3) Ir l < D(fl) exp [--  kfllrl] (k > O), 

where D(fl) ~ 0 exponentially fast. 

An important  quant i ty  is 

1 
- ~ w ( ~ ) ,  (4) P~(s) Uo(~V) ~(~/~.~) 

i.e. the probability tha t  a random walk from (0, 0) to (h r, 0) passes through the 
point (IV/2, s). 

A relevant and physically important  question is whether 

(5) l im P~v(s) = 0 (s fixed). 
/f--a.r 

If this were true it  would mean that  the line of separation stays away from any fixed 
region. Hence if one considers correlation functions locally, like <a~>, <a| 
<axa~a,>, ... where x , y , z  . . . .  are points fixed at a finite distance from the centre 
(~r/2, 0), one finds that  they are a linear combination of the correlation functions of the 
two coexisting pure phases with coefficients ~ and 1 - -  ~, where ~ is the probability that 
passes above the point  where the observations are made (a). This would imply that the 
correlation functions, even when observed locally, would be translationally invariant.  

Another problem, which is closely related to the one we mentioned above, is the 
following. 

Let U(s r) be the ensemble which is the union of all Uq(iV), in which the random walks 
again have a statistical weight which is given by (1) with the only difference that the 
normalization constant is changed into U(N) in accordance with the ensemble. Let 
/~iv(q) be the probabili ty in this ensemble that  a random walk which starts at 0 ends 
at  (N, q). 

Then the question arises whether or not 

(6) lira P~(q) = lira Uq(N) _ 0 for all q .  
x - ~  ~-*~ U(N) 

In  the case of free random walks this problem has been treated by HAI~IMERSLEY (4). 

( ' )  See a lso  G. GALLAVOTTI 8~ld R .  S. MIRACLE: Phys .  Re~)., 5 B ,  2555 (1972). 
(*) J .  M. H a ~ E R S L E Y :  Proc. Camb. Ph i l .  ,~oc., 57,  516 (1961) (pag.  519 a n d  521). 
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We have found a rigorous proof of both conjectures (5) and (6) for large fl in the case 
that  W(2) is given by (1) under conditions (2) and (3). 

In  the following we will sketch the proof in the simplified case tha t  the ensembles 
U(iV) and Uq(h r) are replaced by U(Z r) c U(Z r) and iq(iV)c Uq(2V), which only contain 
the lines ~ which do not  << go back ~>, i . e .  which, thought as random walks, are only al- 
lowed to step forward, upward and downward. Any ~ ~ i(2V) can be described by a 
sequence of nonzero indexed integers (s~, ..., s~,) telling us  the positions x 1 ~ x~ ~ ... < x,  
of the jumps of ~ and their magnitudes s~,, ..., s~ .  An example is given in Fig. 2 which 

i 

I i 

t I 

Fig. 2. - The phase separation line on a lattice with a base of 10 lattice points which corresponds to 
t h e  s e q u e n c e  (1~, -- 3s,  27, -- 1D. 

shows the line on a strip with a base of eleven lattice points  corresponding to the sequence 
(11, --33,  27, - -  19). If we define 

(7)  Y~(sx,,  . . . .  s x . )  = ~ ( s x ~ ,  . . . .  s ~ . ) -  #(0) 

where p(0) is the interaction of a straight line from (0, 0) to (h r, 0) with the pure 
phases, and 

(s) ~"(s~,, .... s~.) = ~(+~,, .... s++) - - ~  ~(s~,), 
i = l  

we may rewrite (1) for the ensemble i(iV) as 

(9) W ( ~ )  = W ( s , , ,  . . . .  s+~) = 

= e x p [ -  (~ lv+~(0) ) ]  

i f (g )  

We can interpret  U(3Y) as the grand canonical ensemble of a mult icomponent  one- 
dimensional lattice gas of ~V~-1 cells. 

The component particles correspond to jumps of different lengths. The act ivi ty 
of a particle of type si is exp [--fl(]s d ~- yJ(s+))], the interaction energy of a configura- 
tion is T(s| . . . .  , s s , ) .  From (2), (3) one may derive that  this interact ion can be expres- 
sed by means of a small short-ranged interpartiele potential  (with pair  potential,  three- 
body, four-body, etc. components). At the same time for large fl the activities become 
very small. Hence we may expect that  the systems behave quali tat ively as a perfect 
gas, for we may expect that  the Mayer expansion converges. Therefore no qualitative dif- 
ference should exist between the ensembles i(iV), i~(2V) and the corresponding perfect- 
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gas ensembles which one obtains by replacing in (1) /~(2) by zero. For  this perfect gas 
the statistical properties can be evaluated exactly and one easily finds (using the same 
symbols as in (5), (6)) that  P,v(q)~P~v(q)~O(1/v/-~) as IV-> c~. 

To show that  the properties of Ux, Uq(IV) are close to the properties of the cor- 
responding perfect-gas ensembles one can use the technique based on the Mayer ex- 
pansion and the Kirkwood-Salsburg equations. These techniques, as is well known, 
enable one to estimate the deviations from the perfect-gas (or free-random-walk) be- 
haviour. As already mentioned this program has been carried out (5) and leads to the 
results for a suitable c > 0 (fl-independent) 

1 Iq[(l~ IV)~ > O. 
(10) P~(q), P ~ ( q ) ~ - - ~  if ~ /R ~ 

A much simpler proof can be provided if one only wants to prove (6) for the ensemble 
U(N) (e). One may define U(N, L) c U(SV) as the ensemble which consists of only those 
lines ~ which contain at least one jump of length s with Is! = L'  for each integer 
0 < L ' < L .  I t  is easy to see that  

U(IV, Lo) 
(11) U(N) 1 -  O(1/%/_~T) (IV-+ c~), 

where 15 0 -= e(fl)log/V, with e(fl) a well-chosen constant depending on ft. 
This implies that  it is sufficient to prove (6) for the ensemble U(IV, 15o) instead of 

the complete ensemble U(IV). Now there is a 1-1 correspondence between each line 
belonging to Ur Lo) and a set Va of L o lines 2'(2, L), with L = 1, 2, ..., L o, belonging 
to U(~ r, Lo), where 2'(2, L) is the line one obtains by reversing in A the direction of the 
first jump of length + or - -  L one encounters as one walks along ~, starting at the origin. 

As the reversal of direction of just  one jump causes only a minor change in the 
shape of A, it  does not change the value of W(~) appreciably in most cases, hence for 
most A's ~ W(~') over all ~ ' e  Va will about be equal to LoW(A ). 

In  fact one can show rigorously that  

(12) U(iv, L0) > ~ ~ w(~') > ~L0 ~ w(~) 
).e~a(N,s ) , ) ~ q  (.b-oLo) 

with ~ > 0 and independent  of N. 
From this it follows that  

_ _  1 (13) Ur < 
U(IV) ~c(fi) logs " 

The above estimate is too weak to draw any conclusions about the asymptotic bchav- 
iour of P ~ ( q )  a s  N-~ c~, also it seems to be very hard to prove (5) in a similar manner. 
On the other hand, the fl-region where it can be proven with this technique is much 
larger than the fl-region where (5), (6) are proven with the aid of the Kirkwood-Salsburg 
equations. 

The proofs of (5), (6) that  one can provide for the complete ensembles U(N) and 
Uq(~) are essentially the same as the ones we described above, the main differences 

(~) G. GALLAVOTTX: The 1abase separation line in the two.dimensional Ising model, preprint. 
(~) H .  vAI~ BEIJEREI~: t o  a p p e a r .  
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lying in the fact that  one has to define still more and more complicated kinds of lattice- 
gas particles. 

An interesting question to study would be under which conditions on r the results (5), 
(6) and also (10), (13) stay true. E.g. one ~ould natural ly  conjecture that ,  if r is short 
ranged (say r  bu t  fl-independent), (5), (6) should still hold (this is 
<( n a t u r a l ,  in so far as one-dimensional lattice gases with short-range interactions should 
have no phase transitions). 

Final ly we ment ion that  the analogous problems in  3 dimensions (here U0(h r) is 
replaced by a set of polyedrical surfaces on the lattices with boundary fixed on a square 
in the plane z ~ 0) should have completely different solutions, at least at large ft. 
I n  this ease intui t ive arguments (~) suggest that  the phase separation plane has a non- 
vanishing probabil i ty to pass through a point  in the middle of the (z ~ q)-plane, so 
there would be a possibility to have a locally translat ionally noninvar iant  situation. 

A fascinating question arises at  this point:  Let tic ---- 1/kT~, where T~ is the three- 
dimensional Ising-model critical temperature.  Is it  possible that  for not too large /?, 
say for fie < fl < ~c, the results (5), (6) hold also in 3 dimensions? 

If this were the case one would have a second phase t ransi t ion:  For T c < T ~ Tr 
the phase separation surface would show fluctuations in shape which stay coherent 
over macroscopic distances. 

(~) L. LA~CDAU and E. LIFSHITZ: Physique statistique (MoscoW, 1967), p. 576. 


