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via della Ricerca Scientifica, I-00133, Roma

2 Mathematics Department, University of British Columbia,

Vancouver, BC Canada, V6T 1Z2

Abstract

We prove the Coleman’s conjecture on the equivalence between

the massless Sine-Gordon model with finite volume interaction and

the Thirring model with a finite volume mass term.

1 Introduction

1.1 Coleman’s Equivalence

One of the most fascinating aspects of QFT in d = 1+1 is the phenomenon of
bosonization; fermionic systems can be mapped in bosonic ones and viceversa.
The simplest example is provided by the equivalence between free massless
Dirac fermions and free massless bosons with the identifications (see for
instance [ID]):

ψ̄x(1 + σγ5)ψx ∼ b0 :eiσ
√

4πφx: , ψ̄xγ
µψx ∼ − 1√

π
εµν∂νφx (1)

where σ = ±1 and b0 is a suitable constant, depending on the precise defini-
tion of the Wick product. Such equivalence can be extended to interacting
theories; Coleman [C] showed the equivalence, in the zero charge sector, be-
tween the massive Thirring model, with Lagrangian (with our conventions)

L = iZψ̄x 6 ∂ ψx − Z1µψ̄xψx − λ

4
Z2jµ,xj

µ
x (2)
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where Z and Z1 are (formal) renormalization constants, jµ,x = ψ̄xγ
µψx and

the massless Sine-Gordon model, with Lagrangian

L =
1

2
∂µϕx∂

µϕx + ζ : cos(αφx): (3)

with the identifications

Z1ψ̄x(1 + σγ5)ψx ∼ b0 :eiασφx: , Zψ̄xγ
µψx ∼ −b1 εµν∂νφx (4)

where b0, b1 are two suitable constants, depending on λ and the details of
the ultraviolet regularization. Moreover, this equivalence is valid if certain
relations between the Thirring parameters λ, µ and the Sine-Gordon param-
eters α, ζ are assumed. The case α2 = 4π is special, as it corresponds to
free fermions (λ = 0); the choice ζ = 0 (free bosons) corresponds to massless
fermions (µ = 0).

In order to establish such equivalence, Coleman considered a fixed infrared
regularizations of the models (2) and (3), replacing µ in (2) with µχΛ(x) and
ζ with ζχΛ(x), with χΛ(x) a compact support function; this means that the
mass term in the Thirring model, and the interaction in the Sine-Gordon
is concentrated on a finite volume Λ. Such regularization makes possible
a perturbative expansion, respectively in µ for the Thirring model and ζ
for the Sine-Gordon model; it turned out that the coefficients of such series
expansions can be explicitly computed (in the case of the Thirring coefficients
this was possible thanks to the explicit formulas for the correlations of the
massless Thirring model given first in [Ha, K]) and they are order by order
identical if the identification (4) is done and provided that suitable relations
between the parameters are imposed.

The identification of the series expansions coefficients would give a rigor-
ous proof of the equivalence provided that the series are convergent. The issue
of convergence, which was mentioned but not addressed in [C], is technically
quite involved and crucial; there are several physical examples in which order
by order arguments without convergence lead to uncorrect prediction.

The search for a rigorous proof of Coleman equivalence was the subject of
an intense investigation in the framework of constructive QFT, leading to a
number of impressive results. In [FS] it was rigorously proven the equivalence
between the massive Sine-Gordon model (with massM large enough) at α2 <
4π and a Thirring model with a large long-range interaction; similar ideas
were also used in [SU]. The properties of the massive Sine-Gordon model
for α2 ≥ 4π were later on deeply investigated. In [BGN] and [NRS] it was
proved that the model is stable if one adds a finite number, increasing with
α, of vacuum counterterms, while the full construction, through a cluster
expansion, of the model was partially realized in [DH]. In [DH] it was also
proved that the correlation functions are analytic in ζ, for any α2 < 8π. A
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proof of analyticity, only based on a multiscale analysis of the perturbative
expansion, was first given in [B], for α2 < 4π, and then extended in [BK] up
to α2 < 16/3π.

Using the results in [DH] for a fixed finite volume, Dimock [D] was able
finally to achieve a proof of Coleman’s equivalence, in the Euclidean version
of the models, for the case α2 = 4π; such a value is quite special as it
corresponds to λ = 0, that is the equivalence is with a free massive fermionic
system, without current-current interaction. Such limitation was mainly due
to the fact that the constructive analysis of interacting fermionic systems
was much less developed at that time: indeed a rigorous construction of the
massive Thirring model in a functional integral approach has been achieved
only quite recently [BFM].

A more physically oriented research on Coleman’s equivalence was fo-
cused in recovering bosonization in the framework of the (formal) path-
integral approach, [N, FGS]. The idea is to introduce a vector field Aµ

and to use the identity

exp

{
−λ

4

∫
dxjµ,xjµ,x

}
=
∫
DA exp

{∫
dx
[
−A2

µ,x +
√
λAµ,xjµ,x)

]}
(5)

By parameterizing Aµ in terms of scalar fields ξx, φx

Aµ = ∂µξx + εµ,ν∂νφx (6)

it turns out that the massive Thirring model can be expressed in terms
of the boson fields ξx and φx: the first is a massless free field, while the
second one has an exponential interaction when µ 6= 0. In the expectations
of the operators ψ̄x(1 + σγ5)ψx and jµ,x, the ξx field has no role and it
can be integrated out; the resulting correlations imply the identification (4).
Such computations are however based on formal manipulations of functional
integrals (with no cut-offs, hence formally infinite) and it is well known that
such arguments can lead to incorrect result (see for instance the discussion
in §1 in [BFM]).

In this paper we will give the first proof of Coleman’s equivalence between
the Euclidean massive Thirring model with a small interaction and the Eu-
clidean massless Sine-Gordon model with α around 4π. We will follow the
Coleman strategy, but an extension of the multiscale techniques developed
in [B] for the Sine-Gordon model and in [BM, BFM] for the Thirring model
allow us to achieve the convergence of the expansion.

1.2 Main results

We start from a suitable regularization of the Sine-Gordon and Thirring
models via the introduction of infrared and ultraviolet cut-offs, to be removed
at the end.
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Let us consider first the (Euclidean) Sine-Gordon model. Let γ > 1, h be
a large negative integer (γh is the infrared cutoff) andN be a large positive in-
teger (γN is the ultraviolet cutoff). Moreover, let ϕx a 2-dimensional bosonic

field and Ph,N(dϕ) be the Gaussian measure with covariance Ch,N(x)
def
=∑N

j=hC0(γ
jx), for

C0(x)
def
=

1

(2π)2

∫
dk

k2

[
e−k2 − e−(γk)2

]
eikx (7)

Given the two real parameters ζ, the coupling, and α (related with the in-
verse temperature β, in the Coulomb gas interpretation of the model, by
the relation β = α2), the Sine-Gordon model with finite volume interaction
and ultraviolet and infrared cutoffs is defined by the interacting measure
Ph,N(dϕ) exp{ζNV (ϕ)}, with

V (ϕ) =
∫

Λ
dx cos(αϕx) , ζN = e

α2

2
C0,N (0)ζ (8)

where Λ is a fixed volume of size 1. Note that ζNV (ϕ) = ζ
∫
Λ dx : cos(αϕx):,

where

:eiaϕx:
def
= eiaϕxe

a2

2
C0,N (0) (9)

is the Wick product of eiαϕx , a ∈ R, with respect to the measure with
covariance C0,N(x) (for any h); hence ζN has the role of the bare strength.

We consider now the Thirring model. The precise regularization of the
path integral for fermions was already described in [BFM], §1.2, therefore
we only remind the main features. We introduce in ΛL ≡ [−L/2, L/2] ×
[−L/2, L/2] a lattice Λa whose sites represent the space-time points. We also
consider the lattice Da of space-time momenta k = (k, k0). We introduce
a set of Grassmann spinors ψk, ψ̄k, k ∈ Da, such that ψk = (ψ−

k,+, ψ
−
k,−),

ψ̄ = ψ+γ0 and ψ+
k = (ψ+

k,+, ψ
+
k,−). The γ matrices are explicitly given by

γ0 =
(

0 1
1 0

)
, γ1 =

(
0 −i
i 0

)
, γ5 = −iγ0γ1 =

(
1 0
0 −1

)
.

We also define a Grassmann field on the lattice Λa by Fourier transform,
according to the following convention:

ψ[h,N ]σ
x,ω

def
=

1

L2

∑

k∈Da

eiσkxψ̂
[h,N ]σ
k,ω , x ∈ Λa . (10)

Sometimes ψ[h,N ]σ
x,ω will be shorten into ψσx,ω. Moreover, since the limit a→ 0

is trivial [BFM], we shall consider in the following ψ[h,N ]σ
x,ω as defined in the

continuous box ΛL.
In order to introduce an ultraviolet and an infrared cutoff, we could use a

gaussian cut-off as in (21), but for technical reason,and to use the results of
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[BFM], we find more convenient to use a compact support cut-off. We define
the function χh,N(k) in the following way; let χ ∈ C∞(R+) be a Gevrey
function of class 2, non-negative, non-increasing smooth function such that

χ(t) =
{

1 if 0 ≤ t ≤ 1
0 if t ≥ γ0 ,

(11)

for a fixed choice of γ0 : 1 < γ0 ≤ γ; then we define, for any h ≤ j ≤ N ,

fj(k) = χ
(
γ−j|k|

)
− χ

(
γ−(j−1)|k|

)
(12)

and χh,N(k) =
∑N
j=h fj(k); hence χh,N(k) acts as a smooth cutoff for mo-

menta |k| ≥ γN+1 and |k| ≤ γh−1.
Given two real parameters, the bare coupling λ and the bare mass µ, the

Thirring model with finite volume mass term and ultraviolet and infrared
cutoffs is defined by the interacting measure Ph,N(dψ) exp{V(ψ)}, with

V(ψ) = −λ
4
Z2
N

∫

ΛL

dx
(
ψ̄xγ

µψx

)2
+ Z

(1)
N µ

∫

Λ
dx ψ̄xψx + Eh,N |ΛL| (13)

and

Ph,N(dψ)
def
= dψ̂

∏

k∈D[h,N]

[
L−4Z2

N |(−|k|2C2
h,N(k)

]−1 ·

exp



−ZN

1

L2

∑

ω=±

∑

k∈D[h,N]

Dω(k)

χh,N(k)
ψ̂+

k,ωψ̂
−
k,ω′



 , (14)

where Dω(k)
def
= − ik0 + ωk1 and Eh,N is constant chosen so that, if µ = 0,∫

Ph,N(dψ) exp{V(ψ)} = 1. We will prove the following theorem.

Theorem 1.1 Assume |ζ|, |λ|, |µ| small enough, α2 < 16π/3; then there
exist two constants η− = aλ2 + O(λ3) and η+ = bλ + O(λ2), with a, b > 0,
independent of µ and analytic in λ, such that, if we put

ZN = γ−η−N , Z
(1)
N = γ−η+N (15)

then, if r = 0 and q ≥ 2 or r ≥ 1, for any choice of the non coinciding points
(x1, . . . ,xq,y1, . . . ,yr), and of σi = ±1, i = 1, . . . , q, νj = 0, 1, j = 1, . . . , r,

lim
−h,N→∞

〈
[ q∏

i=1

:eiσiαϕxi:

][
r∏

j=1

(−1)ενjµ∂µφyj

]
〉TSG = (16)

= lim
−h,N→∞

(b0Z
(1)
N )q(b1ZN)r〈

[ q∏

i=1

ψ̄xi

(
1 + σiγ5

2

)
ψxi

][
r∏

j=1

ψ̄yj
γνjψyj

]
〉TTh
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where 〈 · 〉TTh and 〈 · 〉TSG denote the truncated expectations in the Thirring
(in the limit L → ∞) and Sine-Gordon models, respectively, b0 and b1 are
bounded functions of λ and the following relations between the parameters of
the two models have to be verified:

α2

4π
= 1 + η− − η+ , ζ = b0µ (17)

If q = 1 and r = 0 both the r.h.s. and the l.h.s. of (16) are diverging for
λ ≤ 0, while the equality still holds for λ > 0. A divergence also appears, for
λ ≤ 0, in the pressure, but only for the second order term in ζ or µ; however,
if we add a suitable vacuum counterterm, also the pressures are equal.

This Theorem proves Coleman’s equivalence (4). We remark that the
relations between the Sine-Gordon parameters and the Thirring parameters
in (17) are slightly different with respect to those in [C], for λ 6= 0; this is true
in particular for the first equation, involving only quantities which have a
physical meaning in the removed cutoff limit, if we express them in terms of λ,
as Coleman does. This is not surprising, as the relations between the physical
quantities, like the critical indices η±, and the bare coupling depend on the
details of the regularization, and in our Renormalization Group analysis
the running coupling constants have a bounded but non trivial flow from the
ultraviolet to the infrared scales. Indeed, with a different regularization of the
Thirring model (that is starting from a non local current-current interaction
and performing the local limit after the limit N → ∞), as in [M1, M2], one
would get a simple relation between α and λ. This new relation again is not
equal to that of [C], but is in agreement with the regularization procedure
of [J], see footnote 7 of [C].

Another important remark concerns the limit Λ → ∞. In the case of
Sine-Gordon model, one expects that, in this limit, there is exponential de-
crease of correlations (implying the screening phenomenon in the Coulomb
gas interpretation), which is not compatible with convergence of perturba-
tive expansion (in this case the correlations would have a power decay as in
the free theory). Up to now, screening has been proved only for α2 << 4π
[Y], but it is expected to be verified in all range of validity of the model
(α2 < 8π), hence even around α2 = 4π. However, if the interaction is re-
stricted to a fixed finite volume, convergence is possible and we could indeed
prove it, for α2 < 6π; in this paper, for simplicity, we give the proof only for
α2 < 16π/3, which is sufficient to state the main result.

The situation for the massive Thirring model is slightly different, because
it has been shown [BFM] that it is well defined in the limit Λ → ∞ and that

its correlations decay at least as exp(−c
√
|µ|1+O(λ)|x|). Hence, even if the

power expansion in the mass can be convergent only if we fix the volume, the
proof of Coleman’s conjecture strongly supports the related conjecture that
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even the Sine-Gordon model is well defined around α2 = 4π in the infinite
volume limit and has exponential decrease of correlations.

The proof is organized in the following way. In §2 we analyze the massless
Sine-Gordon model with finite volume interaction and α2 < 16π/3, extending
the proof of analyticity in ζ given in [B] for the massive case in the infinite
volume limit and α2 < 4π. With respect to the technique used in [D],
where only the case α2 = 4π was analyzed, our method has the advantage
that an explicit expression of the coefficients can be easily achieved; this
is probably possible even with the other method, but the proof was given
only for α2 < 4π and, as a consequence, the correlations in the model with
α2 = 4π were defined as the limit α2 → 4π of those with α2 < 4π.

In §3 we use the methods developed in [BFM, M1, M2] to prove the ana-
lyticity in µ of the Thirring model; the explicit expressions of the coefficients
are obtained in §4, by using the explicit expression of the field correlation
functions given in the Appendix (through the solution of a Schwinger-Dyson
equation, based on a rigorous implementation of Ward Identities) and by a
rigorous implementation, in a RG context, of the point spitting procedure
used in theoretical physics.

2 The Massless Sine-Gordon Model with a

finite volume interaction

We want to study the measure defined in §1.2 in the limit of removed cut-
off, −h,N → ∞. To this purpose, we consider the Generating functional,
Kh,N(J,A, ζ), defined by the equation

Kh,N(J,A, ζ) = log
∫
Ph,N(dϕ) eζNV (ϕ) ·

· exp




∑

σ=±1

∫
dxJσx:eiασϕx: +

∑

ν=0,1

∫
dyAνy (∂νϕy)



 (18)

where Jσz and Aµy are two-dimensional, external bosonic fields. Then, given
two non negative integers q and r, as well as two sets of labels σ = (σ1, . . . , σq)
and ν = (ν1, . . . , νr), together with two sets of two by two distinct points
z = (z1, . . . , zq) and y = (y1, . . . ,yq), we consider the Schwinger functions,
defined by the equation

K
(q,r;ζ)
h,N (z,y; σ, ν)

def
=

∂q+rKh,N

∂Jσ1
z1

· · ·∂Jσq
zq ∂Aν1y1

· · ·∂Aνr
yr

(0, 0, ζ) (19)

Theorem 2.1 If |ζ| is small enough, α2 < 16π/3 and q ≥ 2, if r = 0, or
q ≥ 0, if r ≥ 1, the limit

K(q,r;ζ)(z,y; σ, ν)
def
= lim

−h,N→+∞
K

(q,r;ζ)
h,N (z,y; σ, ν) (20)
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exists and is analytic in ζ. In the case q = r = 0 (the pressure), the limit does
exist and is analytic, up to a divergence in the second order term, present
only for α2 ≥ 4π.

For clarity’s sake, we prefer to give the proof of the above theorem in the
special cases (q, r) = (k, 0) and (q, r) = (0, k) separately; the proof in the
general case is a consequence of the very same ideas that will be discussed
for the special ones, but it needs a more involved notation, so we will not
report its details.

2.1 The free measure

By the definitions given in §1.2, the regularized free measure is the two–
dimensional boson Gaussian measure with covariance

Ch,N(x) =
1

(2π)2

∫
dk

k2

[
e−(γ−Nk)2 − e−(γ−h+1k)2

]
eikx =

N∑

j=h

C0(γ
jx) (21)

The two–dimensional massless boson Gaussian measure is obtained by taking
the limits h→ −∞ and N → ∞. It is easy to prove that

C0(0) =
log γ

2π
,

∣∣∣∂q0x0
∂q1x1

C0(x)
∣∣∣ ≤ Aq0,q1,κe

−κ|x| (22)

where q0, q1 are non negative integers and κ0 is an arbitrary positive constant.
Let us now consider the function

Ch,∞(x) = lim
N→∞

Ch,N(x) = C0,∞(γhx) (23)

It is easy to show, by a standard calculation, that there exists a constant c
such that

|C0,∞(x) +
1

4π
log(c|x|2)| ≤ C|x|2 (24)

Hence, Ch,∞(x) diverges for h→ −∞ as −(2π)−1 log(γh|x|). However, if we
define

∆−1
h,∞(x) = Ch,∞(x) +

1

4π
log(cγ2h) (25)

we have, by (24):

∆−1(x)
def
= lim

h→−∞
∆−1
h,∞(x) = − 1

2π
log |x| (26)

Then it is natural to define the Coulomb potential with ultraviolet cutoff
by

∆−1
N (x)

def
= lim

h→−∞
∆−1
h,N(x) , ∆−1

h,N(x)
def
= Ch,N(x) +

1

4π
log(cγ2h) (27)
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Since Ch,N(x) = Ch,∞(x)−CN,∞(x), by using (22) and (26), we see that

∣∣∣∆−1
N (x) +

1

2π
log |x|

∣∣∣ ≤ Ce−κγ
N |x| , γN |x| ≥ 1 (28)

and, by using (24), we see that

|∆−1
N (x) − 1

4π
log(cγ2N )| ≤ Cγ2N |x|2 , γN |x| ≤ 1 (29)

We define Eh,N and Ej to be the expectation with respect to the Gaussian
measures with covariance Ch,N(x) and Cj(x) = C0(γ

jx), respectively; a su-
perscript T in the expectation will indicate a truncated expectation. Recall
that, for a generic probability measure with expectation E , and any family
of random variables (f1, . . . , fs), ET is defined as

ET [f1; . . . ; fs] =
∑

Π

(−1)|Π|−1(|Π| − 1)!
∏

X∈Π

E
[
∏

i∈X
fi

]
(30)

where
∑

Π denotes the sum over the partitions of the set (1, . . . , s). Finally
we remind that :eiσβϕx: is the Wick normal ordering of eiσβϕx always taken
with respect to the measure with covariance C0,N(x) (see definitions in §1.2).

Lemma 2.2 Let σi ∈ {−1,+1}, i = 1, . . . , n, and α ∈ R. If Q
def
=
∑
r σr,

then

lim
h→−∞

Eh,N
[
n∏

r=1

:eiασrϕxr:

]
= δQ,0c

−α2

8π
ne−α

2
∑

r<s
σrσs∆−1

N (xr−xs) (31)

Proof. We first notice that if the Wick product had been defined with
respect to the covariance Ch,N , then log Eh,N [

∏n
r=1 :eiασrϕxr:] would have been

equal to −α2∑
r<s σrσsCh,N(xr − xs). Hence, by definition (27), we get

log Eh,N
[
n∏

r=1

:eiασrϕxr:

]
=
α2

4π
hn log γ − α2

∑

r<s

σrσsCh,N(xr − xs) =

=
α2

4π
hQ2 log γ +

α2

8π
(Q2 − n) log c− α2

∑

r<s

σrσs∆
−1
h,N(xr − xs)

which immediately implies the lemma.

If E is the expectation Eh,N in the limit −h,N → ∞, by taking the limit
N → ∞ in the r.h.s. of (31), we get, in the case Q = 0,

E
[
n∏

r=1

:eiασrϕxr:

]
= δQ,0c

−α2

8π
n
∏

r<s

|xr − xs|σrσs
α2

2π (32)

We are now ready to consider the interacting measure.
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2.2 The case q = r = 0 (the pressure)

To begin with we analyze the pressure:

p(ζ)
def
= lim

−h,N→∞
logZh,N(ζ) , Zh,N(ζ)

def
=
∫
Ph,N(dϕ) eζNV (ϕ) (33)

We proceed as in [B], by studying the multiscale expansion associated with
the following decomposition of the covariance:

Ch,N(x) =
N∑

j=0

Cj(x) + Ch,−1(x) , Cj(x)
def
= C0(γ

jx) (34)

In comparison with [B], where the case h = 0 - the “Yukawa gas” - was
considered, here we are collecting in a single integration step all scales below
h = 0: as we shall see, this is effective since the volume size is fixed to be 1.
To simplify the notation, from now on E−1 will denote the expectation w.r.t.
Ch,−1(x), while Ej will have the previous meaning for j ≥ 0.

Let T (N)
n , n ≥ 2, be the family of labelled trees with the following prop-

erties:

1) there is a root r and n ordered endpoints ei, i = 1, . . . , n, which are con-
nected by the tree; the tree is ordered from the root to the endpoints;

2) each vertex v carries a frequency label hv, which is an integer taking
values between −1 and N + 1, with the condition that hu < hv, if u
precedes v in the order of the tree; moreover, the root has frequency
−1 and the endpoint ei has frequency hi + 1, if hi is the frequency of
the higher vertex preceding it.

3) The endpoint ei carries two other labels, the charge σi and the position
xi.

These trees differ from those used in [BFM] for the Thirring model, because
there are no “trivial vertices” on the lines of the tree.

Since T (N)
n ⊂ T (N+1)

n , then T (∞)
n = limN→∞ T (N)

n is obtained from T (N)
n

by letting the frequency indices free to vary between −1 and ∞.
We shall also use the following definitions:

a) Given a tree τ , we shall call non trivial (n.t. in the following) the tree
vertices different from the root and from the endpoints. If v ∈ τ is
a n.t. vertex, sv ≥ 2 will denote the number of lines branching from
v in the positive direction, v′ ∈ τ is the higher non trivial vertex
preceding v, if it does exist, or the root, otherwise. Moreover, Xv will
be the set of endpoints following v along the tree; Xv will be called
the cluster of v and nv will denote the number of its elements. If v
is an endpoint, Xv will denote the endpoint itself. Finally we define
Φ(Xv) =

∑
i : ei∈Xv

σiϕxi
.
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b) Given a n.t. vertex v and an integer j ∈ [−1, N ], we shall denote

Uj(v)
def
=

∑

r,m : er,em∈Xv

σrσmCj(xr − xm) = Ej
[
Φ2(Xv)

]
≥ 0 (35)

the (double of the) total energy on scale j associated with its cluster.
If k′ + 1 ≤ k − 1, we shall also define

Uk′,k(v)
def
=

k−1∑

j=k′+1

Uj(v) (36)

c) If X and Y are two disjoint clusters and j is an integer contained in
[−1, N ], we denote

Wj(X, Y )
def
=

∑

r,m : er∈X, em∈Y
σrσmCj(xr − xm) = Ej [Φ(X)Φ(Y )] (37)

the interaction energy on scale j between X and Y .

d) Given a n.t. vertex v, (v1, . . . , vsv), will denote the set of vertices following
it along the tree; moreover we define

Gj(v1, . . . , vsv) = ETj
[
eiαΦ(Xv1 ); . . . ; eiαΦ(Xvsv )

]
(38)

By proceeding as in [B], it is easy to see that

Zh,N(ζ) =
∫
Ph,−1(ϕ) eζV (ϕ)+

∑∞

n=2
ζnV

(N)
n (ϕ) (39)

where

V (N)
n (ϕ) =

∑

τ∈T (N)
n

1

2n
∑

σ1,...,σn

∫

Λn
dx1 · · ·dxn eiα

∑n

r=1
σrϕxrVτ (σ,x) (40)

Vτ (σ,x) =

(
n∏

i=1

γ
α2

4π
hei

)
∏

n.t. v∈τ

Ghv(v1, . . . , vsv)

sv!
e−

α2

2
Uh

v′
,hv (v) (41)

We note that Vτ (σ,x) is independent of N and h.
In order to prove that the pressure, see (33), is well defined, the main

step is to verify that, uniformly in h and N , Zh,N(ζ) = 1 + O(ζ). As we
will discuss later in this section, since the only dependence on h in (39) is
through the measure Ph,−1(dϕ), which has support on smooth functions for
any h, the wanted bound for Zh,N(ζ) is an easy consequence of a uniform Cn

bound of V (N)
n (ϕ). Since

|V (N)
n (ϕ)| ≤

∑

τ∈T (N)
n

bτ , bτ
def
=

1

2n
∑

σ1,...,σn

∫

Λn
dx1 · · ·dxn |Vτ (σ,x)| (42)
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and the number of trees is of order Cn, we shall look for a “good” bound of
bτ . The main ingredients in this task are the positivity of Uj(v), see (35),
and the Battle-Federbush formula for the truncated expectations (see [Br]):

Gj(v1, . . . , vs) =
∑

T∈T̄s

∏

〈r,m〉∈T

[
−α2Wj(Xvr , Xvm)

] ∫
dpT (t) e−

α2

2
Uj(v,t) (43)

where s = sv, T̄s is the family of connected tree graphs on the set of integers
{1, . . . , s}, 1

2
Uj(v, t) is obtained by taking a sequence of convex linear combi-

nation, with parameters t, of the energies of suitable subsets of Xv = ∪iXvi

(hence Uj(v, t) ≥ 0) and dpT (t) is a probability measure.
By using (41), (43) and (37), we get

|Vτ (σ,x)| ≤
(

n∏

i=1

γ
α2

4π
hei

)
·

·
∏

n.t. v∈τ

α2(sv−1)

sv!

∑

T∈T̄sv

∏

〈r,m〉∈T

∑

e∈Xvr
e′∈Xvm

|Chv(xe − xe′)| (44)

On the other hand, for any given ε > 0, we can use the bound

∑

T∈T̄s

∏

〈r,m〉∈T
nvrnvm ≤ s! ε−2(s−1)

s∏

r=1

e2εnvi (45)

Moreover, by (34) and (22), for hv ≥ 0,
∫

Λ
dx |Chv(x)| ≤ Cγ−2hv . (46)

The trees, as defined after (34), satisfy the following identity:
∑
w≥v(sw−1) =

nv − 1; as a consequence, if v0 is the first non trivial vertex of τ ,

∑

n.t. v∈τ
hv(sv − 1) = hr(nv0 − 1) +

∑

n.t. v∈τ
(hv − hv′)(nv − 1)

where v′ is the n.t. vertex immediately preceding v or the root, if v = v0.
This allows us to write:

bτ ≤ Cn
ε

(
n∏

i=1

γ
α2

4π
hei

)
∏

n.t. v∈τ
γ−2hv(sv−1)e2εnv ≤ (47)

≤ Cn
ε

∏

n.t. v∈τ
γ−(hv−hv′)[D(nv)−2εnv ]

where the dimension D(n) is given by

D(n) = 2(n− 1) − α2

4π
n . (48)
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Let us consider first the case α2 < 4π. This condition implies that D(n) >
0 for any n ≥ 2; hence, the bound (47) implies in the usual way that
|Vτ (σ,x)| ≤ Cn

α , for a constant Cα, which diverges as α2 → (4π)−; since
|Λ| = 1, this bound is valid also for bτ . By a little further effort, see below,
one can then prove that the pressure p(ζ) is an analytic function of ζ, for ζ
small enough.

If 4π ≤ α2 < 16π/3, D(n) > 0 only for n ≥ 3, so that the previous bound
is divergent for all trees containing at least one vertex with nv = 2. In
particular, V

(N)
2 (ϕ) diverges as N → ∞; this divergence is related with the

fact that the term of order ζ2 and σ1 = −σ2 in the perturbative expansion
of the pressure is really divergent, as one can easily check. The only way
to cure this specific divergence is to renormalize the model by subtracting a
suitable constant of order ζ2 from the potential, as we shall see below.

However, all other terms, even those associated with a tree containing at
least one vertex with nv = 2, are indeed bounded uniformly in N ; in order
to prove this claim, we need to improve the bound (47) by the two following
lemmas.

Lemma 2.3 If nv = 2 and v1, v2 are the two endpoints following v with
positions x1, x2 respectively and equal charges σ1 = σ2, then

|Ghv(v1, v2)e
−α2

2
Uhv′ ,hv (v)| ≤ Cγ−

α2

π
(hv−hv′)e−γ

hv |x1−x2| (49)

Proof. Since hv′ + 1 ≥ 0, it is easy to check that

Ghv(v1, v2)e
−α2

2
Uh

v′
,hv (v) =

[
e−α

2Chv (x1−x2) − 1
]
e−α

2C0(0) ·

· e−α
2
∑hv−1

k=h
v′

+1
[C0(0)+Ck(x1−x2)] def

= F (x1 − x2)

Hence, by using (22) with κ > 1 and since C0(x) ≤ C0(0), we get

|F (z)| ≤ Ce−κγ
hv |z|e−2α2C0(0)(hv−hv′)e

−α2
∑hv−1

k=h
v′

+1
[C0(γkz)−C0(0)] ≤

≤ Cγ−
α2

π
(hv−hv′)e2α

2RC0(0)e−(κ−κR)γhv |z|

where κR
def
= α2B

∑∞
r=R γ

−r, the constant B is such that |C0(x) − C0(0)| ≤
B|x| (it exists by (22) for (q0, q1) = (1, 0), (0, 1)) and R is an arbitrary
positive integer, that we can choose so that κ− κR ≥ 1.

Lemma 2.4 For j ≥ 0, if the cluster X is made of two endpoints with
positions x1, x2 and opposite charges, and Y is another arbitrary cluster,
then

|Wj(X, Y )| ≤ Cγj|x1 − x2|
∑

y∈Y

∫ 1

0
dt e−γ

j |x2+t(x1−x2)−y| (50)
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Moreover, if also the cluster Y is made of two endpoints with opposite charge
and positions y1, y2, then

|Wj(X, Y )| ≤ Cγ2j|x1 − x2| |y1 − y2|
∫ 1

0
dtds e−γ

j|x2+t(x1−x2)−y2−s(y1−y2)|

(51)

Proof. By using the identity

C0(x1−y)−C0(x2−y) =
∑

a=0,1

(x1−x2)a

∫ 1

0
dt (∂aC0)[x2+t(x1−x2)−y] (52)

together with (22) (with κ ≥ 1), we get the bound

|Cj(x1 − y) − Cj(x2 − y)| ≤ Cγj|x1 − x2|
∫ 1

0
dt e−γ

j |x2+t(x1−x2)−y| (53)

which immediately implies (50). The bound (51) is proved in a similar way,
by using the identity

C0(x1 − y1) − C0(x2 − y1) − C0(x1 − y2) + C0(x2 − y2) =
∑

a,b=0,1

(x1 − x2)a ·

·(y1 − y2)b

∫ 1

0
dtds (∂a∂bC0)[x2 + t(x1 − x2) − y2 − s(y1 − y2)] (54)

Let us now consider a tree with n ≥ 3 endpoints. By using Lemma 2.3,
we can improve the bound (47) by replacing D(nv) with D(nv)+α2/π in all
vertices with nv = 2 and σ1 = σ2. Since D(2) + α2/π = 2 + α2/(2π) > 0,
this is sufficient to make the corresponding sum over hv − hv′ convergent. It
follows that the sum over all trees with n ≥ 3 and no vertex with nv = 2
and Q = 0 is finite, uniformly in h, if α2 < 16π/3.

A similar argument can be used to control the vertices with nv = 2
and Q = 0. In fact, if v is a vertex with nv = 2, then v′ is certainly a
n.t. vertex, otherwise n would be equal to 2 and we are supposing n ≥ 3.
Hence, we can use Lemma 2.4 in (43) for the vertex v ′, which allows us to
improve the bound of (43) for the vertex v: since γhv′ |x1−x2| |Ghv(v1, v2)| ≤
Cγ−(hv−hv′)e−γ

hv |x1−x2|/2, if v1 and v2 are the two endpoints following v, we
can modify the bound (47) by adding 1 to the dimension D(nv) of v; this is
sufficient, since D(2) + 1 = 3 − α2/(2π) is positive for α2 < 6π. It follows
that |Vτ (σ,x)| ≤ Cn

α holds for all n ≥ 3, with C(α) → ∞ as α2 → (16π/3)−.
By a further effort, one could prove that C(α) can be substituted with a
new constant, which is indeed finite up to 6π, but we do not need here this
stronger property.

14



v′

v
v1

v2

hv′ . . . hv hv + 1

Figure 1: A subtree of τ with nv = 2 and Q = 0. While v1 and v2 are
endpoints, therefore their scale has to be hv + 1, v′ is the higher non trivial
vertex of τ preceding v, hence the only constraint is that hv − hv′ ≤ N .

Let us now come back to the terms of order two. It is easy to see that

V
(N)
2 (ϕ) =

ζ2

2

∑

σ=±1

V
(N)
2,σ (ϕ) (55)

V
(N)
2,σ (ϕ) =

∫

Λ2
dxdy cos[αϕx + σαϕy]W (N)

σ (x − y) (56)

W (N)
σ (x − y) =

1

2

N∑

j=0

γ
α2

2π
(j−1)

[
e−σα

2Cj(x−y) − 1
]
e−α

2
∑j−1

r=0
[Cr(0)+σCr(x−y)] (57)

By proceeding as in Lemma 2.3, it is easy to see that V
(N)
2,+ (ϕ) is bounded

uniformly in N for any α. This is not true for V
(N)
2,− (ϕ); in fact, if we define

cN = Eh,−1(V
(N)
2,− (ϕ)) (58)

one can easily check that cN diverges for N → ∞ and that ζ2cN/2 is equal
to the term of order ζ2 and σ1 = −σ2 in the perturbative expansion of the

pressure. However, if we define Z̃h,N(ζ) = Zh,N(ζ)e−
ζ2

2
cN , we can show that

the renormalized pressure (in presence of the cutoffs) p̃h,N(ζ) = log Z̃h,N(ζ)
has a power expansion uniformly convergent as −h,N → ∞, for α2 < 16π/3
(the result is indeed true for α2 < 6π).

It is easy to see that

p̃h,N(ζ) = ζγ
α2h
4π +

∞∑

n=2

ζn
∑

τ∈T̃ (N)
n

p(h)
τ (59)

where T̃ (N)
n is a family of trees defined as T (N)

n , with the following differences:

1) the root has scale −2;
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2) there is no tree which has only two endpoint with opposite charge.

Moreover

p(h)
τ =

1

2n
∑

σ1,...,σn

∫

Λn
dx1 · · ·dxn Ṽ (h)

τ (σ,x) (60)

Ṽ (h,N)
τ (σ,x) =

(
n∏

i=1

γ
α2

4π
(hi+1)

)
∏

n.t. v∈τ

G̃hv(v1, . . . , vsv)

sv!
e−

α2

2
Uh

v′
,hv (v) (61)

where G̃hv(v1, . . . , vsv) = Ghv(v1, . . . , vsv), if hv ≥ 0, while, if hv = −1 and
sv = s,

G̃−1(v1, . . . , vs) = ETh,−1 [F (ϕ,Xv1); . . . ;F (ϕ,Xvs)] (62)

with, given a cluster X,

F (ϕ,X) =

{
cos[αΦ(X)] − 1 , if |X| = 2 and σ1 = −σ2

cos[αΦ(X)] , otherwise
(63)

where we subtracted a −1 in the terms with |X| = 2 and σ1 = −σ2 (without
changing the value of the truncated expectation, since s ≥ 2), in order to
improve the bound in the corresponding vertex, with an argument similar to
that used before. In fact, in order to bound (62), we shall use the definition
(30) and the bound

∣∣∣∣∣Eh,−1

[
m∏

i=1

F (ϕ,Xi)

]∣∣∣∣∣ ≤

 ∏

i:|Xi|=2

|x(i)
1 − x

(i)
2 |2


 ·

·
(
α2

2

)m2

sup
y1,...,ym2∈Λ

Eh,−1

[
|∂ϕy1 |2 · · · |∂ϕym2

|2
]

(64)

where m2 ≤ m is the number of clusters with 2 endpoints and, for each cluster

of this type, x
(i)
1 and x

(i)
2 are the two endpoint positions; |∂ϕy|2 def= (∂0ϕy)2 +

(∂1ϕy)2. On the other hand, it is easy to see that there is a constant c0,
independent of h, such that |Eh,−1 [∂a1ϕx1∂a2ϕx2 ]| ≤ c0. It follows, by using

the Wick Theorem, that Eh,−1

[
|∂ϕy1 |2 · · · |∂ϕyq |2

]
≤ 2qcq0(2q − 1)!! ≤ Cqq!,

so that, if we choose C ≥ 1 (which allows us to substitute m2 with m) and
use (30), we obtain the following bound

|G̃−1(v1, . . . , vs)| ≤

 ∏

i:|Xvi |=2

|x(i)
1 − x

(i)
2 |2


 · (65)

·
s∑

k=1

(k − 1)!
1

k!

∑

m1,...,mk≥1∑k

r=1
mr=s

s!

m1! · · ·mk!

k∏

r=1

(Cmrmr!)

16



The sum in the second line is equal to Css!
∑s
k=1

1
k

(
s− 1
k − 1

)
≤ 2s−1Css!, so

that

|G̃−1(v1, . . . , vs)| ≤ Css!


 ∏

i:|Xvi |=2

|x(i)
1 − x

(i)
2 |2


 (66)

The factors |x(i)
1 − x

(i)
2 |2 can be used control the sum over the scale labels

of the vertices with |Xvi
| = 2, by the same argument used in the discus-

sion following (54). Hence, if we define the function Wn,h,N(x) so that∑
τ∈T̃ (N)

n
p(h)
τ =

∫
Λndx1 · · ·dxn Wn,h,N(x), the previous arguments imply that

there exist positive functions fτ (x), independent of h and N , and a constant
C, such that

|Wn,h,N(x)| ≤
∑

τ∈T̃ (N)
n

fτ (x)
def
= Hn,N(x) ,

∫

Λn
dx Hn,N(x) ≤ Cn (67)

Since T̃ (N)
n ⊂ T̃ (N+1)

n , Hn,N(x) is monotone in N . Hence, by the Monotone
Convergence Theorem, Hn,N(x) has a L1 limit Hn(x), as N → ∞; by (67),
|Wn,h,N(x)| ≤ Hn(x). On the other hand, by definition we have

Wn,h,N(x) =
1

n!

1

2n
∑

σ1,...,σn

ETh,N
[
:eiασ1ϕx1: ; . . . ;:eiασnϕxn:

]
(68)

and Lemma 2.2, (28) and (30) imply that Wn,h,N(x) is almost everywhere
convergent as −h,N → ∞. Then, by the Dominated Convergence Theorem,
(59) and (67), p̃(ζ) = lim−h,N→∞ p̃h,N(ζ) does exist and is an analytic func-
tion of ζ, for ζ small enough; moreover, p̃(ζ) =

∑∞
n=2 pnζ

n and, if n ≥ 3, by
(32)

pn =
c−

α2

8π
n

n!

1

2n

Q=0∑

σ1,...,σn

∫

Λn
dx1 · · ·dxn · (69)





∑

Π

(−1)|Π|−1(|Π| − 1)!
∏

Y ∈Π

∏

r,s∈Y
r<s

|xr − xs|σrσs
α2

2π





where
∑

Π denotes the sum over the partitions of the set {1, . . . , n}. If
α2 < 4π, the previous expression is well defined also for n = 2, and gives the
coefficient of order 2 of p(ζ). We stress that the integral and the sum over
the partitions can not be exchanged.

2.3 The case r = 0 (the charge correlation functions)

Let ξi = (zi, σi), i = 1, . . . , k, a family of fixed positions and charges, such
that zi 6= zj for i 6= j and µi, i = 1, . . . , k, a set of real numbers. If

Zh,N(ζ, ξ, µ) =
∫
P[h,N ](dϕ)eζNV (ϕ)+

∑k

r=1
µr :eiασrϕ(zr): (70)
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the charge correlation function of order k, k ≥ 1, defined by (19), is given
by

K
(k,ζ)
h,N (z, σ) =

∂k

∂µ1 · · ·∂µk
logZh,N(ζ, ξ, µ)

∣∣∣∣∣
µ=0

(71)

By proceeding as in Sect. 2.2, one can show that

Zh,N(ζ, ξ, µ) =
∫
P[h,−1](dϕ)eV

(N)
eff

(ζ,ϕ)+B(N)(ζ,ϕ,ξ,µ)+R(N)(ζ,ϕ,ξ,µ) (72)

where V
(N)
eff (ζ, ϕ) = ζV (ϕ)+

∑∞
n=2 ζ

nV (N)
n (ϕ), B(N)(ζ, ϕ, ξ, µ) is the sum over

the terms of order at most 1 in each of the µr, and R(N)(ζ, ϕ, ξ, µ) is the rest.
(71) implies that

K
(k,ζ)
h,N (z, σ) =

∂k

∂µ1 · · ·∂µk
log Z̃h,N(ζ, ξ, µ)

∣∣∣∣∣
µ=0

(73)

where
Z̃h,N(ζ, ξ, µ) =

∫
Ph,−1(dϕ) eV

(N)
eff

(ζ,ϕ)−ζ2cN/2+B(N)(ζ,ϕ,ξ,µ) (74)

In order to describe the functional B(N)(ζ, ϕ, ξ, µ), we need to introduce

a new definition. We shall call T (N)
n,k the family of labelled trees whose prop-

erties are very similar to those of T (N)
n , with the only difference that there

are n + m endpoints, n ≥ 0, 1 ≤ m ≤ k; n endpoints, to be called normal,
are associated as before to the interaction, while the others, to be called
special, are associated with m different variables ξi, whose set of indices we
shall denote Iτ , while ξτ will denote the set of variables itself. It is easy to
see that

B(N)(ζ, ϕ, ξ, µ) =
∞∑

n=0

ζnB(N)
n (ϕ, ξ, µ) (75)

B(N)
n (ϕ, ξ, µ) = δn,0

k∑

r=1

µr:e
iασϕzr: +

∑

τ∈T
(N)
n,k

n+m≥2

1

2n
∑

σ′1,...,σ
′
n

∫

Λn
dx1 · · ·dxn ·

·
∏

s∈Iτ
µse

iα[
∑n

r=1
σ′rϕxr+

∑
s∈Iτ

σsϕzs]Vτ (σ
′,x, ξτ) (76)

where Vτ (σ
′,x, ξτ ) is defined exactly as in (41), with (σ′, στ ,x, zτ ) in place

of (σ,x).
One can easily check that, if α2 ≥ 4π, the terms with n = k = 1 and

σ1 = −σ̄1 in the r.h.s. of (76) have a divergent bound as N → ∞. This is

related to the fact that the function K
(1,ζ)
h,N (z; σ) is indeed divergent at the

first order in ζ. However, if we regularize these terms by subtracting their
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value at ϕ = 0, the counterterms give no contribution to K
(k,ζ)
h,N (z; σ), for

k ≥ 2. Hence, we can proceed as in the bound of the pressure and we get
similar results. There are however a few differences to discuss.

Given a tree τ (with root of scale −2) contributing to K
(k,ζ)
h,N (z; σ), we

call τ ∗ the tree which is obtained from τ by erasing all the vertices which
are not needed to connect the m ≤ k special endpoints. The endpoints of τ ∗

are the m special endpoints of τ , which we denote e∗i , i = 1, . . . , m. Given
a vertex v ∈ τ ∗, we shall call zv the subset of the positions associated with
the endpoints following v in τ ∗; moreover, we shall call s∗v the number of
branches following v in τ ∗. The positions in zv are connected in our bound
by a spanning tree of propagators of scales j ≥ hv; hence, if we use the bound

e−2γh|x| ≤ e−γ
h|x| · e−c

∑h

j=0
γj |x|

, c =
∞∑

j=0

γ−j/2 (77)

and define δ = min1≤i<j≤k |zi − zj|, it is easy to see that we can extract,

for any v ∈ τ ∗, a factor e−cγ
hv δ from the propagators bound, by leaving a

decaying factor e−γ
j |x| for each propagator (of scale j) of the spanning tree.

On the other hand, the fact that the points in zv are not integrated implies
that there are s∗v− 1 less integrations to do by using propagators of scale hv,
for each vertex v ∈ τ ∗. In conclusion, with respect to the pressure bound,
we have to add, for each tree τ , a factor

∏

v∈τ∗
γ2hv(s∗v−1)e−cγ

hv δ ≤ (cδ)−2(m−1)(2m− 2)! (78)

where we used the identity
∑
v∈τ∗(s

∗
v − 1) = m − 1. Since m ≤ k, the sum

over the scale labels can be done exactly as in the pressure case, up to a
Ck(2k)! overall factor.

There is another difference to analyze, related with the fact that, in
the analogue of (62), the function F (ϕ,Xv) corresponding to a cluster with
two endpoints of opposite charge, one normal and one special, is bounded
by |x − z| supy |∂ϕy|, rather than bounded by |x − z|2 supy |∂ϕy|2. The
fact that the zero in the positions is of order one has no consequence,
since such a zero is sufficient to regularize the bound over a cluster with
two endpoints of opposite charges. The fact that |∂ϕy| appears, instead
of its square, is also irrelevant, since the only consequence is that, in the
bound analogue to (64), one has to substitute Eh,−1

[
|∂ϕy1 |2 · · · |∂ϕym2

|2
]
with

Eh,−1

[
|∂ϕy1 | · · · |∂ϕym′

2

|
]
, with m′

2 ≤ 2m2. However, by Schwartz inequality,

Eh,−1[|∂ϕy1 | · · · |∂ϕym′
2

|] ≤
√
Eh,−1[|∂ϕy1 |2 · · · |∂ϕym′

2

|2] and we can still use

the Wick Theorem to get an even better bound.
The previous arguments allow us to prove that K (k,ζ)(z; σ) = lim−h,N→+∞

K
(k,z)
h,N (z, σ) does exist and is an analytic function of ζ around ζ = 0, with a
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radius of convergence independent of δ (the minimum distance between two
points in z). On the other hand, it is easy to check the well known identity

K
(k,ζ)
h,N (z; σ) =

∞∑

n=0

ζn

n!

1

2n
∑

σ′

∫
dx1 · · ·dxn

ETh,N
[
:eiασ1ϕz1:; . . . ;:eiασkϕzk: ;:eiασ

′
1ϕx1:; . . . ;:eiασ

′
nϕxn:

]
(79)

An argument similar to that used at the end of §2.2 allows us to prove that
the power expansion of K(k,ζ)(z; σ) is obtained by the previous equation, by
substituting in the r.h.s ETh,N with ET . Hence, by using (32), we get that

K(k,ζ)(z; σ) =
∑∞
n=0 ζ

ngk,n(z; σ), with

gk,n(z; σ) =
c−

α2

8π
(n+k)

n!

1

2n
∑

σ′
1

,...,σ′
n∑n

i=1
σ′

i
+
∑k

r=1
σr=0

∫

Λn
dx1 · · ·dxn · (80)





∑

Π

(−1)|Π|−1(|Π| − 1)!
∏

Y ∈Π

∏

r,s∈Y
r<s

|yr − ys|σ̄rσ̄s
α2

2π





where y = (x, z), σ̄ = (σ′, σ) and
∑

Π denotes the sum over the partitions of
the set (1, . . . , n+ k).

2.4 The case r > 0 (the ∂ϕ correlation functions)

Let y = (y1, . . . ,yk) a set of k ≥ 1 distinct fixed positions, ν = (ν1, . . . , νk)
a set of derivative indices and µ = (µ1, . . . , µk) a set of real numbers. If

Zh,N(ζ,y, ν, µ) =
∫
P[h,N ](dϕ)eζNV (ϕ)+

∑k

r=1
µr∂νrϕ(yr) (81)

the ∂ϕ correlation function of order k, k ≥ 1, is given by

K
(k,ζ)
h,N (y; ν) =

∂k

∂µ1 · · ·∂µk
logZh,N(ζ,y, ν, µ)

∣∣∣∣∣
µ=0

(82)

We can proceed as in §2.3 and we can represent K
(k,ζ)
h,N (y; ν) as in (73),

that is we can substitute in (82) Zh,N(ζ,y, ν, µ) with

Z̃h,N(ζ,y, ν, µ) =
∫
P[h,−1](dϕ)eV

(N)
eff

(ζ,ϕ)−2ζ2cN+B(N)(ζ,ϕ,y,ν,µ) (83)

It is not hard to see that B(N)(ζ, ϕ,y, ν, µ) =
∑∞
n=0 ζ

n B(N)
n (ϕ,y, ν, µ), with

B(N)
n (ϕ,y, ν, µ) = δn,0

k∑

r=1

µr∂
νrϕ(yr) +

∑

τ∈T
(N)
n,k

n+m≥2

1

2n
∑

σ1,...,σn

∫

Λn
dx1 · · ·dxn ·

·eiα
∑n

r=1
σrϕ(xr)Ṽτ (σ, ν,x,yτ )

∏

r∈Iτ
µr (84)
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where T (N)
n,k is defined exactly as in (76), except for the fact that the m

special endpoints (1 ≤ m ≤ k) are associated with the ∂ϕ terms; moreover
Ṽτ (σ,x,yτ ) is defined in a way similar to Vτ (σ,x, ξτ ), but, before giving its
expression, we need a few new definitions.

If v is a non trivial vertex, we shall call Iv ⊂ Iτ the set of special endpoints
immediately following v (that is the set of ∂ϕ endpoints which are contracted
in v), s̄v the number of vertices immediately following v, which are not special
endpoints, and s∗v = |Iv| (hence sv = s̄v + s∗v). Moreover, we shall use Xv

to denote the set of normal endpoints (instead of all endpoints) following v.
Then we can write

Ṽτ (σ, ν,x,yτ ) =

(
n∏

i=1

γ
α2

4π
hei

)
∏

n.t. v∈τ

G̃hv(v1, . . . , vsv)

sv!
e−

α2

2
Uh

v′
,hv (v) (85)

with G̃j(v1, . . . , vs) = ETj [Fv1(ϕ); . . . ;Fvs(ϕ)], where Fv(ϕ) = ∂νϕy, if the
vertex v is a special endpoint with position y and label ν, otherwise Fv(ϕ) =
exp(iαΦ(Xv)). We can always rearrange the order of the arguments so that
the first possibility happens for i = 1, . . . , m. If m = 0, we can use the
identity (43), otherwise we can write

G̃j(v1, . . . , vs) =
∂m

∂λ1 · · ·∂λm

Hj(λ1, . . . , λm)

∣∣∣∣∣
λ=0

(86)

where

Hj(λ) = ETj (eλ1∂ν1ϕy1 ; . . . ; eλm∂νmϕym ; eiαΦ(Xvm+1 ); . . . ; eiαΦ(Xvs )) (87)

is a quantity which satisfies an identity similar to (43), that is

Hj(λ) =
∑

T∈T̄s

∏

〈a,b〉∈T
ca,b

∫
dpT (t) e−

1
2
Ũj(v,t,λ) (88)

where

ca,b
def
=





c̃a,b
def
= − α2Wj(Xva , Xvb

) if a, b > m

λac̃a,b
def
= iαλa

∑
r : er∈Xvb

σr (∂νaCj) (ya − xr) if a ≤ m < b

λaλbc̃a,b
def
= − λaλb (∂

νa∂νbCj) (ya − yb) if a, b ≤ m .

(89)

It follows that

G̃j(v1, . . . , vs) =
∑

T∈T̄ ′
s

∏

〈a,b〉∈T
c̃a,b

∫
dpT (t)e−

1
2
Ũj(v,t,0) (90)

where T̄ ′
s is the set of T ∈ T̄s, such that all special endpoints are leaves of T .

Note that Ũj(v, t, 0) is a positive quantity, since it is a convex combination
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of “interaction energies” which do not involve the special vertices; hence we
can safely bound the r.h.s. of (90), as in the previous sections. Let us define

b̃τ (y) =
1

2n
∑

ν,σ

∫

Λn
dx |Ṽτ (σ, ν,x,yτ )| (91)

The bound of b̃τ (y) differs from the r.h.s. of (47) for the following reasons:

1) there is a γki factor more, coming from the field derivative, for the i-
th special endpoint, if ki is the scale label of the higher n.t. vertex
preceding it (the vertex where it is contracted);

2) there is a factor γhv(s∗v−1) more, which takes into account the fact that
the special endpoints positions are not integrate, for each n.t. vertex
v such that s∗v > 0;

3) if δ = min1≤i<j≤k |yi − yj|, there is a factor exp(−cγhvδ) for each n.t.
vertex v such that s∗v > 0, coming from the same argument used in the
case of the charge correlation functions.

Hence, if mτ ≥ 1 is the number of special endpoints in τ , we get

b̃τ (y) ≤ Cn+mτ
ε

(
n∏

i=1

γ
α2

4π
hei

)(
∏

n.t. v∈τ
γ−2hv(sv−1)e2εnv

mτ∏

i=1

γki

)
·

·
∏

n.t.v:s∗v>0

γ2hv(s∗v−1)e−cγ
hv δ (92)

The last product can be bounded as in (78), so that, by “distributing along
the tree” the other factors, we get

b̃τ (y) ≤ Cn+k
ε (δ)−2(mτ−1)(2mτ − 2)!

∏

n.t. v∈τ
γ−(hv−hv′)(D̃(nv ,mv)−2εnv) (93)

where nv and mv denote the number of normal and special endpoints follow-
ing v, respectively, and

D̃(n,m) = 2(n− 1) − α2

4π
n+m (94)

Let us consider first the case α2 < 4π. Since nv + mv ≥ 2, D̃(nv, mv)
is always positive, except if nv = 0 and mv = 2. However, no tree may
have a non trivial vertex of this type, except the trees with only two special
endpoints and no normal endpoint, that is the trees belonging to T (N)

0,2 , and
it is very easy to see that

∑

τ∈T (N)
0,2

Ṽτ (ν1, ν2,y1,y2) = −
N∑

j=0

γ2j (∂ν1∂ν2C0)
(
γj(y1 − y2)

)
(95)
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By (22), this quantity has a finite limit as N → ∞, if y1 6= y2, as we are
supposing. Hence there is no ultraviolet divergence in the expansion (84) of
B(N)
n (ϕ,y, ν, µ) and we have only to check that there is no infrared problem

related with the integration over the ϕ field in (83). This follows as in §2.2,
by using the identity (30); it is sufficient to observe that

∣∣∣∣∣∣
Eh,−1



(
m∏

i=1

(∂νiϕyi
)

)
s∏

j=1

eiαΦ(Xvj )



∣∣∣∣∣∣
≤
√√√√Eh,−1

[
m∏

i=1

|∂ϕyi
|2
]

(96)

and then apply the arguments used in §2.2 to bound the sum over the par-
titions.

Let us now suppose that 4π ≤ α2 < 16π/3. In this case D̃(nv, mv) can be
non positive only if either mv = 0 and nv = 2 or mv = nv = 1. The vertices
satisfying the first condition can be regularized as before, for the others we

can use the factor e−
α2

2
Uhv′ ,hv (v) = γ−

α2

4π
(hv−hv′−1) to make their dimension

positive; in fact D̃(1, 1) + α2/(4π) = 1. The integration over the ϕ field in
(83) can now be done by an obvious modification of the argument used for
the charge correlation functions.

It is now easy to prove, as in the previous sections, that K
(k,ζ)
h,N (y; ν) has

a finite limit, as −h,N → ∞, if δ > 0, and that this limit is an analytic
function of ζ around ζ = 0, with a radius of convergence independent of δ.
On the other hand,

K
(k,ζ)
h,N (y; ν) =

∞∑

n=0

ζn

n!

1

2n
∑

σ

∫
dx1 · · ·dxn

ETh,N
[
∂ν1ϕy1; . . . ; ∂

νkϕyk
;:eiασ1ϕx1:; . . . ;:eiασnϕxn:

]
(97)

An argument similar to that used at the end of §2.2 allows us to prove that
the power expansion of K(k,ζ)(y; ν) is obtained by the previous equation, by
substituting in the r.h.s ETh,N with ET . Moreover, it is not hard to check
that, if n > 0, Q ≡ ∑n

i=1 σi and hk,n(x,y; σ, ν) is the limiting value of the
truncated expectation in (97), we have

hk,n(x,y; σ, ν) = δQ,0 c
−α2

8π
n

(
k∏

r=1

W (yr,x; νr, σ)

)
· (98)

·





∑

Π

(−1)|Π|−1(|Π| − 1)!
∏

Y ∈Π

∏

r,s∈Y
r<s

|xr − xs|σrσs
α2

2π





where
∑

Π denotes the sum over the partitions of the set (1, . . . , n) and

W (y,x; σ, ν) = iα
n∑

i=1

σi
(
∂ν∆−1

)
(y − xi) =

iα

2π

n∑

i=1

σi
(xi − y)ν

|y − xi|2
(99)
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while, if n = 0,

hk,0(y, ν) = δk,2ET
[
(∂ν1ϕy1) ; (∂ν2ϕy2)

]
= δk,2h

ν1,ν2(y1 − y2) (100)

with

hν1,ν2(y) =
1

2π|y|2
[
δν1,ν2 − 2

yν1yν2

|y|2
]

(101)

Hence, we get that K(k,ζ)(y; ν) =
∑∞
n=0 ζ

nh̄k,n(y; ν), with

h̄k,n(y; ν) =
1

n!

1

2n
∑

σ1,...,σn∑n

i=1
σi=0

∫

Λn
dx1 · · ·dxn hk,n(x,y; σ, ν) (102)

Note that h̄1,n(y, ν) = 0 for any n, since W (y,x, σ, ν) is odd in σ and the
sum in (102) is restricted to the σ such that Q = 0; hence K (1,ζ)(y, ν) = 0.

3 The Thirring model with a finite volume

mass term

The Generating Functional, Wh,N(J,A, µ), of the Thirring model with cutoff
and with a mass term in finite volume is defined by the equation

Wh,N(J,A, µ)
def
= log

∫
Ph,N(dψ) exp

{
− λZ2

NVL(ψ) + µZ
(1)
N

∫

Λ
dx ψ̄xψx +

+Z
(1)
N

∑

σ=±1

∫
dx Jσx

(
ψ̄xΓσψx

)
+ ZN

∑

ν=0,1

∫
dx Aνx

(
ψ̄xγ

νψx

) }
(103)

where the free measure Ph,N(dψ) is defined by (14), ZN and Z
(1)
N are defined

in (15), Jσz and Aµy are two-dimensional, external bosonic fields and

Z2
NVL(ψ)

def
=

1

4

∫

ΛL

dx
(
ZN ψ̄xγ

µψx

)2
+ Eh,N |ΛL| , Γσ

def
=
I + σγ5

2
(104)

Eh,N being the vacuum counterterm introduced in (13); it is chosen so that
Wh,N(0, 0, 0) = 0.

Given the set of non coinciding points x = (x1, . . . ,xq) and the set σ =
(σ1, . . . , σq), σi = ±1, we want to study the Schwinger functions

G
(q,r;µ)
h,N (x,y; σ, ν)

def
= lim

a−1,L→∞

∂qWh,N

∂Jσ1
x1

· · ·∂Jσq
xq ∂Aν1y1

· · ·∂Aνr
yr

(0, 0, µ) . (105)

Theorem 3.1 If µ and λ are small enough and q ≥ 2, if r = 0, or q ≥ 0, if
r ≥ 1, the limit

G(q,r;ζ)(z,w; σ, ν)
def
= lim

−h,N→+∞
G

(q,r;ζ)
h,N (z,w; σ, ν) (106)
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exists and is analytic in µ. In the case q = r = 0 (the pressure), the limit does
exist and is analytic, up to a divergence in the second order term, present
only for λ ≤ 0.

As in §2, we shall give the proof of the above theorem only in the special
cases (q, r) = (k, 0) and (q, r) = (0, k) separately.

In order to prove Theorem 3.1, we note first that definition (105) and the
identity ψ̄xψx =

∑
σ ψ̄xΓσψx imply that

G
(q,r;µ)
h,N (z,y; σ, ν) =

∑

p=2n−q
n≥0

∑

σ′

µp

p!

∫
dx χΛ(x)S

(2n,r)
h,N (zx,y; σσ′, ν) (107)

where zx = (z1, . . . , zq,x1, . . . ,xp), σσ
′ = (σ1, . . . , σq, σ

′
1, . . . , σ

′
p), we defined

χΛ(x)
def
= χΛ(x1) · · ·χΛ(xp) , S

(m,r)
h,N (x,y; σ, ν)

def
= G

(m,r;0)
h,N (x,y; σ, ν) .

(108)

and we used the fact that G
(m,r;0)
h,N (x,y; σ, ν) can be different from 0 only if∑m

i=1 σi = 0, implying in particular that m is even.

In the following we shall give a bound for the functions S
(m,r)
h,N (x,y; σ, ν),

uniform in the cutoffs and implying (by an argument similar to that used
for the Sine-Gordon model, that we shall skip here) that the limit exists, is
integrable and is exchangeable with the integral in (107). It follows that

G(q,r;µ)(z,y; σ, ν) =
∑

p=2n−q
n≥0

∑

σ′

µp

p!

∫
dx χΛ(x)S(2n,r)(zx,y; σσ′, ν) (109)

We remark that χΛ(x) is not a regular test function since it is not vanishing
for coinciding points, and hence we could encounter divergences caused by
the ultraviolet problem. Indeed, as we shall see, the integration of G(2,0;0) will
be finite only for λ > 0 (and small in absolute value), so that the pressure
G(0,0;µ) and the, if x ∈ Λ, “density” G(1,0;µ)(x, σ) are really divergent for
λ ≤ 0, since this is true for the terms with 2n = 2 and r = 0 in the r.h.s. of
(109).

As announced in the introduction, we first consider the case q, r = 0 then
we discuss the case q > 0 and r = 0; and finally the case q = 0 and r > 0.

3.1 Case q = r = 0 (the pressure)

Our definitions imply that S(0,0) = 0. If m ≥ 2 and even (otherwise it is 0
by symmetry), the m-points Schwinger function S(m,0)(x, σ) is obtained as
the m-th order functional derivative of the generating function Wh,N(J, 0, 0)
with respect to Jσ1

x1
, . . . , Jσm

xm
at J = 0. We can proceed as in [BFM] and

we get an expansion similar to eq. (2.28) of that paper, which we refer to
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for the notation. The only difference is that the special endpoints of type
J are associated with the terms Z

(1)
j

∑
σ ψ̄xΓ

σψx = Z
(1)
j

∑
σ ψ

+
x,−σψ

−
x,σ instead

of Zj
∑
σ ψ

+
x,σψ

−
x,σ, but this does not change the structure of the expansion;

we only have to add, for each special endpoint of scale hi, a factor Z
(1)
hi
/Zhi

,

which can be controlled by studying the flow of Z
(1)
j . It turns out that there

are two constants η+(λ) = bλ + O(λ2), b > 0, and c+(λ) = 1 + O(λ), such

that, in the limit N → ∞, Z
(1)
j = c+(λ)γ−η+j; this result is obtained by an

argument similar to that used in [BFM] to prove that there are two constants
η−(λ) = aλ2 + O(λ3), a > 0, and c−(λ) = 1 + O(λ), such that, in the limit
N → ∞, Zj = c−(λ)γ−η−j (in [BFM] c−(λ) = 1, since the definition of ZN
differs by a constant chosen so to get this result). In analogy to eq. (2.40)
of [BFM], we can write

S(m,0)(x, σ) = m! lim
|h|,N→∞

∞∑

n=0

N−1∑

j0=−∞

∑

τ∈T 0,m
j0,n

∑

P∈P
S0,m,τ,σ(x) , (110)

Given a tree τ contributing to the r.h.s. of (110), we call τ ∗ the tree which is
obtained from τ by erasing all the vertices which are not needed to connect
the m special endpoints (all of type J). The endpoints of τ ∗ are the m special
endpoints of τ , which we denote v∗i , i = 1, . . . , m; with each of them a space-
time point xi and a label σi are associated. Given a vertex v ∈ τ ∗, we shall
call uv the set of the space-time points associated with the normal endpoints
of τ that follow v in τ (in [BFM] they were called internal points); xv will
denote the subset of x made of all points associated with the endpoints of
τ ∗ following v.

Furthermore, we shall call s∗v the number of branches of τ ∗ following
v ∈ τ ∗, s∗,1v the number of branches containing only one endpoint and s∗,2v =
s∗v − s∗,1v . For each n.t. vertex or endpoint v ∈ τ ∗, shortening the notation
of s∗v into s, we choose one point in xv, let it be called wv, with the only
constraint that, if v1, . . . , vs are the n.t. vertices or endpoints following v,
then wv is one among wv ≡ {wv1 , . . . ,wvs}.

The bound of S0,m,τ,σ(x) will be done as in [BFM], by comparing it with
the bound of its integral over x, given by eq. (2.36) of that paper. However,
we shall slightly modify the procedure, to get an estimate more convenient
for our actual needs.

Given the space-time points v = (v1, . . . ,vp) connected by the tree T ,
we shall define, if vl,i and vl,f denote the endpoints of the line l ∈ T ,

DT (v)
def
= ‖T‖ def=

∑

l∈T

√
|vl,i − vl,f | (111)

Now we want to show that, from the bounds of the propagators associated
with the lines l of the spanning tree Tτ =

⋃
v Tv, we can extract a factor
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e−c
′
√
γhvDCv (wv) for each n.t. vertex v ∈ τ ∗, where Cv is a chain of segments

that only depends on τ and Tτ , and connects the space-time points wv.
Indeed, given a n.t. v ∈ τ ∗, there is a subtree T ∗

v of Tτ connecting the
points wv together with a subset of xv ∪ uv. Since T ∗

v is made of lines of
scale j ≥ hv, the decaying factors in the bounds of the propagator in T ∗

v can
be written as

e−c
√
γh|x| = e−

c
2

√
γh|x| · e−2c′

∑h

j=−∞

√
γj |x| , (112)

for c′ = c/
[
4
∑∞
j=0 γ

−j/2
]
. Hence, collecting the latter factor for each of the

lines T ∗
v we obtain e−2c′

√
γhv ‖T ∗

v ‖.
We finally would like to replace, in the previous bound, ‖T ∗

v ‖ with ‖Cv‖,
up to a constant, for a Cv which does not depend on the position of the
internal points of T ∗

v . This is possible as a consequence of the following
lemma.

Lemma 3.2 Let T be a tree graph connecting the points {wj}lj=1 together
with other “internal points”, {uj}qj=1. Then there exists a chain C connecting
all and only the points {wj}lj=1 such that 2‖T‖ ≥ ‖C‖ and C only depends
on T .

Proof. Suppose that the points {uj}qj=1 are fixed in an arbitrary way and let
us consider the oriented closed path C̄ obtained by “circumnavigating” T , for
example in the clockwise direction; this path contains twice each branch of
T , with both possible orientations. We shall call C the oriented closed path
obtained by continuous deformation of C̄, as the points {uj}qj=1 vary in R

2.
The path C allows us to reorder the points w1, . . . ,wl into wt(1), . . . ,wt(l),
by putting t(1) = 1 and by choosing t(i + 1), 1 ≤ i ≤ l − 1, so that wt(i+1)

is the point following wt(i) on C. The chain C is obtained by joining with
a segment wt(i) and wt(i+1), for i = 1, . . . , l − 1; the condition 2‖T‖ ≥ ‖C‖
then easily follows from the triangle inequality for the function x→ |x|1/2.

As a consequence of the above lemma and (112), we can extract from

the propagator bounds, for each choice of Tv, a factor
∏
v∈τ∗ e

−c′
√
γhvDCv (wv),

which does not depend on the internal points positions, by leaving a factor

e−(c/2)
√
γj |x−y| for each propagator of Tτ , to be used for bounding the integral

over the internal points.
The final bound of S0,m,τ,σ(x) will be obtained by “undoing”, in the r.h.s

of eq. (2.36) of [BFM], the sum over Tv for any v ∈ τ ∗ (note that Cv depends
on T ∗

v and hence on Tv), then adding the factors coming from the previous
considerations, together with a factor taking into account that there are
1+

∑
v∈τ∗(s

∗
v−1) = m integrations less to do. By suitably choosing them, the
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lacking integrations produce in the bound an extra factor
∏
v∈τ∗ γ

2hv(s∗v−1)L−2,
so that we get

|S0,m,τ,σ(x)| ≤ Cm(Cλ̄j0)
nγ−j0(−2+m)


 ∏

v not e.p.

(
Zhv

Zhv−1

)|Pv|/2
γ−dv


 ·




m∏

i=1

Z
(1)
hi

Zhi




 ∏

n.t.v∈τ∗

1

sv!

∑

Tv

γ2hv(s∗v−1)e−c
′
√
γhvDCv (wv)


 (113)

where hi is the scale of the i-th endpoint of type J and

dv
def
= − 2 +mv + |Pv|/2 + zv , (114)

with mv = |Xv| and zv equal to the parameter z̃(Pv) defined by eq. (2.38)
of [BFM].

We have now to bound the integral of S0,m,τ,σ(x)χΛ(x), let us call it
Im,τ,σ. In order to exploit the improvement related with the restriction of
the integration variables to a fixed volume of size 1, we shall proceed in a
way different with respect to that followed in [BFM], that is we bound the
integral before the sums over the trees Tv. We use the bound:

∫
dx χΛ(x)e−c

′
√
γh|x−y| ≤ C

{
γ−2h if h > 0
1 if h ≤ 0

(115)

The sum over the tree graphs is done in the usual way and we get

Im,τ,σ ≤ Cm(Cλ̄j0)
nγ−j0(−2+m)

(
∏

n.t.v∈τ∗
γ2hv(s∗v−1)

)


m∏

i=1

Z
(1)
hi

Zhi


 ·

·

 ∏

v not e.p.

(
Zhv

Zhv−1

)|Pv |/2
γ−dv






hv>0∏

n.t.v∈τ∗
γ−2hv(s∗v−1)


 (116)

Let us now call Ei the family of trivial vertices belonging to the branch
of τ ∗ which connects v∗i with the higher non trivial vertex of τ ∗ preceding

it and note that, by the remark preceding (110), Z
(1)
hi
/Zhi

≤ Cγ−hiη̄, with
η̄ = c0λ + O(λ̄2

j0
), c0 > 0. Hence, the definition of s∗,1v implies that, if

E = ∪iEi,
m∏

i=1

Z
(1)
hi

Zhi

≤ Cm

(
∏

v∈E
γ−η̄

)
∏

n.t.v∈τ∗
γ−hv η̄s

∗,1
v . (117)

Let v∗0 be the first vertex with s∗v ≥ 2 following v0 (recall that v0 is the
vertex immediately following the root of τ , of scale j0 +1); since m ≥ 2, this
vertex is certainly present. Then, since mv = m for v0 ≤ v ≤ v∗0, we have
the identity

γ−j0(−2+m)
∏

v0≤v<v∗0
γ−dv = γ

−hv∗
0
(−2+mv∗

0
) ∏

v0≤v<v∗0
γ−d̃v , (118)
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where we used the definition d̃v = dv − (−2 +mv) = |Pv |
2

+ zv; note that

d̃v ≥ 1/2, for any v ∈ τ ∗, v > v0.
By inserting (117) and (118) in the r.h.s. of (116), we get

Im,τ,σ ≤ Cm(Cλ̄j0)
n




∏

v/∈τ∗

v not e.p.

γ−dv



[
∏

v∈E
γ−dv−η̄

] 
 ∏

v0≤v<v∗0
γ−d̃v


 ·

·

 ∏

v not e.p.

(
Zhv

Zhv−1

)|Pv|/2





hv>0∏

n.t.v∈τ∗
γ−2hv(s∗v−1)


 Fτ , (119)

where

Fτ = γ
−hv∗

0
(−2+mv∗

0
)

[
∏

n.t.v∈τ∗
γhv[2(s∗v−1)−η̄s∗,1

v ]
]


v≥v∗0∏

v∈(τ∗\E)

γ−dv


 . (120)

Given a n.t. vertex v ∈ τ ∗, let s = s∗v, s1 = s∗,1v , s2 = s − s1 and v1, . . . , vs2
the n.t. vertices immediately following v in τ ∗. Since mv = s1 +

∑s2
i=1mvi

,
we can write

−(−2 +mv) + [2(s− 1) − η̄s1] = s1(1 − η̄) −
s2∑

i=1

(−2 +mvi
) . (121)

This identity, applied to the vertex v∗0, implies that, if v1, . . . , vs2, s2 =
s∗v∗0 − s∗,1v∗0 , are the n.t. vertices immediately following v∗0 in τ ∗, then

γ
−hv∗

0
(−2+mv∗

0
)
γ
hv∗

0

[
2(s∗

v∗
0
−1)−η̄s∗,1

v∗
0

]

=

= γ
α′

v∗
0
hv∗

0



s2∏

i=1

γ−hvi (−2+mvi ) ·
∏

v∈Ci

γ−2+mv


 , (122)

where Ci is the path connecting v∗0 with vi in τ ∗ (not including vi) and we
used the definition

α′
v = s∗,1v (1 − η̄) . (123)

The presence of the factor γ−hvi(−2+mvi ) for each vertex vi in the r.h.s.
of (122) implies that an identity similar to (122) can be used for each n.t.
vertex v ∈ τ ∗. It is then easy to show that

Fτ =

[
∏

n.t.v∈τ∗
γα

′
vhv

] 


v≥v∗0∏

v∈(τ∗\E)

γ−d̃v


 . (124)

By inserting this equation in (119), we get

Im,τ,σ ≤ Cm(Cλ̄j0)
n

(
∏

n.t.v∈τ∗
γα

′
vhv

)


hv>0∏

n.t.v∈τ∗
γ−2hv(s∗v−1)


 ·

·

 ∏

v not e.p.

(
Zhv

Zhv−1

)|Pv|/2
γ−d

′
v


 , (125)
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where

d′v =





d̃v if v ∈ τ ∗, v0 ≤ v /∈ E
dv + η̄ if v ∈ E
dv otherwise

(126)

and it is always strictly greater than zero, if η̄ (hence λ) is small enough.
This allows us to control the sum over the τ scale labels in the usual way,
by keeping fixed hv∗0 . However, before doing that, it is necessary to extract
from the r.h.s. of (125) some factors needed to control the sum over hv∗0 too.
First of all, in order to control the sum over the negative values of hv∗0 , we try
to replace the non-negative quantity α′

v with another non-negative one, αv,
s.t. αv∗0 is strictly positive, paying a price in the dimension of the vertices;
this can be easily achieved by fixing ε > 0 and using the inequality

1 ≤ γ
εhv∗

0

(
∏

n.t.v∈τ∗
γε(s

∗,2
v −1)hv

)
∏

v∈τ∗,v /∈E
γε (127)

which allows us to replace (125) with

Im,τ,σ ≤ Cm(Cλ̄j0)
nγ

εhv∗
0

(
∏

n.t.v∈τ∗
γαvhv

)


hv>0∏

n.t.v∈τ∗
γ−2hv(s∗v−1)


 ·

·

 ∏

v not e.p.

(
Zhv

Zhv−1

)|Pv|/2
γ−d̄v


 , (128)

with αv = α′
v + ε(s∗,2v − 1) and d̄v = d′v − ε, if v∗0 ≤ v 6∈ E; and d̄v = d′v

otherwise.
Let us now define χv = 1 if hv > 0 and χv = 0 for hv ≤ 0. If we put

w = v∗0, we can write

γ
εhv∗

0

[
∏

n.t.v∈τ∗
γαvhv

]


hv>0∏

n.t.v∈τ∗
γ−2hv(s∗v−1)


 = (129)

= γ[αw+ε−2χw(s∗w−1)]hw
∏

n.t.v∈τ∗

v 6=w

γ[αv−2χv(s∗v−1)]hv

and, if |λ| << |ε| < 1/2, we use the two straightforward inequalities

αv = ε(s∗v − 1) + s∗,1v (1 − η̄ − ε) ≥ ε

αv − 2(s∗v − 1) = (2 − ε) − (1 + η̄)s∗v − s∗,2v (1 − ε− η̄)

≤ (2 − ε) − (1 + η̄)s∗v < 0 (130)

Hence, the two terms in square brackets in the r.h.s. of (129) can be bounded
by cm, irrespective of the sign of η̄, that is the sign of λ.
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Thanks to these arguments, we can replace (128) with

Im,τ,σ ≤ Cm(Cλ̄j0)
nγ[αw+ε−2χw(s∗w−1)]hw


 ∏

v not e.p.

(
Zhv

Zhv−1

)|Pv |/2
γ−d̄v


 (131)

Now the sum over the tree scale labels, as well as the sum over the trees with
a fixed value of hw, can be performed in the usual way, using the fact that
d̄v is always strictly positive and bounded below by a quantity proportional
to d̄v itself; this gives a Cm bound. We finally have to bound the sum over
hw; note that

+∞∑

hw=−∞
γ[αw+ε−2χw(s∗w−1)]hw =

∑

h>0

γ[αw+ε−2(s∗w−1)]h +
∑

h≤0

γ[αw+ε]h (132)

The second sum is always finite since αw+ε ≥ εs∗w ≥ 2ε. Regarding the first
sum, we note that

αw + ε− 2(s∗w − 1) = 2 − (1 + η̄)s∗w − s∗,2w (1 − ε− η̄)

≤ 2 − (1 + η̄)s∗w (133)

Hence, the sum is always bounded, except in the case η̄ ≤ 0 (that is λ ≤ 0)
with s∗w = s∗,1w = 2. It follows, by (110), that

∫
dx χΛ(z)|S(m)(z, σ)| ≤ m!Cm , m ≥ 3 (134)

so that, by (109), the pressure can be defined only by subtracting from G(0,µ)

the term with m = 2. The renormalized pressure is analytic in µ, for µ small
enough.

3.2 Case q ≥ 2, r = 0

We have for S(m)(zx; σ, σ′) an expansion analogous to (110), but now the
special endpoints are associated with two different types of space-time points,
those which have to be integrated as before (x) and those which are fixed
(z). We denote by xv and zv the points following v of the two types and we
slightly modify the definition of the point wv to be one point in zv, if zv 6= ∅,
or one point in xv, otherwise; we still require that wv ∈ wv.

We want to mimic the strategy used for the Sine-Gordon correlations
functions. Therefore we introduce a new tree τ o, that is obtained from τ ∗

by erasing all the vertices which are not needed to connect the q special
endpoints carrying a space-time point of type z. (We remark that the roles
of the trees τ and τ ∗ of the bosonic theory here are played by τ ∗ and τ o

respectively). Correspondingly, we define sov the number of the branches
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of τ o following v ∈ τ o; mote that the space-time points associated with the
endpoints of τ o following v ∈ τ o are those in zv, hence

∑
w≥v(s

o
w−1) = |zv|−1.

A bound similar to (113) holds. In this case, anyway, we prefer to have a
separate decaying factor in the distance of the points z: for each nontrivial
vertex v of τ o

DCv(wv) ≥
1

2
D
C̃v

(zv ∩ wv) +
1

2
DCv(wv) . (135)

where C̃v denotes the ordered path connecting the points in (zv ∩wv), made
of lines which connect a point with that following it in the ordered path Cv,
see Lemma 3.2.

Therefore, in place of (113), we have:

|S0,m,τ,σ(z,x)| ≤ Cm(Cλ̄j0)
nγ−j0(−2+m)


 ∏

v not e.p.

(
Zhv

Zhv−1

)|Pv|/2
γ−dv


 ·

·



m∏

i=1

Z
(1)
hi

Zhi


 ∏

n.t.v∈τ∗

1

sv!

∑

Tv

γ2hv(s∗v−1) exp

{
−c

′

2
γ

hv
2 DCv(wv)

}
·

·
∏

n.t.v∈τo

exp

{
−c

′

2
γ

hv
2 D

C̃v
(zv ∩ wv)

}
(136)

We can repeat, with no essential modification, the steps that from (113) have
led to (116). Hence, if we call Im,τ,σ(z) the integral over x of S0,m,τ,σ(zx)χΛ(x),
we get the bound:

Im,τ,σ(z) ≤ Cm(Cλ̄j0)
nγ−j0(−2+m)

(
∏

n.t.v∈τ∗
γ2hv(s∗v−1)

)
·

·



m∏

i=1

Z
(1)
hi

Zhi




 ∏

v not e.p.

(
Zhv

Zhv−1

)|Pv|/2
γ−dv






hv>0∏

n.t.v∈τ∗
γ−2hv(s∗v−1)


 ·

·



hv>0∏

n.t.v∈τo

γ2hv(so
v−1)


 ∏

n.t.v∈τo

exp

{
−c

′

2
γ

hv
2 D

C̃v
(zv ∩ wv)

}
(137)

Indeed, we observe that the chain Cv is a spanning tree of propagators with
root in one of the zv points (if any, see the definition of wv). Hence, inte-
grating down the position of the vertices xv from the endpoints of such a
tree to the root, in the case at hand there are, with respect to the procedure
for q = 0, sov − 1 missing integration for each nontrivial vertex v of the tree
τ o. By (115), this means a factor γ−2hv(so

v−1) less, if hv > 0, and a constant
factor less, if hv ≤ 0; this explains the last line of (137). Going on in parallel
with §3.1, we obtain the analogous of (131); recalling that w is the lowest
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n.t. vertex of the tree τ ∗,

Im,τ,σ(z) ≤ Cm(Cλ̄j0)
nγ[αw+ε−2χw(s∗w−1)]hw


 ∏

v not e.p.

(
Zhv

Zhv−1

)|Pv|/2
γ−d̄v


 ·

·



hv>0∏

n.t.v∈τo

γ2hv(so
v−1)


 ∏

n.t.v∈τo

exp

{
−c

′

2
γ

hv
2 D

C̃v
(zv ∩ wv)

}
(138)

At this point, in contrast with the pressure bound, we want to take advantage
of the exponential fall off in the diameter of zv∩wv to prove the convergence
of the correlations (with q ≥ 2) for any sign of η̄.

Note that our definitions imply that ∪n.t.v∈τ0zv ∩ wv = z and that
∪n.t.v∈τ0C̃v is a tree connecting all the points in z. This remark, together
with the trivial bound hv ≥ hv∗0 , implies that

∏

n.t.v∈τo

exp

{
−c

′

4
γ

hv
2 D

C̃v
(zv ∩ wv)

}
≤ exp

{
−c

′

4

√
γ
hv∗

0 diam(z)

}
(139)

On the other hand, since |zv ∩ wv| ≥ 2 for any n.t. v ∈ τ 0, if we define

δ
def
= mini,j |zi − zj|, we have

γ2hv(so
v−1) exp

{
−c

′

4
γ

hv
2 D

C̃v
(zv ∩ wv)

}
≤
(
C

δ

)2(s0v−1)

(s0
v − 1)4(s0v−1) (140)

so that, by using also the identity
∑
v∈τ0(s0

v − 1) = q − 1,



hv>0∏

n.t.v∈τo

γ2hv(so
v−1)


 ∏

n.t.v∈τo

exp

{
−c

′

2

√
γhvdiam(zv ∩ wv)

}

≤ [(q − 1)!]4
(
C

δ

)2(q−1)

exp

{
−c

′

4

√
γ
hv∗

0 diam(z)

}
(141)

Let us now remark that the quantity

[
1 + diam(z)(αw+ε)

] +∞∑

h=−∞
γ[αw+ε−2χw(s∗w−1)]h exp

{
−c0

√
γhdiam(z)

}
(142)

is bounded by a constant. In fact, the series is convergent also without the ex-
ponential, as shown before, and this is sufficient, if diam(z) ≤ 1; if diam(z) =

γ−h0 , h0 ≤ 0, we can bound the series by 2
∑+∞
h=−∞ γ(αw+ε)h exp[−c0

√
γh],

which is convergent, sice αw + ε ≥ 2ε. Hence we get, by using 2ε ≤ aw + ε ≤
q(1 + ε− η̄), that there is a constant Cq, such that

∫
dx χΛ(x)|S(m)(z,x, σ)| ≤ m!

(
1 + δ−2(q−1)

) Cq
1 + diam(z)2ε

(143)

33



3.3 Case r ≥ 1, q = 0

This case is very similar to the previous one; therefore we limit ourself to the
discussion of the differences.

Formula (136) still holds, with y
v

in place of zv (to be consistent with no-

tation in (109)) and with the replacement
∏m
i=1(Z

(1)
hi
/Zhi

) −→ ∏p
i=1(Z

(1)
hi
/Zhi

),
following from the fact that the strength renormalization of the field ψ̄γµψ
is equal to Zh. It is easy to go along the developments of §3.2 again, up to
a couple of differences. The minor one is that in formulas (117) and (126)
the set E has to be replaced with the set E\Y , where Y is the family of
trivial vertices of τ ∗ belonging to the branches ending up with an endpoint
of type y; but this is not a problem, since the dimensions of all the vertices
remain strictly positive. The major difference is that in (117), in the case
at hand, there is hvη̄(s

∗,1
v − t∗,1v ) in place of hvη̄s

∗,1
v , if t∗,1v is the number of

branches departing from v and ending up with one endpoint of type y (hence
0 ≤ t∗,1v ≤ s∗,1v ). At the end of the developments, the latter fact generates a
new αv, that we have to prove to be positive in order to control the bound
in the vertices v 6= w such that hv ≥ 0 (as done in (130) for the old one).
With simple computations we find:

αv = ε(s∗v − 1) + (s∗,1v − t∗,1v )(1 − η̄ − ε) + t∗,1v (1 − ε) ≥ ε (144)

Also, we need to prove that αv − 2(s∗v − 1) is negative, in order to to control
the bound in the vertices v 6= w such that hv > 0; and indeed:

αv − 2(s∗v − 1) = (2 − ε) − s∗v − (s∗,1v − t∗,1v )η̄ − s∗,2v (1 − ε)

≤ (2 − ε) − (1 − |η̄|)s∗v < 0 (145)

Finally, the summation on the scale of w is controlled by the the exponential
fall off in the diameter of y, as in (142).

4 Explicit expression of the coefficients in the

mass expansion and proof of Theorem 1.1

4.1 The case r = 0

As explained in the remark preceding (109), in order to get an explicit ex-
pression for the coefficients of the expansion (109), it is sufficient to calculate
the correlations S(m,0)(x, σ). We now show how to get this result by com-
puting the correlations of the ψ field at non coinciding points. We consider
the following generating function

WN,ε(J) = lim
h→−∞

log
∫
Ph,N(dψ)e−λZ

2
NV (ψ)+Z̄

(1)
N

∑
σ

∫
dxdyJσ

x
δε(x−y)ψ̄xΓσψy (146)
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where δε(x) is a smooth approximation of the delta function, rotational in-
variant, whose support does not contain the point x = 0; for definiteness we
will choose δε(x) = ε−2v(ε−1|x|), v(ρ) being a function on R

1 with support
in [1, 2], such that

∫
dρρv(ρ) = (2π)−1 (so that

∫
dxδε(x) = 1). We define

S̄
(m)
N,ε (x, σ) =

∂m

∂Jσ1
x1
...∂Jσm

xm

WN,ε(J)|J=0 (147)

while S
(m)
N,0 (x, σ) will denote the analogous quantity with δε(x−y) → δ(x−y).

Note that S(m,0)(x, σ) = limN→∞ S
(m)
N,0 (x, σ).

Lemma 4.1 If λ is small enough, there exists a constant c1 = 1 + O(λ),

such that, if we put Z̄
(1)
N = c1ε

η+, then, for any set x of m distinct points,

lim
ε→0

lim
N→∞

S̄
(m)
N,ε (x, σ) = lim

N→∞
S

(m)
N,0 (x, σ) (148)

Dim. - The proof of the Lemma is based on a multiscale analysis of the
functional WN,ε(J), performed by using the techniques explained in sect. 2
of [BFM]. We shall not give here the detailed proof, but we shall stress only
the relevant differences with respect to the case studied there.

First of all, the external field ϕ is zero and the free measure has mass zero.
Moreover the terms linear in J and quadratic in ψ contains the monomial
ψ+

x,−σψ
−
y,σ = ψ̄xΓ

σψy, instead of ψ+
x,σψ

−
y,σ. This difference is unimportant

from the point of view of the dimensional analysis, so that, in the case ε = 0,
we can essentially repeat the analysis of [BFM] with obvious minor changes.
The situation is different for ε > 0, since in this case these terms (which are
marginal) are not local on the scale N , so that they need a more accurate
discussion.

Let us call B
(j)
J (ψ) the contribution to the effective potential on scale j,

which is linear in J and has as external fields ψ[h,j]+
x,ω and ψ

[h,j]−
y,−ω and let hε

be the largest integer such that γ−hε ≥ ε and let N > hε. We want to show
that, if N ≥ j ≥ hε, this term, which is dimensionally marginal, is indeed
irrelevant, so there is no need to localize it. This follows from the observation
that B

(j)
J (ψ) is of the form

B
(j)
J (ψ) = Z̄

(1)
N

∑

ω

∫
dxdyJωz δε(x − y)ψ

[h,j]+
x,−ω ψ

[h,j]−
y,ω + (149)

+
∑

ω

∫
dzJωz

∫
dz̄dxdyδε(z− z̄)Wj(z, z̄,x,y)ψ

[h,j]+
x,−ω ψ

[h,j]−
y,ω

where Wj(z, z̄,x,y) is the kernel of the sum over all graphs containing at
least one λ vertex. It is easy to see that it is of the form

Wj(z, z̄,x,y) = W̃j(z,x)W̃j(z̄,y) + W̄j(z, z̄,x,y) (150)
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where the second term is given by the sum over the graphs which stay con-
nected after cutting the line δε, while the first term is associated with the
other graphs. The first term do not need a localization, even for j < hε,
because W̃j(z,x) and W̃j(z̄,y) are sum over graphs with two external lines,
one (the one contracted with the J vertex) of scale h1 > j, the other one of
scale h2 ≤ j. The momentum conservation and the compact support prop-
erties of the single scale propagators imply that h1 = j + 1, so that there is
no diverging sum associated with h1, as one could expect since the first term
has a bound C|λ|. On the other hand, it easy to see that the second term
satisfies the bound

∫
dz̄dxdyδε(z − z̄)|W̄j(z, z̄,x,y)| ≤ C|λ|γ−2(j−hε) (151)

This immediately follows by comparing this bound with the analogous one
for ε = 0, which is C|λ| for dimensional reasons. With respect to the case
ε = 0, we have a new vertex z̄, which is linked to the graph by the line δε
and a propagator of scale j ′ > j. The bound (151) is obtained by using the
decaying properties of this propagator to integrate over z̄ and by bounding
δε by Cε−2.

Note that this procedure is convenient only because j ≥ hε, otherwise it
would be convenient to integrate over z̄ by using δε and we should get the
dimensional bound C|λ| of the case ε = 0. It follows that, starting from

j = hε, we have to apply to B
(j)
J (ψ) the localization procedure; then we

define, if j ≥ hε,

LB(j)
J (ψ) =

∑

ω

Z̄
(1)
j

∫
dzJωz ψ

[h,j]+
z,−ω ψ

[h,j]−
z,ω (152)

and we perform the limit N → ∞. In this limit, Z̄
(1)
j can be represented

as an expansion in terms of trees, which have one special vertex (the J
vertex) and an arbitrary number of normal vertices, the normal vertices
being associated with the limiting value λ−∞ of the running coupling (whose

flow is independent of the Z̄
(1)
j flow). It follows that Z̄

(1)
he

= c1γ
−hεη+[1+O(λ)]

and that, if j < hε,

Z̄
(1)
j−1 = Z̄

(1)
j γη+ +O(|λ|γ−hεη+γ−(hε−j)/2) (153)

where the first term comes from the trees with the special vertex of scale
≤ hε; it is exactly equal to the term one would get in the theory with ε = 0,
in the limit N → ∞. The second term is the contribution of the trees with
the special vertex of scale > hε (these trees must have at least one normal
vertex); it is of course proportional to εη+ and takes into account the “short
memory property” (exponential decrease of the irrelevant terms influence).
The flow (153) immediately implies that, for any fixed j and |η+| < 1/2,

36



limε→0(Z̄
(1)
j−1/Z̄

(1)
j ) = γη+ = (Z

(1)
j−1/Z

(1)
j ) and that Z̄

(1)
j = c1[1 + O(λ)]Z

(1)
j .

Hence, by suitably choosing c1, we can get limε→0 Z̄
(1)
j = Z

(1)
j .

Note that S(m)(x, ω) is different from 0 only if m is even and
∑
i ωi = 0;

moreover the truncated correlations can be written as sums over the non
truncated ones. Hence, in order to get an explicit formula for S(m)(x, ω), it
is sufficient to calculate the correlation

K(n)(x,u) = lim
−h,N→∞

(Z
(1)
N )2n〈

n∏

j=1

(
ψ̄xj

Γ+ψxj

) (
ψ̄uj

Γ−ψuj

)
〉 (154)

where 〈 · 〉 denotes the expectation with respect to the zero mass Thirring
measure. By using Lemma 4.1, we have

K(n)(x,u) = c2n1 lim
ε→0

ε2nη+ · (155)

·
∫
dydv[

n∏

i=1

δε(xi − yi)δε(ui − vi)]K̃
(2n)(x,y,u,v)

where

K̃(2n)(x,y,u,v) = 〈
n∏

j=1

(
ψ̄yj

Γ+ψxj

) (
ψ̄vj

Γ−ψuj

)
〉 (156)

On the other hand, by using the results of [BFM], see Theorem A.2 below,

one can prove that, if 〈 · 〉0 is the mean value for λ = 0 and ψ−
i
def
= ψ−

xi,ωi
,

ψ+
i
def
= ψ+

yi,ω′
i
,

〈ψ−
n · · ·ψ−

1 ψ
+
1 · · ·ψ+

n 〉 = c
λA(a−ā)n
0 〈ψ−

n · · ·ψ−
1 ψ

+
1 · · ·ψ+

n 〉0 ·

·
∏s<t
s,t∈X |xs − xt|

λA
4π

(a−āωsωt) ·∏s<t
s,t∈X |ys − yt|

λA
4π

(a−āω′
sω

′
t)

∏
s,t∈X |xs − yt|

λA
4π

(a−āωsω′
t)

(157)

where c0 is an arbitrary constant, to be determined by fixing, for example,
the value of the 2-points function at some value of x1 − y1, while a and ā
are the parameters (function of λ) defined in eq. (1.6) of [BFM] and A is
equal to the expression [1 − λ

∑
ε=±1Aε(αε + ρε)]

−1, appearing in eq. (1.36)
of [BFM]. Hence, since ψ̄xΓωψy = ψ+

x,−ωψ
−
y,ω, we get

K̃(2n)(x,y,u,v) = c
2λA(a−ā)n
0 〈

n∏

j=1

(
ψ̄yj

Γ+ψxj

) (
ψ̄vj

Γ−ψuj

)
〉0 ·

·
∏s<t
s,t∈X |xs − xt|

λA
4π

(a−ā)|us − ut|
λA
4π

(a−ā) ·∏s,t∈X |xs − ut|
λA
4π

(a+ā)

∏
s,t∈X |xs − yt|

λA
4π

(a+ā)|us − yt|
λA
4π

(a−ā) · (158)

·
∏s<t
s,t∈X |ys − yt|

λA
4π

(a−ā)|vs − vt|
λA
4π

(a−ā) ·∏s,t∈X |ys − vt|
λA
4π

(a+ā)

∏
s,t∈X |us − vt|

λA
4π

(a+ā)|xs − vt|
λA
4π

(a−ā)
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A well known identity for the free fermions correlations, equivalent to the so
called Cauchy Lemma [H] (since g−1

ω (x) = 2π(x0 + iωx1)), is

〈
n∏

j=1

ψ−
xj ,ω

ψ+
vj ,ω

〉0 =
∑

π∈P (1,...,n)

(−1)π
n∏

j=1

gω(xj − vπ(j)) =

= (−1)
n(n−1)

2

∏i<j
i,j∈X g

−1
ω (xi − xj)g

−1
ω (vi − vj)∏

i,j∈X g
−1
ω (xi − vj)

(159)

Then

〈
n∏

j=1

(
ψ̄yj

Γ+ψxj

) (
ψ̄vj

Γ−ψuj

)
〉0 = (−1)n〈

n∏

j=1

ψ−
xj ,+

ψ+
vj ,+

〉0〈
n∏

j=1

ψ−
uj ,−ψ

+
yj ,−〉0

=

∏i<j
i,j∈X g

−1
+ (xi − xj)g

−1
+ (vi − vj)

∏
i,j∈X g

−1
+ (vi − xj)

·
∏i<j
i,j∈X g

−1
− (ui − uj)g

−1
− (yi − yj)

∏
i,j∈X g

−1
− (ui − yj)

(160)

and since g−1
+ (x − v)g−1

− (x − v) = (2π)2|x − v|2, we get, by some straight-
forward calculations,

K̃(2n)(x,y,u,v) =


c

λA(a−ā)
0

2π




2n
F (x,y,u,v)

∏
s(|xs − ys||us − vs|)

λA
4π

(a+ā)
(161)

where F (x,y,u,v) is a continuous function such that

lim
yj→xj
vj→uj

F (x,y,u,v) =

∏
s<t |xs − xt|2(1−

λA
2π
ā)|us − ut|2(1−

λA
2π
ā)

∏
s,t |us − xt|2(1−

λA
2π
ā)

(162)

By using the previous identities, together with (154), we get

K(n)(x,u) =


c1c

λA(a−ā)
0

2π




2n

lim
ε→0

∫
dydv[

n∏

i=1

δε(xi − yi)δε(ui − vi)] ·

· ε2nη+F (x,y,u,v)
∏
s(|xs − ys||us − vs|)

λA
4π

(a+ā)
(163)

By using the tree expansion, one can see that the limit ε → 0 is bounded
and different from zero, at least for n = 1. It follows, by taking into account
the support properties of δε(x), that η+ = λA

4π
(a + ā); note that in [BFM] it

is stated that η− = λA
4π

(a− ā), so that we have

ησ =
λA

4π
(a+ σā) (164)

Hence it is easy to see that, if we put c3(η) =
∫
dxδ0(x)|x|−η,

K(n)(x,u) =


c3(η+)c1c

λA(a−ā)
0

2π




2n ∏
s<t |xs − xt|2(1−

λA
2π
ā)|us − ut|2(1−

λA
2π
ā)

∏
s,t |us − xt|2(1−

λA
2π
ā)

(165)
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If we compare (165) with (80) and use the remark at the beginning of
this section, we get the formal equivalence

lim
−h,N→∞

Z
(1)
N ψ̄xΓ

σψx ∼ b0 :eiασϕx: (166)

with

b0 = c
α2

8π
c3(η+)c1c

λA(a−ā)
0

2π
(167)

if the following relation between α and λ is satisfied:

α2

4π
= 1 − λA

2π
ā = 1 + η− − η+ (168)

where we also used (164).
This completes the proof of Theorem 1.1 for r = 0.

4.2 The case r > 0

Let us define

jµx = ψ̄xγ
µψx , ρx,ω = ψ+

x,ωψ
−
x,ω , Πx,ω = ψ+

x,−ωψ
−
x,ω (169)

We have
j0
x =

∑

ω

ψ+
x,ωψ

−
x,ω , j1

x = i
∑

ω

ωψ+
x,ωψ

−
x,ω (170)

Hence, in order to calculate S(2n,r)(zx,y;ωω′, ν), it is sufficient to calculate
the correlation function

Dk+,k−,n(a, c,y,v) ≡ lim
−h,N→∞

(ZN)k++k−(Z
(1)
N )2n ·

〈(
k+∏

i=1

ρai,+)(
k−∏

i=1

ρci,−)(
n∏

i=1

Πyi,+)(
n∏

i=1

Πvi,−)〉(h,N) (171)

where < · >(h,N) denotes the expectation w.r.t. the massless Thirring mea-
sure.

By an obvious extension of Lemma 4.1, we know that there are two
constants c1 and c2 (smooth functions of λ, equal to 1 for λ = 0), such that

Dk+,k−,n(a, c,y,v) = lim
ε1,ε2→0

(c2ε
η−
2 )(k++k−)(c1ε

η+
1 )2n

∫
db dd dx du ·

·δε2(b − a)δε2(d − b)δε1(x − y)δε1(u − v)Ω(a,b, c,d,y,x,v,u) (172)

where, if x = (x1, . . . ,xk), δε(x) =
∏k
i=1 δε(xi), with δε(x) defined as in §4.1;

moreover,

Ω(a,b, c,d,y,x,v,u) = 〈(
k+∏

i=1

ψ+
ai,+

ψ−
bi,+

)(
k−∏

i=1

ψ+
ci,−ψ

−
di,−) ·

· (
n∏

i=1

ψ+
yi,−ψ

−
xi,+

)(
n∏

i=1

ψ+
vi,+

ψ−
ui,−)〉 (173)
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By using the identities (157) and (159) and by doing some simple algebra,
one can see that, if z = (a,b, c,d) and w = (y,x,v,u),

Ω(z,w) = c
λA(a−ā)(k++k−)
0

F1(z,w)
∏k+
i=1 g

−1
+ (ai − bi)

∏k−
i=1 g

−1
− (ci − di)

·

· F2(z,w)
∏k+
i=1 |bi − ai|η−

∏k−
i=1 |di − ci|η−

K̃2n(w) (174)

where K̃2n(w) is defined as in (161), and

F1(z,w) =
∏

s<t

h̃
(+)
s,t (as,bs, at,bt)

∏

s<t

h̃
(−)
s,t (cs,ds, ct,dt) ·

·
∏

s,t

h̃
(+)
s,t (as,bs,vt,xt)

∏

s,t

h̃
(−)
s,t (cs,ds,yt,ut) (175)

F2(z,w) =
∏

s<t

h
(−)
s,t (as,bs, at,bt)

∏

s<t

h
(−)
s,t (cs,ds, ct,dt) ·

·
∏

s,t

h
(−)
s,t (as,bs,vt,xt)

∏

s,t

h
(−)
s,t (cs,ds,yt,ut) · (176)

·
∏

s,t

h
(+)
s,t (as,bs, ct,dt)

∏

s,t

h
(+)
s,t (as,bs,yt,ut)

∏

s,t

h
(+)
s,t (cs,ds,vt,xt)

We defined

h̃
(ω)
s,t (as,bs,vt,xt) =

g−1
ω (as − vt)g

−1
ω (bs − xt)

g−1
ω (as − xt)g−1

ω (bs − vt)
(177)

h
(σ)
s,t (as,bs,vt,xt) =

(
|as − vt||bs − xt|
|as − xt||bs − vt|

)ησ

(178)

Let us first evaluate, in the r.h.s. of (172), the limit ε1 → 0. This can be
done exactly as in §4.1 and we get

Dk+,k−,n(a, c,y,v) = lim
ε2→0

(c2ε
η−
2 )(k++k−)

∫
db dd dx du ·

·δε2(b − a)δε2(d − b)Ω0(a,b, c,d,y,v) (179)

where, if we put w0 = (y,v),

Ω0(z,w0) = c
λA(a−ā)(k++k−)
0

F1(z,y,y,v,v)
∏k+
i=1 g

−1
+ (ai − bi)

∏k−
i=1 g

−1
− (ci − di)

·(180)

· F2(z,y,y,v,v)
∏k+
i=1 |bi − ai|η−

∏k−
i=1 |di − ci|η−

K(n)(w0)

K(n)(w0) being defined as in (154); its explicit expression is given by (165).
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Let us now perform the limit ε2 → 0. We use the identity, following from
obvious symmetry arguments,

lim
ε2→0

∫
db dd δε2(b − a)δε2(d − b)

εη−(k++k−)

∏k+
i=1 |bi − ai|η−

∏k−
i=1 |di − ci|η−

·

· F (a,b, c,d)
∏k+
i=1 g

−1
+ (bi − ai)

∏k−
i=1 g

−1
− (di − ci)

=

= lim
ε2→0

∫
db dd δε2(b − a)δε2(d − b)

k+∏

i=1

(
ε2

|bi − ai|

)η− k−∏

i=1

(
ε2

|di − ci|

)η−
·

·
∏k+
i=1[(bi − ai) · ∂bi

]
∏k−
i=1[(di − ci) · ∂di

]F (a, a, c, c)
∏k+
i=1 g

−1
+ (bi − ai)

∏k−
i=1 g

−1
− (di − ci)

= ·

=

(
c3(η−)

4π

)k++k− k+∏

i=1

D−
bi

k+∏

i=1

D+
di
F (a, a, c, c) (181)

where c3(η) is defined as in §4.1 and Dω
x ≡ ∂

∂x0
+ iω ∂

∂x1
.

To complete the calculation, note that, up to terms which are of the
second order in at least one of the differences bs−as or ds− cs (these terms
give no contribution in the limit ε2 → 0),

h
(σ)
s,t (as,bs,vt,yt) ' 1 + ησ(bs − as) ·

[
as − yt
|as − yt|2

− as − vt
|as − vt|2

]
(182)

h
(σ)
s,t (as,bs, at,bt) ' 1 + ησ

[
− (bs − as) · (bt − at)

|as − at|2
+

+2
[(bs − as) · (as − at)][(bt − at) · (as − at)]

|as − at|4
]

(183)

h
(σ)
s,t (as,bs, ct,dt) ' 1 + ησ

[
− (bs − as) · (dt − ct)

|as − ct|2
+

+2
[(bs − as) · (as − ct)][(dt − ct) · (as − ct)]

|as − ct|4
]

(184)

h̃
(σ)
s,t (as,bs,vt,yt) ' 1 + g−1

σ (bs − as)

[
1

g−1
σ (as − yt)

− 1

g−1
σ (as − vt)

]
(185)

h̃
(σ)
s,t (as,bs, at,bt) ' 1 + g−1

σ (bs − as)g
−1
σ (bt − at)

1

[g−1
σ (as − at)]2

(186)

In order to get the final result, we have to substitute these expression in the
r.h.s of (175) and (176), expand their product, keep the terms which are of
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the first order in all the differences bi − ai and di − ci and, finally, apply to
them the differential operator

∏k+
i=1D

−
bi

∏k+
i=1D

+
di

, whose effect can be easily
obtained by using the trivial identities

D−ω
bs
g−1
ω (bs − as) = 4π (187)

Dω
bs

(bs − as) · z
|z|2 = 2πg−ω(z) (188)

Dω
bs
Dω

bt
(bs − as) · (bt − at) = 0 (189)

Dω
bs
D−ω

bt
(bs − as) · (bt − at) = 2 (190)

Let us consider, for example, the case n = 0. Then we see immediately
that Dk+,k−,0(a, c) is different from 0 only if k++k− = 2m and that, if we put
z = (a, c) and ωi = +1 if zi ∈ a, ωi = −1 if zi ∈ c, Dk+,k−,0(a, c) satisfies

the Wick Theorem with covariance Cω1,ω2(z1 − z2) = lim−h,N→∞(Z
(2)
N )2 <

ρzi,ωi
ρzj ,ωj

>, that is Z
(2)
N ρx,ω, in the removed cutoffs limit, is a Gaussian

field in the massless Thirring model. It is easy to check that

Cω1,ω2(z1 − z2) = δω1,ω2

[
c
λA(a−ā)
0 c2c3

2π

]2
(1 + η−/2)

[(z1,0 − z2,0) + iω(z1,1 − z2,1)]2
(191)

It follows that, if we call DT
k+,k−,n(a, c,y,v) the truncated expectation cor-

responding to Dk+,k−,n(a, c,y,v), we have

DT
k+,k−,0(a, c) = δk,2Cω1,ω2(z1 − z2) (192)

Hence, by using (170) and the definition (101), we get

S(0,k)(z1, z2; ν1, ν2) = −δk,2b2hν1,ν2(z1 − z2) (193)

with

b2 =
1

π
[c
λA(a−ā)
0 c2c3]

2(1 +
η−
2

) (194)

Let us now consider the case n > 0; in this case we shall give the explicit
expression of DT

k+,k−,n
(a, c,y,v). This quantity can be obtained, by expand-

ing K(n)(w0) in terms of products of connected expectations in the usual way
and then trying to get a connected quantity by using the terms which sur-
vive to the limit ε2 → 0, see discussion above. It is obvious that a connected
contribution can be obtained only by keeping the products of different first
order zeros coming from the functions h

(σ)
s,t (as,bs,vt,yt), h̃

(σ)
s,t (as,bs,vt,yt)

and the analogous with (cs,ds) in place of (as,bs), together with the trun-

cated expectation in the expansion of K (n)(w0), that we shall call K
(n)
T (w0).

It follows that

DT
k+,k−,n

(a, c,y,v) = K
(n)
T (w0)

k++k−∏

r=1

W (zr, ωr,w0, σ) (195)

42



where we defined σ so that σi = +1 if wi ∈ y, σi = −1 if wi ∈ v and

W (z, ω,w0, σ) = −ω cλA(a−ā)
0 c2c3

(
1 +

η− − η+

2

) n∑

j=i

σjgω(z − wj) (196)

By using (170), we easily get the final result

S(2n,k)(w,y; σ, ν) = S(2n,0)(w; σ)
k∏

r=1

W̃ νr(yr,w, σ) (197)

with

W̃ ν(y,w0, σ) =
i

π
c
λA(a−ā)
0 c2c3

(
1 +

η− − η+

2

) n∑

j=i

σj
εν,µ(y − wj)

µ

|y − wj|2
(198)

It follows that (197) has the same structure than (98), so that, by com-
paring (198) with (99), as well as (193) with (100), we get, in agreement with
the considerations after (6), the equivalence

lim
−h,N→∞

Z
(2)
N jνx ∼ −εν,µ(b1∂µϕx + b2∂

µξx) (199)

where ξ is a free boson field of zero mass, independent of φ, and

b1 =
2

α
c
λA(a−ā)
0 c2c3

(
1 +

η− − η+

2

)
(200)

One can check, by using the relations a−1 = 1 − λ/(4π) + O(λ2), ā−1 =
1 + λ/(4π) +O(λ2) and A = 1 +O(λ2), that, if b2 is the constant defined in
(194),

b22 = b2 − b21 = O(|λ|3) (201)

However, one can prove that b2 = 0. This follows from the remark that

b21
b2

=

(
1 + η−−η+

2

)2

(1 + η− − η+)
(
1 + η−

2

) (202)

where we used (200), (194) and (168). Hence, in order to prove that b2 = 0,
it is sufficient to prove that the r.h.s. of (202) is equal to 1; by a simple
calculation one can check that this condition is equivalent, since η− > 0, to
the condition

(1 + η−)2 = 1 + η2
+ (203)

Our solution of the Thirring model allows us to represent η− and η+ as well
defined power series in the physical value λ−∞ of the running coupling (see eq.
(2.35) of [BFM] for η−). This representation is not convenient to verify the
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identity (203); however, (203) is independent of the details of the ultraviolet
regularization of the model, hence it can be checked also by using the explicit
(rigorous) representations of η− and η+ in terms of the bare coupling, which
were found in [M1] and [M2] with a different ultraviolet regularization (by
the way, they are also in agreement with the heuristic procedure proposed
in [J] and [K]). In this approach, if we call λ̃ the bare constant and put
x = λ̃/(4π), one gets

η− =
2x2

1 − x2
, η+ =

2x

1 − x2
(204)

and one can check that (203) is indeed satisfied.
This completes the proof of Theorem 1.1 for r > 0.

A The explicit formula for the field correla-

tion functions

A.1 The Schwinger-Dyson equation

In this appendix we will derive the explicit expression of the n-point Schwinger
functions (157), by extending the arguments used in [BFM], to which we re-
fer for details, to analyze the 2-point function. Let us define W(J, ϕ) =
log

∫
Ph,N(dψ) exp{V (N)(

√
ZNψ, J, ϕ)}, where the free measure Ph,N(dψ) is

defined by (14), V (N) = −λV
(√

ZNψ
)
+
∑
ω

∫
dx[Jx,ωZNψ

+
x,ωψ

−
x,ω+ϕ+

x,ωψ
−
x,ω+

ψ+
x,ωϕ

−
x,ω] and the fields ϕ± are anticommuting between themselves and with

ψ±. We shall introduce the Fourier transform of various fields. In doing that,
we shall consider the fields ρ = ψ+ψ−, ψ+ e ϕ+ as incoming fields, while α,
J , ψ− e ϕ− will be outcoming fields.

First of all, we note that the Schwinger-Dyson equations are generated
by the identity

Dω(k)
∂eW

∂ϕ̂+
k,ω

= χh,N(k)


 ϕ̂

−
k,ωe

W

ZN
− λ

∫
dp

(2π)2

∂2eW

∂Ĵp,−ω∂ϕ̂
+
k+p,ω


 (205)

Indeed, given any F (ψ) which is a power series in the field, we have, by the
Wick Theorem,

〈ψ̂−
k,ωF (ψ)〉0 =

ĝ[h,N ]
ω (k)

ZN
〈∂F (ψ)

∂ψ̂+
k,ω

〉0. (206)

where 〈·〉0 is the mean value with respect to Ph,N and ĝ[h,N ]
ω (k) = χh,N(k)/Dω(k).

Then, (205) is a consequence of the identity

∂eW

∂ϕ̂+
k,ω

= 〈ψ̂−
k,ωe

V(N)(
√
ZNψ,ϕ)〉0 =

ĝ[h,N ]
ω (k)

ZN
〈 ∂

∂ψ̂+
k,ω

eV
(N)(

√
ZNψ,ϕ)〉0 (207)
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and the remark that V (ψ) =
∫
dxψ+

x,+ψ
−
x,+ψ

+
x,−ψ

−
x,−.

A.2 The approximate Ward–Takahashi identities

We consider a new generating functional, WA(α, J, ϕ) = log
∫
Ph,N(dψ)

· exp{V (N)(
√
ZNψ, J, ϕ) + [ZNA0 + ZN

∑
σ=± ν

(σ)
N Aσ](α, ψ)} where ν

(±)
N are

two suitable constants, to be chosen below as functions of λ, and

A0(α, ψ)
def
=

∑

ω=±

∫
dq dp

(2π)4
Cω(q,p)α̂q−p,ωψ̂

+
q,ωψ̂

−
p,ω , (208)

Aσ(α, ψ)
def
=

∑

ω=±

∫
dq dp

(2π)4
Dσω(p − q)α̂q−p,ωψ̂

+
q,σωψ̂

−
p,σω (209)

having defined, as in [BFM], Dω(k) = −ik0 +ωk1 and Cω(q,p) = [χ−1
h,N(p)−

1]Dω(p) − [χ−1
h,N(q) − 1]Dω(q).

By doing the transformation ψ±
x,ω → eiαx,ωψ±

x,ω, see [BM] for a rigorous
definition, we get

Dµ(p)
∂W
∂Ĵp,µ

(J, ϕ) =
∫ dk

(2π)2

[
ϕ̂+

k+p,µ

∂W
∂ϕ̂+

k,µ

− ∂W
∂ϕ̂−

k+p,µ

ϕ̂−
k,µ

]
−

− ∂WA0

∂α̂p,µ
(0, J, ϕ); (210)

where WA0 is the same as WA but neglecting the interactions Aσ(α, ψ).
The last term in the r.h.s. of (210) is not negligible in the removed cutoffs
limit, but we can extract its leading contribution by introducing suitable
counterterms [BFM], so that the rest will vanish, by putting

(1 − ν
(+)
N )Dµ(p)

∂W
∂Ĵp,µ

(J, ϕ) − ν
(−)
N D−µ(p)

∂W
∂Ĵp,−µ

(J, ϕ) = (211)

=
∫

dk

(2π)2

[
ϕ̂+

k+p,µ

∂W
∂ϕ̂+

k,µ

(J, ϕ) − ∂W
∂ϕ̂−

k+p,µ

(J, ϕ)ϕ̂−
k,µ

]
− ∂W (h)

A
∂α̂p,µ

(0, J, ϕ)

If we define

aN = [1 − ν
(−)
N − ν

(+)
N ]−1 , āN = [1 + ν

(−)
N − ν

(+)
N ]−1 (212)

by some simple algebra we obtain the identity

∂eW

∂Ĵp,σ

(0, ϕ) +
∑

σ′

AN,σσ′

Dσ(p)

∂eWA

∂α̂p,σ′
(0, 0, ϕ) = (213)

=
∑

σ′

AN,σσ′

Dσ(p)

∫
dk

(2π)2

[
ϕ̂+

k+p,σ′
∂eW

∂ϕ̂+
k,σ′

(0, ϕ) − ∂eW

∂ϕ̂−
k+p,σ′

(0, ϕ)ϕ̂−
k,σ′

]

where AN,σ = (aN + σāN)/2. With the argument explained in [BFM], it
would be easy to prove that the term in WA is vanishing in the limit of
removed cutoff; anyway this is not our current objective.
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A.3 A Closed Equation for the field correlation func-
tions

By doing an arbitrary number of functional derivatives with respect to the
ϕ external field in (205) and then putting ϕ = 0, one can obtain an infinite
number of relations between the field correlation functions and other corre-
lations involving several fields and one current, integrated over the current
momentum. We want now to show that, by using the identity (213), it is
possible to get a closed equation for the field correlation functions, in the
limit of removed cutoffs. Let us define ∂ωx = ∂0 + iω∂1.

Lemma A.1 For |λ| small enough, there exists a constant A = 1 + O(λ),
such that the equations of motion for the truncated Schwinger functions -
except the two point Schwinger function- in the limit of removed cutoffs are
generated, at non coinciding points, by the identity:

∂ω1
x1

∂W
∂ϕ+

x1,ω1

= λA
∑

µ

A−ω1µ

∫
dz g−ω1(x1 − z)

[
ϕ+

z,µ

∂2W
∂ϕ+

z,µ∂ϕ
+
x1 ,ω1

− ∂2W
∂ϕ+

x1,ω1
∂ϕ−

z,µ

ϕ−
z,µ

]

+λA
∑

µ

A−ω1µ

∫
dz g−ω1(x1 − z)

[
ϕ+

z,µ

∂W
∂ϕ+

z,µ

∂W
∂ϕ+

x1,ω1

− ∂W
∂ϕ+

x1 ,ω1

∂W
∂ϕ−

z,µ

ϕ−
z,µ

]
(214)

Proof. If we make a derivative with respect to ϕ̂+
k+p,ω in both sides of

(213), with ω = σ, and then integrate over p (which is meaningful, since the
correlation functions can not have a singularity at p = 0 and have compact
support in p for h and N finite), we get

∫
dp

(2π)2

∂2eW

∂Ĵp,−ω∂ϕ̂
+
k+p,ω

= −
∑

µ

∫
dp

(2π)2

AN,−ωµ
D−ω(p)

∂2eWA

∂α̂p,µ∂ϕ̂
+
k+p,ω

+ (215)

+
∑

µ

∫ dp dq

(2π)4

AN,−ωµ
D−ω(p)

[
ϕ̂+

q+p,µ

∂2eW

∂∂ϕ̂+
q,µϕ̂

+
k+p,ω

− ∂2eW

∂ϕ̂+
k+p,ω∂ϕ̂

−
q+p,µ

ϕ̂−
q,µ

]

where both sides are calculated at J = α = 0 and we used the fact that
Dω(p) is odd in p to cancel one term in the r.h.s. of (215).

We introduce the generating functionals WT ,µ(β, ϕ), for µ = ±, defined
as

eWT ,µ(β,ϕ) def=
∫
Ph,N(dψ) e−λNZ

2
NV (ψ) exp

{∫
ϕ+

x,ωψ
−
x,ω +

∫
ψ+

x,ωϕ
−
x,ω

}
·

· exp

{[
T (µ)

0 +
∑

σ=±
ν

(σ)
N T (µ)

σ

] (√
ZNψ,

√
ZNβ

)}
· (216)

· exp

{
∑

ω=±

[
−α(µω)λB(3)

ω − ρ(µω)B(1)
ω

] (√
ZNψ,

√
ZNβ

)}
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with {α(µ)}µ=±, {ρ(µ)}µ=±, four real parameters to be fixed later and

T (µ)
0 (ψ, β)

def
=

∑

ω=±

∫
dk dp dq

(2π)6

Cµ(q,q − p)

D−ω(p)
β̂k,ωψ̂

−
k+p,ωψ̂

+
q,µψ̂

−
−p+q,µ ,

T (µ)
σ (ψ, β)

def
=

∑

ω=±

∫
dk dp dq

(2π)6

Dσµ(−p)

D−ω(p)
β̂k,ωψ̂

−
k+p,ωψ̂

+
q,σµψ̂

−
−p+q,σµ ,

B(3)
ω (ψ, β)

def
=
∫
dk dp dq

(2π)6
β̂k,ωψ̂

−
k+p,ωψ̂

+
q,−ωψ̂

−
−p+k,−ω ,

B(1)
ω (β, ψ)

def
=
∫ dk

(2π)2
β̂k,ωDω(k)ψ̂−

k,ω (217)

We remark that WT ,µ(β, ϕ) differs from the analogous generating functional
introduced in [BFM] because of the presence of the interactions B(1)

ω (β, ψ)
and B(3)

ω (β, ψ), that in the cited paper were - in a sense - reconstructed a
posteriori; here we describe a faster way to implement the same procedure
of [BFM]. We have the following identity:

∫
dp

(2π)2

1

D−ω(p)

∂2eWA

∂α̂p,µ∂ϕ̂
+
k+p,ω

(0, 0, ϕ) =
1

ZN

∂eWT ,µ

∂β̂k,ω

(0, ϕ) + (218)

+α(µω)λ
∫

dp

(2π)2

∂2eW

∂Ĵp,−ω∂ϕ̂
+
k+p,ω

(0, ϕ) + ρ(µω)Dω(k)
∂eW

∂ϕ̂+
k,ω

(0, ϕ)

which, plugged into (215), gives

(
1 + λ

∑

µ

AN,−µ α
(µ)

)∫ dp

(2π)2

∂2eW

∂Ĵp,−ω∂ϕ̂
+
k+p,ω

=

= −
∑

µ

AN,−ωµ
ZN

∂eWT ,µ

∂β̂k,ω

−
(
∑

µ

AN,−µρ
(µ)

)
Dω(k)

∂eW

∂ϕ̂+
k,ω

+ (219)

+
∑

µ

∫
dp dq

(2π)4

AN,−ωµ
D−ω(p)

[
ϕ̂+

q+p,µ

∂2eW

∂ϕ̂+
q,µ∂ϕ̂

+
k+p,ω

− ∂2eW

∂ϕ̂+
k+p,ω∂ϕ̂

−
q+p,µ

ϕ̂−
q,µ

]
.

This equation, together with (205), the identity δµ,ω = (1 + µω)/2 and the
remark that WT ,µ(0, ϕ) = W(0, ϕ), implies that

Dω(k)
∂W
∂ϕ̂+

k,ω

= χh,N(k)
BN

ZN
ϕ̂−

k,ω + χh,N(k)
λAN
ZN

∑

µ

AN,−ωµ
∂WT ,µ

∂β̂k,ω

(0, ϕ) + (220)

+λAN
∑

µ

χh,N(k)
∫
dq dp

(2π)4

AN,−ωµ
D−ω(p)

e−W
[
ϕ̂+

q,µ

∂2eW

∂ϕ̂+
q+p,µ∂ϕ̂

+
k−p,ω

− ∂2eW

∂ϕ̂+
k−p,ω∂ϕ̂

−
q,µ

ϕ̂−
q+p,µ

]

where AN = [1+λ
∑
µAN,−µ(α

(µ)−ρ(µ))]−1 andBN = [1+λ
∑
µAN,−µα

(µ)]AN .
Before doing the limit −h,N → ∞, we can rewrite the previous identity

in the space coordinates, by doing the Fourier transform in both sides. Since
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we want to get an identity involving only the correlations with at least four
points, the first term in the r.h.s. gives no contribution. Hence, it is easy to
see that we get the identity (214), with A = limN→∞AN , if the correlations
obtained from derivatives of the last term are proved to be vanishing in the
limit of removed cutoffs and if, in this limit, we can safely substitute χh,N(k)
with 1. Let us first consider this problem, without giving the technical
details. If we make a certain number of derivatives with respect to the field
ϕ at non coinciding points and put ϕ = 0, we are faced with the problem of
calculating the limit of expressions of the type

∫
dz δh,N(z)gω(x1 − x2 − z)Gh,N(x1 − z,y2, . . . ,yn) (221)

where δh,N(z) is the Fourier transform of χh,N(k) and the points x1,x2,y2, . . . ,yn
are all different, except x2 and y2, which can be equal. The function
Gh,N(y) is a (truncated) Schwinger function, which was proved in [BFM]

(eq. 2.58) to decay as |yi|−ε′, 0 < ε′ < 1, if |yi| → ∞, while the other
points are fixed. By using the bound 2.52 of [BFM] it is also possible to
prove that it diverges as |yi − yj|−ε′′, 0 < ε′′ < 1, if |yi − yj| → 0, while
the other points stay constant. On the other hand, it is easy to prove that
|δh,N(z)| ≤ C(γ−2N + |z|2)−1. These properties and the good convergence
properties of Gh,N(y) as −h,N → ∞ (uniform if the points vary in non in-
tersecting neighborhoods of the arguments) imply that one can make with-
out any problem in (221) the limit h → −∞ and substitute Gh,N(y) with
G(y) = lim−h,N→∞Gh,N(y). The previous remarks imply also that the func-
tion gω(x1 − x2 − z)G(x1 − z,y2, . . . ,yn) is a L1 function of z with a finite
number of singularities; moreover, δ−∞,N(z) → δ(z) as N → ∞. It follows
that the limit of (221) does exist and is given by gω(x1−x2)G(x1,y2, . . . ,yn);
one can also see that the limit is uniform, if the xi vary in small non intersect-
ing neighborhoods, so implying that one can exchange the derivative with the
removed cutoff limit in the l.h.s. of (220), written in the space coordinates.

We still have to discuss the main point, that is the fact that the cor-
relations obtained from derivatives of the last term of (220) vanish in the
removed cutoff limit. Since we assume some familiarity with [BM], we shall
do that very briefly, by studying the flow of the marginal terms proportional
to the field β in the effective potential related with the generating functional
(216).

After the integration of the fields ψ(j′), j ′ > j, we obtain an expression of
the type:

eW
(h)
T ,µ

(β,ϕ) =
∫
P[h,j](dψ) exp

{
V(j)

(
ϕ,
√
Zjψ

)
+ W (j)

T ,irr
(
β, ϕ,

√
Zjψ

)}
·

· exp




[(ZN

Zj

)2

T (µ)
0 +

ZN
Zj

∑

σ=±
ν

(σ)
j T (µ)

σ

] (√
Zjψ,

√
Zjβ

)


 ·
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· exp





[
ζ̃

(3,µω)
j B(3) +

ZN
Zj

N∑

k=j

ζ̃
(1,µω)
k B(1)

] (√
Zjψ,

√
Zjβ

)


 (222)

where V (j) is the effective potential for β = 0, W (j)
T ,irr is the irrelevant part of

the terms of order at least 1 in β, while the rest represents the corresponding
marginal terms, written in terms of two running coupling constants:

ζ̃
(3,µ)
j

def
=





−α(µ)
N λ for j = N

λ̃
(µ)
j − α

(µ)
N λj for j ≤ N − 1 ;

ζ̃
(1,µ)
j

def
=





−ρ(µ)
N for j = N

(
z̃

(µ)
j − α

(µ)
N zj

)
Zj

ZN
for j ≤ N − 1 ;

(223)

where {λ̃µj } and {z̃µj } are exactly the coupling studied in [BM]; while {λj}
and {zj} are exactly the effective coupling and the field renormalization of the
original generating functional, W. In [BM] (equation (144)) it was proved
that there exist αµN such that the following two bounds are both satisfied

|λ̃(µ)
j − α

(µ)
N λj| ≤ Cγ−(N−j)/2 , |z̃(µ)

j − α
(µ)
N zi| ≤ Cγ−(N−j)/2 (224)

Thereby, if we put ρ
(µ)
N =

∑
j≤N−1 ζ̃

(1,µ)
j , the factor in front of B(1) in (222) is

ZN
Zj

N∑

k=j

ζ̃
(1,µ)
k =

ZN
Zj



N−1∑

k=j

ζ̃
(1,µ)
k − ρ

(µ)
N




= −ZN
Zj

∑

k≤j−1

ζ̃
(1,µ)
k =

∑

k≤j−1

(z̃
(µ)
k − α

(µ)
N zk)

Zk
Zj

(225)

and the last term, by the second (224), can be bounded by Cγ−(N−j)/4. This
remark, together with the first of (224), allows us to prove that contribution
to the correlation functions of the last term in (222) vanishes in the limit of
removed cutoffs, as a consequence of the short memory property, see [BM]
for details.

A.4 Solution of the closed equations

Let us define a = limN→∞ aN , ā = limN→∞ āN , ∆−1(x|y) = 1
2π

ln
(
|y|
|x|

)
and

G
(2n)
ω,ω′(x,y) = e−W(′,′) ∂2neW

∂ϕ+
xn,ωn

· · ·∂ϕ+
x1 ,ω1

∂ϕ−
y1,ω′

1
· · ·∂ϕ−

yn,ω′
n

(0, 0) (226)
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Theorem A.2 For |λ| small enough and x 6= y,

S
(2)
ω,ω′(x,y) ≡ G

(2)
ω,ω′(x,y) = δω,ω′gω(x − y)e

λA(a−ā)
2

∆−1(x−y|z) (227)

where z is a fixed, non-zero position, whose arbitrariness reflects the ar-
bitrariness of a factor in front of S

(2)
ω,ω′(x,y). Furthermore, if n > 1 and

(x1, . . . ,xn,y1, . . . ,yn) is a family of two by two distinct points,

G
(2n)
ω,ω′(x,y) =

∑

π∈PX

(−1)πG(2n)
ω,π(ω′)(x, π(y)) (228)

where X
def
= {1, . . . , n}, PX is the set of the permutations of the elements of

X and

G(2n)
ω,ω′ (x,y) =




n∏

j=1

S
(2)
ωj ,ω′

j
(xj,yj)


 ·

·
s<t∏

s,t∈X
eλA

a−āωsω′
t

2 [∆−1(xs−yt|xs−xt)−∆−1(ys−yt|ys−xt)] (229)

Proof. The equation (227) has been proved in [BFM]. The proof of (228)
will be done by checking that the truncated correlation functions correspond-
ing to the functions (228), assumed to be the right not truncated correlation
functions, solve the identity (214) for n > 1. The reason for this procedure
is that, as we have discussed §A.3, we were able to get a closed equation,
in the limit of removed cutoffs, only for the truncated correlation functions
with n > 1. However, it is worthwhile to give first the heuristic argument
which allows us to conjecture that (228) is the right expression for the not
truncated correlation functions.

In the limit N → ∞, if we put Z = limN→∞ and we ignore the fact that
Z = 0, the identity (220) can be written in terms of the space coordinates as

∂x1
ω1

∂eW

∂ϕ+
x1,ω1

=
B

Z
eWϕ−

x1,ω1
+ λA

∑

ε

A−ω1ε ·

·
∫
dz g−ω1(x1 − z)

[
ϕ+

z,ε

∂eW

∂ϕ+
z,ε∂ϕ

+
x1,ω1

− ∂eW

∂ϕ+
x1,ω1

∂ϕ−
z,ε

ϕ−
z,ε

]
(230)

This implies, if η = λAA− and Z = limN→∞ ZN (we will ignore then fact

that Z = 0), that S
(2)
ω,ω′(x,y) = δω,ω′Sω(x − y), with

∂ωSω(x) =
B

Z
δ(x) − ηg−ω(x)Sω(x) (231)

Hence, since, for any value of z, g−ω(x) = −∂ω∆−1(x|z), we get

Sω(x) =
B

Z
eη[∆

−1(x|z)−∆−1(0|z)]gω(x) (232)
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where ∆−1(0|z) = +∞, which should balance, in this formal calculation, the
fact that Z = 0. In fact, this equation implies the correct value (227) of
Sω(x), if we choose z so that

B

Z
= eη∆

−1(0|z) (233)

Hence, we are encouraged to pursue this formal procedure. If we take 2n− 1
suitable functional derivatives in both sides of (230) and we call xj the vector
x without the element xj, we find the following equation:

∂x1
ω1
G

(2n)
ω,ω′(x,y) =

B

Z

n∑

k=1

(−1)k−1δω1,ω′
k
δ(x1 − yk)G

(2n−2)
ω1,ω

′
k

(x1,yk) (234)

+λA

[
n∑

k=2

A−ω1ωk
g−ω1(x1 − xk) −

n∑

k=1

A−ω1ω′
k
g−ω1(x1 − yk)

]
G

(2n)
ω,ω′(x,y)

By using (233), this equation can be written as

∂x1
ω1

[(
n∏

h=2

eλAA−ω1ωh
∆−1(x1−xh|z)

)(
n∏

h=1

e
−λAA−ω1ω′

h
∆−1(x1−yh|z)

)
G

(2n)
ω,ω′(x,y)

]
=

=
n∑

k=1

(−1)k−1δω1,ω′
k
δ(x1 − yk) · (235)

·
(

n∏

h=2

eλAA−ω1ωh
∆−1(yk−xh|z)

)


n∏

h=1
h6=k

e
−λAA−ω1ω′

h
∆−1(yk−yh|z)


G(2n−2)

ω1,ω
′
k

(x1,yk)

and hence we arrive at a formula for G(2n) in terms of G(2n−2):

G
(2n)
ω,ω′(x,y) =

n∑

k=1

(−1)k−1S
(2)
ω1,ω′

k
(x1 − yk)G

(2n−2)
ω1,ω

′
k

(x1,yk) · (236)

·
(

n∏

h=2

eλAA−ω1ωh
∆−1(yk−xh|x1−xh)

)


n∏

h=1
h6=k

e
−λAA−ω1ω′

h
∆−1(yk−yh|x1−yh)




where all Z factors disappeared. Such an iterative relation is clearly solved
by (228) together with (229).

Let us now assume that the expression (228) is correct; we want to check if
the corresponding truncated correlation functions satisfy the identity (214),
for n > 1. First of all, we remind the connection between the two kind

of functions. In order to abridge the notation, we put ϕ+
j
def
= ϕ+

xj ,ωj
and

ϕ−
j
def
= ϕ−

yj ,ω′
j
; furthermore, ifXj ⊂ X = {1, . . . , n}, we define ϕεXj

def
=
∏
k∈Xj

ϕεk,

with the factors ordered with decreasing k, if ε = +, and with increasing k
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otherwise. Expanding eW(0, ϕ) in powers of W, we find:

∂2neW

∂ϕ+
X∂ϕ

−
X

(0, 0) =
n∑

m=0

1

m!

∗∑

X1,...,Xm

∑

π∈PX1,...,Xm
X

(−1)π · (237)

∂2|X1 |W
∂ϕ+

X1
∂ϕ−

π(X1)

(0, 0) . . .
∂2|Xm|W

∂ϕ+
Xm
∂ϕ−

π(Xm)

(0, 0)

where
∑∗
X1,...,Xm

denotes the sum over all the possible partitions of X into m,

distinguishable and non empty subsets X1, . . . , Xm. Furthermore, PX1,...,Xm

X

is the quotient set of the permutations of the elements of X, PX , where two
elements are identified if they differ only for a permutation in PX1⊗· · ·⊗PXm .

To find out the explicit expression of the truncated functions, we define

V (xs|Pt) def= λAA−ωsω′
t
∆−1(xs − yt|xs − xt)

Vs,t
def
= V (xs|Pt) − V (ys|Pt) (238)

and, exploiting the analogy of the expression (229) with the partition func-
tion of a lattice gas, we perform the Mayer expansion:

G(2n)
ω,ω′ (x,y) =




s<t∏

s,t∈X

(
eVs,t − 1 + 1

)



n∏

j=1

S
(2)
ωj ,ω′

j
(xj,yj) = (239)

=
n∑

m=0

1

m!

∗∑

X1,...,Xm

m∏

i=1

∑

g∈C(Xi)

∏

〈s,t〉∈g

(
eVs,t − 1

) ∏

k∈Xi

S
(2)
ωk,ω

′
k
(xk,yk)

where the link 〈s, t〉 is the order pair of the elements s, t ∈ X; C(X) is the set
of the graphs containing a path which connects every element of X; when Xj

is made of only one point, there is no possible graph; as usual, the product
over empty sets gives 1 by definition. Therefore the comparison with (237)
gives the following expression for the truncated functions:

S
(2n)
ω,ω′ (x,y) =

∑

π∈PX

(−1)πS̃
(2n)
ω,π(ω′)(x, π(y)) (240)

with

S̃
(2n)
ω,ω′ (x,y) =

∑

g∈C(X)

∏

〈s,t〉∈g

(
eVs,t − 1

) ∏

k∈X
S

(2)
ωk,ω

′
k
(xk,yk) (241)

We now perform some manipulations. From the previous expression we get


s6=1∏

s∈X
e−V (x1|Ps)


 e−λAA−∆−1(x1−y1|z)S̃

(2n)
ω,ω′ (x,y) =

= δω1,ω′
1
gω1(x1 − y1)

(
n∏

k=2

S
(2)
ωk,ω

′
k
(xk − yk)

)
· (242)

·
∑

g∈C(X)

〈s,1〉/∈g∏

s∈X

(
e−V (x1|Ps)

)



〈s,1〉∈g∏

s∈X
e−V (y1|Ps) − e−V (x1|Ps)




s,t6=1∏

〈s,t〉∈g

(
eVs,t − 1

)
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and therefore, by taking a derivative w.r.t. x1, we find

∂x1
ω1





s6=1∏

s∈X
e−V (x1|Ps)


 e−λAA−∆−1(x1−y1|z)S̃

(2n)
ω,ω′ (x,y)


 =

= δω1,ω′
1
gω1(x1 − y1)

(
n∏

k=2

S
(2)
ωk,ω

′
k
(xk − yk)

)
· (243)

·
h6=1∑

h∈X

∑

g∈C(X)




s6=h
〈s,1〉/∈g∏

s∈X
e−V (x1|Ps)




s6=h
〈s,1〉∈g∏

s∈X

(
e−V (y1|Ps) − e−V (x1|Ps)

)
·

·
s,t6=1∏

〈s,1〉∈g

(
eVs,t − 1

)
(−1)Θ[〈h,1〉/∈g]e−V (x1|Ph)(∂1V )(x1|Ph)

where Θ[·] is equal to 1 if the relation [·] is true; Θ[·] is zero otherwise. If the

graph g ∈ C(X) does not contain the link 〈h, 1〉, then also the graph g ′
def
= g∪

〈h, 1〉 is in C(X); because of the factor (−1)Θ[〈h,1〉/∈g] their contribution cancel
each other. We call C〈h,1〉(X) the remaining set of graphs: it is made of the
graphs in C(X) which are no longer in C(X) if the link 〈h, 1〉 is erased.
Clearly they can be also constructed by joining with the link 〈h, 1〉 two
graphs g1 ∈ C(X1) and gh ∈ C(Xh), for any choice of disjoint X1 and Xh s.t.
1 ∈ X1, h ∈ Xh and X1∪Xh = X. Because of these considerations we arrive
at the expression

∂x1
ω1





s6=1∏

s∈X
e−V (x1|Ps)


 e−λAA−∆−1(x1−y1|z)S̃

(2n)
ω,ω′ (x,y)


 = (244)

=



s6=1∏

s∈X
e−V (x1|Ps)


 e−λAA−∆−1(x1−y1|z)

(
n∏

k=1

S
(2)
ωk,ω

′
k
(xk − yk)

)
·

·
h6=1∑

h∈X

∗∗∑

X1,Xh

∑

g1∈C(X1)
gh∈C(Xh)

(∂1V )(x1|Ph)

 ∏

(s,t)∈g1
eVs,t − 1




 ∏

(s,t)∈gh

eVs,t − 1




where
∑∗∗
X1,Xh

is the same of
∑∗
X1,Xh

, with the further constraint that 1 ∈ X1

and h ∈ Xh (such a notation is abusive, but quite clear): therefore X1, Xh is

ordered, and there is no factor (1/2!). As consequence, for n > 1, S
(2n)
ω,ω′ (x,y)

satisfy (214), that, after suitable derivatives in the fields, reads

∂x1
ω1
S

(2n)
ω,ω′ (x,y) = λA

n∑

h=2

∗∗∑

X1,Xh

∑

π∈PX1,Xh
X

(−1)πMn,h
X1,Xh

(x,y◦π) + (245)

+λA

[
n∑

h=2

A−ω1ωh
g−ω1(x1 − xh) −

n∑

h=1

A−ω1ω′
h
g−ω1(x1 − yh)

]
S

(2n)
ω,ω′ (x,y)
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with

Mn,h
X1,Xh

(x,y)
def
=
[
A−ω1ωh

g−ω1(x1 − xh) − A−ω1ω′
h
g−ω1(x1 − yh)

]
·

·S(2|X1|)
ωX1

,ω′
X1

(xX1
,y

X1
)S

(2|Xh|)
ωXh

,ω′
Xh

(xXh
,y

Xh
) (246)
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