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Abstract: We show that the value of the spontaneous magnetization for the twodimensional Ising

model computed by Onsager is indeed, the appropriate derivative of the free energy with respect to

the magnetic field. The argument is based on a simple application of the duality transformation.

1. Introduction

It is well known that Onsager never published his proof that the spontaneous magnetization in

the Ising model is given by [1]

m0(β) =
(
1 −

1

(sinh 2βJ)4

) 1
8

(1.1)

where βc, determined by sinh 2βcJ = 1, is the critical inverse temperature (βc = 1
Tc

), J is the

ferromagnetic coupling constant. The above value was found by Yang [2] to coincide with

my(β) = lim
h→0+

lim
N→∞

lim
M→∞

fNM (β, h/N) − fNM (β, 0)

h/N
(1.2)

and by Montroll, Potts, Ward [3] (see also footnote on p. 810 of [2]) to coincide with

mA(β) = lim
|x−y|→∞

mA(β) = lim
N→∞

lim
M→∞

√
〈σxσy〉

P,NM
(1.3)

where fNM and 〈σxσy〉P,NM denote, respectively, the free energy and the two spin correlation

function of a rectangular lattice of N×M sites with periodic boundary conditions, h is the external

magnetic field.

Although my(β) ≡ mO(β) ≡ mA(β) it has never been proved, [4], that these values coincide

with the ”true” spontaneous magnetization

m(β) =
∂f(β, h)

∂βh
(1.4)

where f is the infinite volume free energy (which is boundary condition independent).

It is easy to see that m(β) ≥ mO(β), [4], and it has been proved that

m(β) = lim
|x−y|→∞

√
〈σxσy〉 (1.5)

where 〈σxσy〉 is the infinite volume limit of 〈σxσy〉+,NM which denotes the two-spin correlation

function when all the spins of the boundary are fixed to be +1, [5]. We shall often refer to these

boundary conditions as to ”closed” boundary conditions.

It is of course important to establish that mO(β) = m(β): in fact if mO(β) < m(β) near βc this

would imply that the critical exponents computed from (1.1) need not be the right ones; also, it
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might happen that m(β) > 0 for some β < βc, i.e. that the critical temperature computed by

Onsager does not correspond to the ”true” critical temperature defined as the infimum of all the

β’s such that m(β) > 0.

It has recently been shown that m(β) = 0 for β < βc and this shows that the Onsager value of

the critical temperature and the ”true” critical temperature coincide, [6]; furthermore it has been

shown that mO(β) ≡ m(β) for β > βc > βc where βc is about 9% different from βc, [7].

It remains to prove that m(β) = mO(β) for βc ≤ β ≤ βc: this is the purpose of this paper

which relies heavily on the result of [6] quoted above while it does not use the techniques of [7].

The existence and importance of this problem has been, for the first time, clearly stated in the

literature in the second paper of [3].

We will reach our goal by proving that for all β’s, in the infinite volume limit

〈σsσy〉a(β) = 〈σsσy〉p(β) = 〈σsσy〉+(β) (1.6)

where pmeans periodic boundary conditions, + means closed boundary conditions and a means

open (perfect wall) boundary conditions. This equation when combined with (1.3) and (1.5)

provides the desired result m(β) = mO(β), ∀β ≥ βc. Eq. (1.6) follows from a careful study of the

implications of ”duality” which is a symmetry property of the two-dimensional square-lattice Ising

model with nearest neighbour interactions [8,9].

Our use of duality in the present context is close in spirit to that of the third paper of Ref. [10].

2. Duality and Boundary Conditions

It is well known that duality (see appendix) implies a relationship between the high and low

temperature properties of the two-dimensional Ising model in zero external field. The center of the

symmetry is just the point βc (i.e. the Onsager critical temperature) where mO(β) vanishes.

Roughly speaking the duality transformation allows to express the high temperature free energy

and correlation functions in terms of the low temperature ones and vice-versa [10]. This statement

requires further explanations. In fact one has to remark that, in presence of phase transitions, the

correlation functions will depend upon the boundary conditions; for example, at least in principle

〈σxσyσz . . .〉+ 6= 〈σxσyσz . . .〉− 6= 〈σxσyσz . . .〉p 6= 〈σxσyσz . . .〉a (2.1)

where the subscripts denote as before the type of boundary conditions used.

The question then arises of determining what happens to a given boundary condition under

the duality transformation. An answer to this question is, because of (2.1), clearly preliminary

in order to establish the transformation law of correlation functions under duality. It turns out

that in general a given boundary condition corresponds to some other ”dual” boundary condition.

In particular, for example, periodic boundary conditions are dual to some awkward boundary

conditions, while closed boundary conditions are dual to open boundary conditions.

Let us express quantitatively the above statements.

Let Λ be a N × M rectangular box centered at the origin. For X ≡ (x1, x2, . . . , x2n), xi ∈ Λ

define

σX =

2n∏

i=1

σxi , n = 1, 2, . . .
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We then go over to the dual lattice Λ∗ which is obtained (see appendix and Fig. 2) by considering

the segments orthogonal at the middle point to the sides of the original lattice Λ. By defining the

dual temperature

e−2β∗J = tanhβJ (2.2)

according to the results of the appendix, one can establish the equations valid also in the thermo-

dynamic limit

〈σX〉a(β) = 〈
∏

b∗∈Γ∗

[
cosh(2β∗J) − σ̃b∗ sinh(2β∗J)

]
〉
+
(β∗) (2.3)

〈σX〉+(β) = 〈
∏

b∗∈I∗

[
cosh(2β∗J) − σ̃b∗ sinh(2β∗J)

]
〉
a
(β∗) (2.4)

where Γ∗is constructed as follows:

(a) first divide X into n pairs of spins and associate with each pair a path contained in Λ joining

the two spins.

(b) To each link of this path associate the corresponding orthogonal link b∗ on the dual lattice Λ∗.

The set of these dual links will be Γ∗. σ̃b is the product of the spins situated at the end points of

the link b∗.

3. The Main Result

In this section we consider the two spin correlation functions and show that

〈σxσy〉a = 〈σxσy〉p = 〈σxσy〉+ (3.1)

We shall use a number of known results some of which have already been mentioned in Section 1.

(a) The following limits exist and are translationally invariant (∀β)

lim
N,M→∞

〈σX〉a,N,M = 〈σX〉a

lim
N,M→∞

〈σX〉+,N,M = 〈σX〉+
X = (x1, x2, . . . , xn) (3.2)

where the limit has to be taken when N → ∞, M → ∞ in any order or simultaneously and the

result is independent on the way we take the limit. (3.2) follows from Griffiths inequalities.

(b) If x, y are two sites on the same row

〈σxσy〉p = lim
N→∞

lim
M→∞

〈σxσy〉p,NM (3.3)

exists and

mO(β)2 = lim
|x−y|→∞

〈σxσy〉p. (3.4)

(3.4) follows from the exact solution of the Ising model, [3]. The other results we need are:

(c) the Onsager critical temperature bc coincides with the ”true” critical temperature [6].

(d) The infinite volume correlation functions for β ≤ βc areboundary condition independent.

Furthermore for all β’s
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m(β)2 = lim
|x−y|→∞

〈σxσy〉+ (3.5)

These statements follow immediately from the results of [5,6]. It is therefore clear that (3.1)

implies m(β) = mO(β) ∀β. To prove (3.1) we proceed as follows. Consider the model in a box NM

with open boundary conditions: if we introduce additional couplings which couple opposite sites on

the boundary d we obtain a model with periodic boundary conditions. If afterwards we introduce

an infinite magnetic field acting on the spins of d we obtain the -h, type boundary conditions on

the same box NM.

Hence an application of the second Griffiths inequality yields

〈σxσy〉a,NM ≤ 〈σxσy〉p,NM ≤ 〈σxσy〉+,NM (36)

Taking the limit as N → ∞, M → ∞ and using the results (a) and (b) (assume also that x, y

are on the same row) we find

〈σxσy〉a,(β) ≤ 〈σxσy〉p(β) ≤ 〈σxσy〉+(β) (37)

where we have explicitly written the β dependence of the correlation functions for further use.

By applying now Eqs. (2.3) and (2.4)

〈σxσy〉a(β) = 〈
∏

b∗∈Γ∗

[
cosh(2β∗J) − σ̃b∗ sinh(2β∗J)

]
〉
+
(β∗) (3.8)

〈σxσy〉+(β) = 〈
∏

b∗∈Γ∗

[
cosh(2β∗J) − σ̃b∗ sinh(2β∗J)

]
〉
a
(β∗) (3.9)

However if β > βc it follows that β∗ < βc and result (d) can be used to guarantee that the right

hand side of (3.8) and (3.9) are equal; hence

〈σxσy〉a(β) = 〈σxσy〉+, β > βc (3.10)

which implies together with (3.7) mO(β) = m(β).

4. Conclusions

The above results prove that the Onsager value of the spontaneous magnetization is the appro-

priate derivative of the free energy. An interesting related question remains still open: how many

equilibrium pure phases can coexist for β > βc.

It is known that for β large enough (β > βc, see Section 1) there are only two translational

invariant equilibrium states and it has been announced [13] and partially proven [12] that, for

large β at least, there are no non-translational invariant equilibrium states (which is a peculiarity

of the dimension 2, [13]).

It is however a reasonable conjecture to assume that in two dimensions there are only two

translation invariant equilibrium states and no nontranslational invariant equilibrium states all

the way from β = +∞ to β = βc.
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It is possible that the duality symmetry is a key to the proof of the above conjecture: however

we have not been able to use this key.

Acknowledgements: This work was partially supported by G.N.S.M. We are indebted to J. L.

Lebowitz for communicating to us his results [6] before publication.

Appendix. Proof of the Duality Relations [14]

(a) High and Low Temperature Expansions of the Partition Function

In this appendix we shall confine ourselves as in the text, to periodic, open and closed boundary

conditions.

Let

ZN{βJb} =
∑

σB

eβ
∑

b
Jbσ̃b = ZB{Kb}

∑

σB

e
∑

b
Kbσ̃b , Kb = βJb

be the partition function, where the index B means that the sum over all possible configurations

must be restricted according to the particular boundary condition chosen. A simple calculation

now gives the so called ”high temperature” expansion

ZB{Kb} = (
∏

b

coshKb)
∑

σB

∏

b

(1 + σ̃b tanhKb). (A.1)

The general term

T =
( K∏

i=1

tanh(Kbi

)
σ̃b1 σ̃b2 . . . σ̃bK (A.2)

contributes only if σ̃b1 σ̃b2 . . . σ̃bK ≡ 1. This means that the set of lattice bonds b1, b2, . . . , bK ,

characterizing T , constitutes a closed multipolygon for open or periodic boundary conditions, and

a collection of multipolygons and paths, whose end-points belong to the boundary, for closed (+

or −) conditions (see Fig. 1).

Let us write T = T (γ), where γ = b1, b2, . . . , bK ; as a consequence (A.1) can be given the

following form

ZB{Kb} = 2L(
∏

b

coshKb)
∑

γB

T (γ) (A.3)

where L is the number of free lattice spins and the sum is extended to the γ’s which, for the given

boundary condition, furnish a non vanishing contribution in (A.1).

The partition function of the model can also be expressed by the so called ”low temperature”

expansion, whose key is the geometrical description of the spin configurations [11].

Given a spin configuration — we can draw a unit segment perpendicular to the center of each

bond having opposite spins at its extremes. Clearly the union of all these segments, λ, will be a

closed multipolygon, for closed or periodic boundary conditions, and a collection of multipolygons

and paths, whose terminal segments intersect some links of the boundary, for open conditions (see

Fig. 1).
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open closed periodic

γ
λ

With open or periodic boundary conditions two configurations with opposite spins will correspond

to the same λ; a factor 2 will take into account this degeneracy in expanding the partition function.

The energy of a general configuration is

H(λ) = −
∑

b

Jb + 2
∑

b∈λ

Jb

and consequently the partition function can be written

ZB{Kb} = 2νe
∑

b
Kb

∑

λB

( ∏

b∈λ

e−2Kb
)

(A.4)

where ν is equal to 0 for closed and to 1 for open or periodic boundary conditions.

H.T. L.T.

open: multipolygons multipolygons and paths

periodic: multipolygons multipolygons

closed: multipolygons and paths multipolygons

(b) Duality Relations

Consider a N ×M rectangular lattice Λ with open boundary conditions and a second (N + 1)×

(M − 1) lattice Λ∗, obtained from Λ by drawing a unit segment b∗ perpendicular to each link b of

Λ at its middle point (see Fig. 2); for Λ∗ we choose closed boundary conditions.

x

y

Λ

Λ∗

Γ

Γ∗

It is immediate to see that the γ’s of the high temperature expansion (A.3) for Λ coincide with

the λ’s of the low temperature expansion (A.4) for Λ∗, and vice versa. So if we choose for each

link b∗ of Λ∗ a coupling constant K∗
b such that
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tanhK∗
b = e−2Kb (A.5)

where b and b∗ intersect each other, we obtain immediately

ZΛ,a{Kb}

2L
∏

b(coshKb)
=

ZΛ∗,+(or −){K
∗
b }

e

∑
b∗ K∗

b

L = N × M (A.6)

or in a more symmetric form

ZΛ,a{Kb}

2L/2
∏

b(cosh 2Kb)1/2
=

21/2ZΛ∗,+(or −){K
∗
b }

2L∗/2
∏

b(cosh 2K∗
b )1/2

, L∗ = (N − 1) × (M − 1). (A.7)

The same relation can of course be obtained by using for Λ the low and for Λ∗ the high temper-

ature expansion.

The situation is not that simple for periodic boundary conditions because of the existence of

additional multipolygons which exploit the connectivity properties of the torus. Moreover, these

extra configurations give a different contribution to the high and low temperature expansions.

We may notice that if Jb = Jb′ = J for all bb′ equation (A.5) defines uniquely a dual temperature

β∗, if Jb∗ is taken to be equal to Jb. It is well known that the value βc for which β∗ = β = βc is

the Onsager critical temperature. For β > βc we have β∗ < βc and vice versa.

(c) Path Definition for the Two-spin Correlation Function

Consider the two-spin correlation function 〈σxσy〉B , where B stays in this paragraph for open or

closed boundary conditions. If Γ is an arbitrary path connecting the two sites x and y, constituted

by the lattice bonds b1, b2, . . . , bn, it can be established the path independent relation

〈σxσy〉B =
ZB{K ′

b}
∏

(cosh 2K ′
b)

−1/2

ZB{Kb}
∏

(cosh 2K ′b)−1/2
(A.8)

where {K ′
b} is the new set of coupling constants obtained from {Kb} by substituting

Kbk
→ K ′

bk
= Kbk

+ i
π

2
(A.9)

for the b’s belonging to Γ. (A.8) is trivially verified.

If we denote by Γ∗ the configuration in Λ∗ obtained by considering all the bonds b∗ orthogonal to

the b’s ∈ Γ (see Fig. 2), the duality relation (A.7), gives, noting that (K ′
b)

∗ = (Kb + iπ
2 )∗ = −K∗

b

for b∗ ∈ Γ∗ and putting Jb = Jb′ = J :

〈σxσy〉B(β) = 〈ω
∏

b∗∈Γ∗

e−2β∗σ̃b∗ 〉
B∗

(β∗) =

= 〈
∏

b∗∈Γ∗

(cosh 2β∗J − σ̃b∗ sinh 2β∗J)〉
B∗

(β∗)
(A.10)

where, for B = open (closed), B∗ = closed (open).

During the previous proof the volume of the lattices was kept finite. However, (A.10) holds also

in the thermodynamic limit.
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The above argument can be generalized to any correlation function 〈σX〉B where X contains an

even number of sites, 2n, by dividing them into n pairs and by considering paths connecting the

two spins of each pair.

Note added in Proof. A similar scheme for the proof in this paper has been independently proposed by D. Ruelle

(private communication).
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