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We derive an upper bound on the ground state energy of the three-dimensional (3D) repulsive
Hubbard model on the cubic lattice agreeing in the low density limit with the known asymptotic
expression of the ground state energy of the dilute Fermi gas in the continuum. As a corollary, we
prove an old conjecture on the low density behavior of the 3D Hubbard model, i.e., that the total
spin of the ground state vanishes as the density goes to zero.

I. INTRODUCTION

Recent developments in the theory of low density Bose and Fermi gases made it possible to
verify old conjectures on the leading asymptotics for the ground state energy of dilute gases of
bosons or fermions in the continuum, interacting with positive short range potentials. While
the heuristing argument suggesting that the ground state energy of the 3D hard-core Bose gas
is proportional to the scattering length a of the potential goes back to Lenz [Le], the first ideas
in the direction of proving that Lenz’s formula is correct in the low density limit are due to
Dyson [D], who first established an asymptotically correct upper bound and a rigorous (but 14
times too small) lower bound for the hard core Bose gas in 3 dimensions. An asymptotically
correct lower bound was proven much more recently by Lieb and Yngvason [LY]. Their work
inspired much of the recent developments in the rigorous theory of low density quantum many
body systems, see [LSSY] for a comprehensive review of the subject till 2005. In particular, a
result that we would like to mention, strictly related to the problem studied in this paper, is
the proof in [LSS] that the ground state energy per unit volume of the 3D Fermi gas in the
continuum with short range repulsive interaction (and scattering length a > 0) is given, in the
low density limit ρa3 → 0, by:

e(ρ↑, ρ↓) =
h̄2

2m

3

5
(6π2)2/3(ρ

5/3
↑ + ρ

5/3
↓ ) +

h̄2

2m
8πaρ↑ρ↓ + o(aρ2) (1.1)

where ρ↑,↓ are the densities of spin up and spin down particles and m is their mass. Moreover
ρ = ρ↑ + ρ↓ and o(aρ2) is a suitable function of the total density ρ and of the scattering length
a vanishing faster than aρ2 in the limit ρa3 → 0.

It is very natural to ask whether a formula similar to (1.1) is valid for a dilute Fermi gas with
short range repulsive interaction on the lattice and, in particular, for the most popular model for
correlated electrons in condensed matter physics: the Hubbard model. The Hubbard model is
the simplest possible lattice model of interacting electrons displaying many “real world” features
and in the last 40 years it has been subject of intense research efforts. Nonetheless, even its
qualitative behavior in 2 or 3 dimensions is far from clear and there are very few rigorous results
available in the literature. A survey of known results and open problems in the Hubbard model
can be found in [Li] and in [T].

In the present paper we shall derive an upper bound for the ground state energy of the 3D
repulsive Hubbard model on the cubic lattice with the same asymptotic behavior as (1.1). As
a corollary we shall prove one of the open problems posed by Elliott Lieb in his review article
on the Hubbard model (see [Li, Problem 3]). More precisely, we shall prove the following old
conjecture on the low density behavior of the 3D Hubbard model.

Proposition. Let Smax = Ntot/2 be the maximum spin a system of Ntot electrons can
achieve and let S be the spin of the ground state of the 3D repulsive Hubbard model in a cubic
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box Λ ⊂ Z
3 in presence of Ntot electrons (or the maximum such spin in case of degeneracy).

Then

lim
ρ→0

lim
|Λ|→∞

S/Smax = 0 , (1.2)

where the thermodynamic limit is taken keeping the total density ρ = Ntot/|Λ| fixed.

Remark. A sketch of the proof of this claim already appeared in [BLT]: in this note we
provide all the details of the necessary computations as well as an explicit bound on the rate
of convergence (see Corollary 1 below). Our strategy imitates the one in [LSS].

The paper is organized as follows. In the next two subsections we shall introduce the model,
introduce the notion of scattering length and state the main results, i.e., the upper bound on
the ground state energy and an explicit bound on the rate of convergence of S/Smax to 0 in
(1.2). In Sec.II and in the two Appendices we shall give the proof.

A. The model

Given a cubic lattice Λ of lattice spacing r0, the Hamiltonian of the Hubbard model on Λ for
N spin-up particles and M spin-down particles can be written as:

H = −∆X − ∆Y + UvXY (1.3)

where:
1) X = (x1, . . . , xN ) and Y = (y1, . . . , yM ) are the coordinates of the spin-up and spin-down
particles, respectively;

2) ∆X =
∑N

i=1 ∆xi
, ∆Y =

∑M
j=1 ∆yj

and ∆xf(x) = r−2
0

∑
x′:|x′−x|=r0

(f(x′) − f(x));

3) vXY =
∑N

i=1

∑M
j=1 δxi,yj

;

4) U ≥ 0;
5) H acts on the space of functions antisymmetric in the X and in the Y coordinates separately
and vanishing outside the box Λ (Dirichlet boundary conditions).

Remark. In this note we restrict for simplicity to the case of a nearest neighbor hopping
and a delta interaction, however the analysis below can be generalized to cases with differ-
ent hopping terms and different short range interactions (not necessarily zero - or finite - range).

We want to obtain an upper bound for the ground state energy that is asymptotically correct,
at the lowest order, as ρa3 → 0, where ρ = (N + M)/|Λ| and a is the scattering length of the
potential. The latter can be conveniently defined in terms of the solution to the zero energy
scattering equation

−∆xϕ(x) +
U

2
δx,0ϕ(x) = 0 (1.4)

subject to the boundary condition lim|x|→∞ ϕ(x) = 1. The solution is

ϕ(x) = 1 − 4π
a

r0

∫

|ki|≤πr−1

0

d3k

(2πr−1
0 )3

eikx

2
∑3

i=1(1 − cos kir0)
(1.5)

where the coefficient a has the interpretation of scattering length and is given by

8πa = r0
Ur2

0

Ur2
0γ + 1

, γ =
1

2

∫

|ki|≤π

d3k

(2π)3
1

2
∑3

i=1(1 − cos ki)
. (1.6)

Note that lim|x|→∞(1− ϕ(x))|x| = a (this means that at large distances ϕ(x) looks very much
like the scattering solution in the continuum, i.e. ϕ(x) ' 1− a/|x| at large distances) and that
8πa ≤ Ur3

0 (this is the analogue of the inequality of Spruch and Rosenberg [SR] in the lattice
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case). Another important remark is that, given any simply connected domain Ω containing the
origin, the “flux” of the discrete derivative of ϕ(x) across the boundary of Ω is independent of
Ω and equal to 4πa:

(∂Ω)∑

<x,x′>

(ϕ(x′) − ϕ(x)) = 4πa (1.7)

where
∑(∂Ω)

<x,x′> is the sum over the bonds connecting nearest neighbor sites with x ∈ Ω and

x′ ∈ Ωc. This simply follows by the remark that ∆ϕ(x) = 0, ∀x 6= 0, and by discrete “integration
by parts”.

B. Main results

We are now ready to state our main result.

Theorem 1. Fix ρ↑ = N/|Λ|, ρ↓ = M/|Λ| and ρ = ρ↑ + ρ↓, and let E0(N, M, Λ) denote the
ground state energy of H with the appropriate antisymmetry in each of the N, M coordinate
variables. Then, for small ρa3,

lim
|Λ|→∞

1

|Λ|
E0(N, M, Λ) ≤ e0(ρ↑, ρ↓) + 8πaρ↑ρ↓ + aρ2ε(ρa3), (1.8)

where e0(ρ↑, ρ↓) is the specific ground state energy of the free Fermi gas on the lattice, i.e., of

(1.3) with U = 0, and 0 ≤ ε(ρa3) ≤ const (ρ1/3a)2/9.

Remarks.

1) The theorem is valid for any repulsion strength U ≥ 0, including the limiting case U = +∞
of infinite repulsion.
2) If ρr3

0 � 1, the specific ground state energy of the free Fermi gas on the lattice can be written
as

e0(ρ↑, ρ↓) =
3

5

(
6π2
)2/3

(ρ
5/3
↑ + ρ

5/3
↓ ) + const r2

0ρ
7/3

Then, as long as a/r0 �
√

ρ1/3a, in the r.h.s. of (1.8) we can replace e0(ρ↑, ρ↓) by
3
5

(
6π2
)2/3

(ρ
5/3
↑ + ρ

5/3
↓ ) and still have an error term that is much smaller than ρ2a. In this case

the upper bound (1.8) looks precisely the same as (1.1).
3) It would be nice to establish that the r.h.s. of (1.8) is the correct low density behavior of
the ground state energy of the 3D Hubbard model. In order to prove this we should provide a
lower bound with the same asymptotic behavior as the r.h.s. of (1.8). The natural idea would
be to proceed as in the continuum case [LSS], that is by exploiting Dyson’s idea of replacing
the “hard” interaction potential by a “soft” one, at the expense of using up some kinetic
energy. Of course, in order to get the correct 0–th order contribution in the lower bound, we
need to use at least part of the kinetic energy to “fill the Fermi sea”: so technically one of
the main steps in the proof of the lower bound in [LSS] is the proof of a “Dyson Lemma” in
presence of an infrared cutoff, allowing for a replacement of the hard interaction by a soft one,
at the expense only of the high momentum part of the kinetic energy. We would expect that
this result is actually independent of the presence or absence of an underlying lattice struc-
ture: however the proof of the “Dyson Lemma” with infrared cutoff in [LSS] uses in a crucial
way rotational invariance of the problem and it is an open problem to adapt it to the lattice case.

The result of the Theorem above, combined with the remark that the first term in the
r.h.s. of (1.8) provides an obvious lower bound to the ground state energy, implies that

|E0(N, M, Λ) − E
(U=0)
0 (N, M, Λ)| ≤ const |Λ|aρ2 and this in turns implies that, if we fix the

total density ρ and minimize the energy over the possible choices of ρ↑,↓, we find that at low

density the absolute ground state satisfies |ρ↑ − ρ↓| ≤ const ρ
√

ρ1/3a This implies that the
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total spin S of the ground state satisfies the following.

Corollary 1. Let S be the total spin in the absolute ground state of model (1.3) and let
Smax = (N + M)/2. Then in the low density limit

lim
|Λ|→∞

S/Smax ≤ const
√

ρ1/3a (1.9)

where the thermodynamic limit is taken keeping the total density ρ = (N + M)/|Λ| fixed.

Remark. It is natural to ask whether there exists some number ρc > 0 such that
lim|Λ|→∞ S/Smax = 0 for all ρ < ρc (see Problem 4 in [Li]). Note that Corollary 1 does
not exclude this possibility. Note also that proving or disproving this possibility requires nec-
essarily some non perturbative argument: any approximate computation of the ground state
energy can only improve the error term in the r.h.s. of (1.9) but will never establish the exact
value of S/Smax.

II. THE UPPER BOUND

In this section we shall assume a/r0 > δ−1(ρ1/3a)2/9, with δ a constant to be chosen be-
low. In this case it is enough to prove the upper bound (1.8) with e0(ρ↑, ρ↓) replaced by
3
5

(
6π2
)2/3

(ρ
5/3
↑ + ρ

5/3
↓ ), see Remark (2) after the statement of the Theorem above. The weak

coupling regime a/r0 ≤ δ−1(ρ1/3a)2/9 is much simpler and will be treated in Appendix B.
It will be convenient to localize the particles into small boxes with Dirichlet boundary condi-

tions. The number of particles in each box will be large for small ρ, but finite and independent
of the size of the large container Λ. Let the side length of the small boxes be `. We then want
to put n = ρ↑`

3 spin-up particles into each box, and likewise m = ρ↓`
3 spin-down particles

(here ρ↑ = N |Λ|−1 and ρ↓ = M |Λ|−1). Since ρ↑,↓`
3 need not be an integer, however, we will

choose

n = ρ↑`
3 + ε↑ and m = ρ↓`

3 + ε↓, (2.1)

with 0 ≤ ε↑,↓ < 1 chosen such that n and m are integers. We then really have too many
particles, but this is legitimate for an upper bound, since the energy is certainly increasing with
particle number.

So, if E0(N, M, Λ) is the ground state energy of (1.3) in the box Ω, we have

lim
|Λ|→∞

1

|Λ|
E0(N, M, Λ) ≤

1

`3
E0(n, m, Λ`), (2.2)

where Λ` is the cubic box of side `. Here we used that the interaction potential is zero range, so
that different boxes of side ` are exactly decoupled. Note that actually the bound (2.2) is not
only valid in the thermodynamic limit, but also for all finite cubic boxes Λ with side divisible
by `.

We will now derive an upper bound on the ground state energy of n spin-up and m spin-down
particles in a cubic box of side length `, for general n, m and `. We take as a trial state the
function

Ψ(X, Y ) = Dn(X)Dm(Y )Gn(X)Gm(Y )F (X, Y ), (2.3)

where Dn(X) denotes the Slater determinant of the first n eigenfunctions of the Laplacian in
a cubic box of side length `, with Dirichlet boundary conditions; note that, if φα(x) are the
eigenfunctions of the single-particle Laplacian in a cubic box of side length `, we choose their
normalization in such a way that

∑
x r3

0φ
∗
α(x)φβ(x) = δα,β. Moreover,

Gn(X) =
∏

1≤i<j≤n

g(xi − xj), (2.4)
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with 0 ≤ g(x) ≤ 1, having the property that g(x) = 0 for |x| ≤ s and g(x) = 1 for |x| ≥ 2s, for
some s to be chosen later. We can assume that for any pair of nearest neighbor points x and
x′ we have |g(x′) − g(x)| ≤ const r0s

−1 for some constant independent of s. Finally,

F (X, Y ) =

n∏

i=1

m∏

j=1

f(xi − yj), (2.5)

where, given a simply connected domain Ω ⊂ Z
3 containing the origin, f(x) = 1 if x 6∈ Ω.

Inside Ω we choose f(x) to be the solution to the zero-energy scattering equation with boundary
conditions f(x) = ϕ(x)/〈ϕ〉∂Ω on the boundary ∂Ω of the domain (here ϕ(x) is given by (1.5),
∂Ω = {x ∈ Ω : dist(x, Ωc) = 1} and 〈ϕ〉∂Ω = |∂Ω|−1

∑
x∈∂Ω ϕ(x)). We shall make the following

explicit choice for the domain: Ω = BR ∩ Z
3, where BR = {x ∈ R

3 : ϕ(x) ≤ 1 − a/R}. Note
that, if R � r0, BR is approximately a ball of radius R. Moreover 〈ϕ〉∂Ω = 1−a/R+O(ar0/R2)
and, for any x ∈ ∂Ω, ϕ(x) = 〈ϕ〉∂Ω + O(ar0/R2). We assume δ−1r0 < R ≤ s/5, with δ the

same constant as in the condition a/r0 > δ−1(ρ1/3a)2/9 (to be chosen below).
By the variational principle,

E0(n, m, Λ`) ≤
〈Ψ|H |Ψ〉

〈Ψ|Ψ〉
, (2.6)

with

〈Ψ|H |Ψ〉 = 〈Ψ| − ∆X |Ψ〉 + 〈Ψ| − ∆Y |Ψ〉 + U〈Ψ|vXY |Ψ〉.

(here, for any operator Â, 〈Ψ|Â|Ψ〉 is defined as 〈Ψ|Â|Ψ〉 =
∑

X,Y r
3(n+m)
0 Ψ(X, Y ) Â Ψ(X, Y )

– note the presence of the factor r
3(n+m)
0 ). We first evaluate 〈Ψ| − ∆X |Ψ〉. By definition it is

equal to

1

r2
0

n∑

i=1

∑

X,Y

r
3(n+m)
0 Dm(Y )2Gm(Y )2Dn(X)Gn(X)F (X, Y ) · (2.7)

·
∑

x′
i
:|x′

i
−xi|=r0

[
Dn(X)Gn(X)F (X, Y ) − Dn(X ′

i)Gn(X ′
i)F (X ′

i , Y )
]

where, if X = {x1, . . . , xi, . . . , xn1
}, X ′

i is given by X ′
i = {x1, . . . , x

′
i, . . . , xn1

}. The r.h.s. of
this equation can be written as

∑

X,Y

r
3(n+m)
0 Dm(Y )2Gm(Y )2Gn(X)2F (X, Y )2Dn(X)(−∆X)Dn(X)

+
1

r2
0

n∑

i=1

∑

X,Y

r
3(n+m)
0

∑

x′
i
:|x′

i
−xi|=r0

Dm(Y )2Gm(Y )2Dn(X)Dn(X ′
i) · (2.8)

·Gn(X)F (X, Y )
[
Gn(X)F (X, Y ) − Gn(X ′

i)F (X ′
i , Y )

]

The first line is simply ED(n, `)〈Ψ|Ψ〉, where ED(n, `) is the sum of the lowest n eigenval-
ues of the Dirichlet Laplacian in the box of side ` (note that these eigenvalues are equal to

2r−2
0

∑3
i=1(1 − cos kir0), with ki positive integer multiples of π/`). An explicit computation

shows that

ED(n, `) ≤
3

5
(6π2)2/3 n5/3

`2

(
1 + constn−1/3 + constn2/3(r0/`)2

)
(2.9)

The second line, if we symmetrize over X, X ′
i, can be rewritten as

1

r2
0

n∑

i=1

∑

X\xi,Y

∑

<xi,x′
i
>

r
3(n+m)
0 Dm(Y )2Gm(Y )2Dn(X)Dn(X ′

i) · (2.10)

·
[
Gn(X)F (X, Y ) − Gn(X ′

i)F (X ′
i , Y )

]2



6

where
∑

<xi,x′
i
> is the sum over the nearest neighbor bonds in Λ`. By Cauchy-Schwarz, we can

bound the last expression from above by

1

r2
0

n∑

i=1

∑

X\xi,Y

∑

<xi,x′
i
>

r
3(n+m)
0 Dm(Y )2Gm(Y )2Dn(X)2 · (2.11)

·
[
Gn(X)F (X, Y ) − Gn(X ′

i)F (X ′
i , Y )

]2

We now use the Schwarz inequality to deduce (for some ε > 0 to be chosen later)

[
Gn(X)F (X, Y ) − Gn(X ′

i)F (X ′
i , Y )

]2

≤ (1 + ε)Gn(X ′
i)

2
[
F (X, Y ) − F (X ′

i , Y )
]2

(2.12)

+(1 + ε−1)F (X, Y )2
[
Gn(X) − Gn(X ′

i)
]2

Proceeding in the same way for the kinetic energy of the Y -particles, we thus get the upper
bound

〈Ψ|H |Ψ〉 ≤
[
ED(n, `) + ED(m, `)

]
〈Ψ|Ψ〉 + (1 + ε)I2 +

(
1 + ε−1

)
I3, (2.13)

with:

I2 =
∑

X,Y

r
3(n+m)
0 Dn(X)2Dm(Y )2 ·

·

{
Gm(Y )2

1

2

n∑

i=1

∑

x′
i
:|x′

i
−xi|=r0

Gn(X ′
i)

2
[F (X ′

i , Y ) − F (X, Y )

r0

]2

+Gn(X)2
1

2

m∑

j=1

∑

y′
j
:|y′

j
−yj |=r0

Gm(Y ′
j )2
[F (X, Y ′

j ) − F (X, Y )

r0

]2

+UGn(X)2Gm(Y )2vXY F (X, Y )2

}
(2.14)

and

I3 =
∑

X,Y

r
3(n+m)
0 Dm(Y )2Dn(X)2F (X, Y )2 · (2.15)

·

{
Gm(Y )2|∇XG(X)|2 + Gn(X)2|∇Y G(Y )|2

}

where |∇XG(X)|2 =
∑n

i=1 |∇iG(X)|2 and |∇iG(X)|2 = 1
2

∑
ω=± |∇ω

i G(X)|2. Moreover, for

any function g(x), the ω-gradient of g is defined as ∇ωg(x) =
∑3

`=1 ωê`

[
g(x + ωr0ê`) − g(x)

]

with ê` the coordinate versor in the `-th direction. A similar definition is valid for |∇Y G(Y )|2.
The positivity of UvXY has been used here. Note that ED(n, `) and ED(m, `) can be bounded
as in (2.9). We shall now bound I2 and I3, when divided by 〈Ψ|Ψ〉, separately.

Let us first derive an upper bound on I2. We are going to need the following lemma [LSS].

Lemma 1. Let Dn(X) denote a Slater determinant of n linearly independent func-
tions φα(x). For a given function h(x) of one variable, let Φ(X) be the function Φ(X) =
Dn(X)

∏n
i=1 h(xi), and let M denote the n × n matrix

Mαβ =
∑

x

r3
0φ

∗
α(x)φβ(x)|h(x)|2 . (2.16)
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Then the norm of Φ is given by 〈Φ|Φ〉 = det M . Moreover, for 1 ≤ k ≤ n, the k-particle
densities of Φ are given by

(
n
k

)
1

〈Φ|Φ〉

∑

xk+1,...,xn

r
3(n−k)
0 |Φ(X)|2 = (2.17)

=
1

k!

k∏

i=1

|h(xi)|
2
(
x1 ∧ · · · ∧ xk

∣∣M−1 ⊗ · · · ⊗ M−1
∣∣x1 ∧ · · · ∧ xk

)
,

where |x) denotes the n-dimensional vector with components φα(x), 1 ≤ α ≤ n, and |x1 ∧
· · · ∧ xk) stands for the Slater determinant (k!)−1/2

∑
σ(−1)σ|xσ(1)) ⊗ · · · ⊗ |xσ(k)), σ denoting

permutations. Finally, if Φ′
i(X) = Dn(X)k(xi)

∏
j 6=i h(xj) for some function k(x), then

n∑

i=1

〈Φ′
i|Φ

′
i〉 =

(
det M

)(
Tr[KM−1]

)
, (2.18)

where Tr[ · ] denotes the trace, and K is the n × n matrix

Kαβ =
∑

x

r3
0φ

∗
α(x)φβ(x)|k(x)|2 . (2.19)

Using Gn(X ′
i) ≤ 1, we infer from this lemma that, for any fixed Y ,

∑

X

r3n
0 Dn(X)2

{
1

2

n∑

i=1

∑

x′
i
:|x′

i
−xi|=r0

Gn(X ′
i)

2
[F (X ′

i , Y ) − F (X, Y )

r0

]2

+
U

2
Gn(X)2vXY F (X, Y )2

}

≤
∑

X

r3n
0 Dn(X)2

{
|∇XF (X, Y )|2 +

U

2
vXY F (X, Y )2

}
(2.20)

= Tr{KY M−1
Y }

∑

X

r3n
0 Dn(X)2F (X, Y )2

The n× n matrices KY and MY are given by (2.16) and (2.19), with φα(x) being the lowest n
Dirichlet eigenfunctions of −∆, and with h(x) =

∏
j f(x − yj) and

|k(x)|2 = |∇h(x)|2 +
U

2

∑

j

δx,yj

∏

j

f(x − yj)
2,

respectively (here |∇h(x)|2 = (2r2
0)

−1
∑

x′:|x′−x|=r0
|h(x) − h(x′)|2, see definition after (2.15)).

Since KY is a positive definite matrix, we have the bound TrKY M−1
Y ≤ ‖M−1

Y ‖TrKY , where

‖ · ‖ denotes the (spectral) matrix norm. To calculate TrKY , and to bound ‖M−1
Y ‖, we can

assume that all the yj ’s are separated by at least a distance s, because the summand in (2.14)
vanishes otherwise.

Since s ≥ 5R by assumption, we have in this case |k(x)|2 =
∑n

j=1 ξ(x − yj) with

ξ(x − y) = |∇f(x − y)|2 +
U

2
δx,yf(x − y)2 . (2.21)

Hence, if ρD
n (x) denotes the one-particle density of Dn(X), we have

TrKY =

m∑

j=1

∑

x

r3
0ρ

D
n (x)ξ(x − yj)

def
=

m∑

j=1

ρD
n ∗ ξ(yj), (2.22)

where ∗ denotes convolution. In order to bound ‖M−1
Y ‖, we use the following:
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Lemma 2. Assume that |yi − yj | ≥ s ≥ 5R for all i 6= j. Then if r0/R, n−1 and n(r0/`)3

are sufficiently small

‖1− MY ‖ ≤ const

(
aR2

s3
+ n2/3 s2

`2

)
. (2.23)

Proof. Let q(x) = 1 −
∏

j f(x − yj)
2 ≥ 0. Then, for any n-dimensional vector |b) with

components bα,

(
b
∣∣1 − MY

∣∣b
)

=
∑

x

r3
0q(x)

∣∣∣
∑

α

bαφα(x)
∣∣∣
2

.

Hence, the question about the largest eigenvalue of 1−MY translates into the question of how
large the average potential energy for the potential q(x) can be for functions such as

∑
α bαφα(x)

whose kinetic energy is bounded above by (const.) n2/3`−2, i.e., the Fermi energy for n particles
(under the assumption that n � 1 and nr3

0 � `3).
Let Qj denote the cube of side s/2 centered at yj . Note that all these cubes are non-

overlapping by assumption. Also, since s ≥ 5R, q(x) = 0 if x is outside all the cubes (recall
that by definition – see the lines following (2.5) – f(x) is identically 1 outside a region BR

of radius R
[
1 + O

(
(r0/R)κ

)]
, for some κ > 0). For a given function φ(x), let φj denote the

average of φ(x) in the cube Qj . Moreover, let η(x) = φ(x) − φj . By the Cauchy-Schwarz
inequality (a + b)2 ≤ 2(a2 + b2), we get the bound

∑

x∈Qj

q(x)|φ(x)|2 ≤ 2
∑

x∈Qj

q(x)|η(x)|2 + 2|φj |
2
∑

x∈Qj

q(x). (2.24)

Note that |φj |
2 ≤ 8s−3

∑
x∈Qj

r3
0 |φ(x)|2, again by the Cauchy-Schwarz inequality. Moreover,

since s ≥ R,

∑

x∈Qj

r3
0q(x) =

∑

x∈BR

r3
0(1 − f(x)2) ≤ const aR2.

To obtain the last inequality, we used that if x ∈ BR then f(x) = ϕ(x)/〈ϕ〉∂Ω ≥ ϕ(x), with
ϕ(x) defined in (1.5).

Note that η(x) is a function whose average over the cube Qj is zero. In other words, it is
orthogonal to the constant function in Qj . Hence, using the fact that q(x) ≤ 1:

∑

x∈Qj

r3
0q(x)|η(x)|2 ≤

∑

x∈Qj

r3
0 |η(x)|2 (2.25)

≤
1

2(1 − cos(2πr0s−1))

∑

x,x′∈Qj

|x−x′|=r0

r3
0 |η(x) − η(x′)|2 ,

where we used that 2r−2
0 (1 − cos(2πr0s

−1)) is the second eigenvalue of the discrete Neumann
Laplacian in the cube of side s/2 and mesh r0. In this last expression we can replace η(x) by
φ(x), of course, since they only differ by a constant. Summing over all the cubes Qj (and using
that q(x) = 0 outside the cubes), we thus obtain that, for any function φ(x),

∑

x

r3
0q(x)|φ(x)|2 ≤ const

[
aR2

s3

∑

x

r3
0 |φ(x)|2 + s2

∑

x

r3
0 |∇φ(x)|2

]
.

In the case in question, the kinetic energy of φ(x) is bounded by constn2/3`−2. This finishes
the proof of the lemma.

Since 0 ≤ MY ≤ 1 as a matrix, this lemma implies that

‖M−1
Y ‖ =

1

1 − ‖1 − MY ‖
≤ An ≡

1

1 − const
[
aR2/s3 + n2/3(s/`)2

] , (2.26)
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provided the denominator is positive. By inserting (2.22) and (2.26) into (2.20), we see that,
for fixed Y with |yi − yj | ≥ s for all i 6= j,

∑

X

r3n
0 Dn(X)2

{
|∇XF (X, Y )|2 +

U

2
vXY F (X, Y )2

}

≤ An

n∑

j=1

ρD
n ∗ ξ(yj)

∑

X

r3n
0 Dn(X)2F (X, Y )2 . (2.27)

To be able later to compare this expression (2.27) with 〈Ψ|Ψ〉, we want to put Gn(X)2 back
into the integrand. For this purpose we need the following lemma, which compares the integrals
with and without the factor Gn(X)2.

Lemma 3. For any fixed Y , if n−1 and n(r0/`)3 are sufficiently small
∑

X

r3n
0 Dn(X)2F (X, Y )2Gn(X)2

≥
∑

X

r3n
0 Dn(X)2F (X, Y )2

(
1 − const n8/3‖M−1

Y ‖2(s/`)5
)

. (2.28)

Proof Since g(x) = 1 for |x| ≥ 2s, we have

Gn(X)2 ≥ 1 −

n∑

i<j

θ(2s − |xi − xj |). (2.29)

Here θ denotes the Heaviside step function, i.e., θ(t) = 1 for t ≥ 0 and θ(t) = 0 for t < 0. To
evaluate the sum involving the second term in (2.29), we need the two-particle density of the
state Dn(X)F (X, Y ) for each fixed Y . By Lemma 1 above, and the fact that f(x) ≤ 1, this

density, when appropriately normalized, is bounded from above by ‖M−1
Y ‖2ρ

D,(2)
n (x, x′), where

ρ
D,(2)
n (x, x′) denotes the two-particle density of the determinantal state Dn(X). In particular,

by explicit computation one finds that, if n � 1 and nr3
0 � `3, this latter density satisfies the

bound

ρD,(2)
n (x, x′) ≤ const |x − x′|2(n/`3)8/3 (2.30)

for some constant independent of n and `. Hence we arrive at (2.28).
Let

Bn =
(
1 − constn8/3A2

n(s/`)5
)−1

,

assuming that the term in parenthesis is positive. Applying Lemma 3 to inequality (2.27), we
arrive at

∑

XY

r
3(n+m)
0 Gn(X)2Dn(X)2

[
|∇XF (X, Y )|2 +

U

2
vXY F (X, Y )2

]
Dm(Y )Gm(Y )

≤ AnBn

n∑

j=1

∑

XY

r
3(n+m)
0 ρD

n ∗ ξ(yj)Dm(Y )2Dn(X)2F (X, Y )2Gm(Y )2Gn(X)2 . (2.31)

Now we cannot bound ρD
n ∗ ξ(y) independently of y by simply using the supremum of ρD

n (x),
since this number will be strictly bigger than n/`3, even in the thermodynamic limit. Instead,
we repeat the above argument for the Y integration. We use |Gm(Y )| ≤ 1, the Y -analogues of
Lemma 1 and then Lemma 3 to put Gm(Y )2 back in. Here, it is important to note that now
the xi’s are separated by at least a distance s ≥ 5R. In this way we obtain

∑

X,Y

r
3(n+m)
0 Gn(X)2Dn(X)2

[
|∇XF (X, Y )|2 +

U

2
vXY F (X, Y )2

]
Dm(Y )Gm(Y )

≤ AnBnBm

∑

XY

r
3(n+m)
0 Dm(Y )2Dn(X)2F (X, Y )2Gm(Y )2Gn(X)2 TrK̂XM−1

X (2.32)
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The matrix MX is the same as before, with Y replaced by X (and n replaced by m, of course),

and K̂X is the m × m matrix

(K̂X)αβ =
∑

y

r3
0φα(y)∗φβ(y)

∏

i

f(y − xi)
2ρD

n ∗ ξ(y) .

Using |f(x)| ≤ 1 and ‖M−1
X ‖ ≤ Am, which follows from Lemma 2 and the fact that the xi’s are

separated at least by a distance s, we get the bound

TrK̂XM−1
X ≤ AmTrK̂X ≤ Am

∑

x,y

r6
0ρ

D
n (x)ρD

m(y)ξ(x − y) . (2.33)

A computation (see Appendix A) shows that

∑

x

r3
0ξ(x) ≤ 4πa(1 + const a/R) . (2.34)

We then use this information to bound the last sum in (2.33), by using Schwarz’s inequality:

∑

x,y

r6
0ρ

D
n (x)ρD

m(y)ξ(x − y)

≤

(
∑

x,y

r6
0ρ

D
n (x)2ξ(x − y)

)1/2(∑

x,y

r6
0ρ

D
m(y)2ξ(x − y)

)1/2

=

(
∑

x

r3
0ρ

D
n (x)2

)1/2(∑

y

r3
0ρ

D
m(y)2

)1/2∑

x

r3
0ξ(x) (2.35)

≤

(
∑

x

r3
0ρ

D
n (x)2

)1/2(∑

y

r3
0ρ

D
m(y)2

)1/2

4πa (1 + const
a

R
).

For the square of ρD
n (x), by an explicit computation we find

∑

x

r3
0ρ

D
n (x)2 ≤

n2

`3

(
1 + const n−1/3 + const n2/3(r0/`)2

)
. (2.36)

The same holds with n replaced by m. Eq. (2.32) thus implies the upper bound

∑

XY

r
3(n+m)
0 Gn(X)2Dn(X)2

[
|∇XF (X, Y )|2 +

U

2
vXY F (X, Y )2

]
Dm(Y )Gm(Y )

≤ 〈Ψ|Ψ〉
4πanm

`3
AnAmBnBm · (2.37)

·
[
1 + const

( a

R
+ n−1/3 + m−1/3 + (n + m)2/3(r0/`)2

)]
.

The same bound holds, of course, with X and Y interchanged. We therefore have the upper
bound

I2 ≤ 〈Ψ|Ψ〉
8πanm

`3
AnAmBnBm · (2.38)

·
[
1 + const

( a

R
+ n−1/3 + m−1/3 + (n + m)2/3(r0/`)2

)]
.

It remains to bound the term I3. Using |g(x)| ≤ 1 we have that

|∇XGn(X)|2 ≤
1

2

∑

ω=±

[
n∑

i=1

∑

j, j 6=i

|∇ωg(xi − xj)|
2

+

n∑

i=1

∑

j, j 6=i

∑

k, k 6=i,j

|∇ωg(xi − xj) · ∇
ωg(xi − xk)|

]
, (2.39)
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where the ω-gradient ∇ω was defined after (2.15). Now, by Lemma 1, the appropriately normal-

ized k-particle densities of Dn(X)F (X, Y ) are bounded above by ‖M−1
Y ‖kρ

D,(k)
n , where ρ

D,(k)
n

denotes the k-particle density of Dn(X). In particular, ρ
D,(2)
n satisfies the bound (2.30), and

ρ
D,(3)
n satisfies

ρD,(3)
n (x, x′, x′′) ≤ const (n/`3)3

for some constant independent of n and `. Remember that, by the definition of g (see lines
following (2.4)), if x and x′ are two neighbor points, g(x′) − g(x) is zero for |x| > 2s and
otherwise |g(x′) − g(x)| ≤ const r0s

−1. Using this, we obtain from (2.39), for any fixed Y ,

∑

X

r3n
0 Dn(X)2F (X, Y )2|∇XGn(X)|2 (2.40)

≤ const
n2

`3
s
(
‖M−1

Y ‖2n2/3(s/`)2 + ‖M−1
Y ‖3n(s/`)3

)∑

X

r3n
0 Dn(X)2F (X, Y )2 .

Finally, to get a bound on I3, we proceed as above, using (2.26) (and the fact that the yj ’s are
separated by a distance s) and Lemma 3 to put Gn(X)2 back into the integral. Note, however,
that it is enough to bound An and Bn by constants in this term. Assuming that n(s/`)3 is
small, the second term in the parenthesis in (2.40) is negligible compared to the first term. The
same bound applies to the case where X and Y are interchanged, and hence we obtain

I3 ≤ 〈Ψ|Ψ〉 const
(
n8/3 + m8/3

)s3

`5
. (2.41)

Collecting all the error terms obtained in Eqs. (2.9), (2.38) and (2.41) and inserting them
into (2.6) and (2.13), we obtain

E0(n, m, Λ`) ≤

≤
3

5
(6π2)2/3 n5/3 + m5/3

`2

(
1 + Cn−1/3 + Cm−1/3 + C(n + m)2/3(r0/`)2

)

+8πa
nm

`3

(
1 + ε + C

[
aR2

s3
+ (n + m)2/3(s/`)2

+
a

R
+

1

n1/3
+

1

m1/3
+ (n + m)8/3(s/`)5

])
(2.42)

+
Cs

ε

(n + m)2

`3

[
(n + m)2/3(s/`)2

]

for some constant C > 0. In Ineq. (2.42) we have assumed smallness of all the error terms,
i.e., that the terms in square brackets are small. This condition will be fulfilled, at low density,
with our choice of R, s, n, m and ` below.

The optimal choice of ε in (2.42) is given by ε2 = const (n+m)8/3s3/(`2anm). Inserting this
value for ε we infer from (2.42)

E0(n, m, Λ`) ≤

≤
3

5
(6π2)2/3 n5/3 + m5/3

`2

(
1 + Cn−1/3 + Cm−1/3 + C(n + m)2/3(r0/`)2

)

+8πa
nm

`3

(
1 + C

[
aR2

s3
+ (n + m)2/3(s/`)2

+
a

R
+

1

n1/3
+

1

m1/3
+ (n + m)8/3(s/`)5

])
(2.43)

+C(n + m)7/3 s3/2a1/2

`4
.

Eq. (2.44) is our final bound on the energy E0(n, m, `). To apply this result in (2.2) we have
to insert the values (2.1) for n and m. Recall that |n − ρ↑`

3| ≤ 1 and |m − ρ↓`
3| ≤ 1. We are
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then still free to choose R, s and `. We choose

R = a
(
aρ1/3

)−2/9
, s = 6R , ` = ρ−1/3

(
aρ1/3

)−11/9
.

Note that with these choices the condition a/r0 > δ−1(ρ1/3a)2/9 implies r0/R < δ. We choose
δ to be so small that Lemma 2 is valid. Inserting these values into (2.44) we thus obtain, for
small ρ,

1

`3
E0(n, m, Λ`) ≤

3

5
(6π2)2/3

[
ρ
5/3
↑ + ρ

5/3
↓

]
+ 8πaρ↑ρ↓ + const aρ2

(
aρ1/3

)2/9
.

In combination with Eq. (2.2), this finishes the proof of the upper bound in the case a/r0 ≥
δ−1(ρ1/3a)2/9. The opposite case (that is much simpler) is treated in Appendix B.
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APPENDIX A: PROOF OF (2.34)

In this Appendix we want to show that if ξ(x) is defined by (2.21) then
∑

x r3
0ξ(x) ≤ 4πa(1+

consta/R). Note that “integrating by parts” we can rewrite the summation as:

∑

x

r3
0ξ(x) =

∑

x

r3
0f(x)(−∆x)f(x) +

U

2
f(0)2 (A.1)

Note also that, by definition, if x ∈ Ω then f(x) coincides with ϕ(x)/〈ϕ〉∂Ω, while if x 6∈ Ω
then f(x) = 1. Then, by the definition of ϕ(x), we see that in the summation in (A.1) all
terms with x “well inside” Ω (i.e. with x such that dist(x, Ωc) ≥ 2r0) cancel out with U

2 f(0)2,
and all terms with x “well outside” Ω (i.e. with x such that dist(x, Ω) ≥ 2r0)) are identically
zero. So we are left with a boundary term, that is a summation over the x’s at a distance
r0 from Ω or from Ωc. Let us recall that ∂Ω = {x ∈ Ω : dist(x, Ωc) = r0} and let us define
∂Ωc = {x ∈ Ωc : dist(x, Ω) = r0}. The r.h.s. of (A.1) can be rewritten as

∑

x∈∂Ω

r3
0f(x)(−∆)f(x) +

∑

x′∈∂Ωc

r3
0f(x′)(−∆)f(x′) (A.2)

=
∑

x∈∂Ω

r0
ϕ(x)

〈ϕ〉∂Ω

(x)∑

x′∈∂Ωc

[
ϕ(x′)

〈ϕ〉∂Ω

− 1

]
+

∑

x′∈∂Ωc

r0

(x′)∑

x∈∂Ω

[
1 −

ϕ(x)

〈ϕ〉∂Ω

]

where
∑(x)

x′∈∂Ωc is the sum over the points x′ ∈ ∂Ωc at a distance r0 from x (and similarly for
∑(x′)

x∈∂Ω). The second line in (A.2) can still be rewritten as

∑

x∈∂Ω

r0

[
ϕ(x)

〈ϕ〉∂Ω

− 1

] (x)∑

x′∈∂Ωc

[
ϕ(x′)

〈ϕ〉∂Ω

− 1

]
+

1

〈ϕ〉∂Ω

∗∑

<x,x′>

r0 [ϕ(x′) − ϕ(x)] (A.3)

where
∑∗

<x,x′> is the sum over the nearest neighbor pairs < x, x′ > with x ∈ ∂Ω and x′ ∈

∂Ωc. Recall that, if R � r0, then for any x ∈ ∂Ω and any x′ ∈ ∂Ωc we have ϕ(x), ϕ(x′) =
〈ϕ〉∂Ω + O(ar0/R2). Then the first term in (A.3) can be bounded above by a constant times
(R2/r2

0)r0(ar0/R2)2 = a(ar0/R2) < a(a/R). Moreover, note that the second term in (A.3)
is proportional to the (discrete) flux of the discrete derivative of ϕ across the “surface” of Ω
and the latter is equal to 4πa, see (1.7). As a conclusion, the second term in (A.3) is equal to
4πa/〈ϕ〉∂Ω. Using that 〈ϕ〉∂Ω = 1 − a/R + O(ar0/R2), see lines following Eq. (2.5), (2.34) is
proven.
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APPENDIX B: THE WEAK COUPLING REGIME

In this Appendix we prove the main Theorem in the case that a/r0 ≤ δ−1(ρ1/3a)2/9. In this
case we do not localize particles and we simply choose as trial function the ground state of the
free Fermi gas: Ψ(X, Y ) = DN (X)DM (Y ), where DN (X) denotes the Slater determinant of
the first N eigenfunctions of the Laplacian in the cubic box Λ with (say) periodic boundary
conditions (a similar definition is valid for DM (Y )). We assume that DN (X) and DM (Y )

are normalized in such a way that 〈Ψ|Ψ〉 =
∑

X,Y r
3(N+M)
0 |DN (X)|2|DM (Y )|2 = 1. By the

variational principle E0(N, M, Λ) ≤ 〈Ψ|H |Ψ〉 = E
(U=0)
0 (N, M, Λ)+U

∑N
i=1

∑
j=1M 〈Ψ|vX,Y |Ψ〉.

Since the specific energy corresponding to the term E0(N, M, Λ)|U=0 is by definition e0(ρ↑, ρ↓),
we are left with bounding

∑

Y

r3M
0 |DM (Y )|2

N∑

i=1

∑

X

r3N
0 |DN (X)|2

M∑

j=1

δxi,yj
(B.1)

An application of Lemma 1 shows that this expression is equal to
∑

x r6
0ρN (x)ρM (x), where

ρN is the 1-particle density of DN(X) and ρM is the 1-particle density of DN (Y ). In our case

ρN (x) ≡ ρ↑ and ρM (x) ≡ ρ↓. Then we get U
∑N

i=1

∑
j=1M 〈Ψ|vX,Y |Ψ〉 = |Λ|Ur3

0ρ↑ρ↓. By (1.6)

we have that Ur3
0 = 8πa(1 + γUr2

0). As a conclusion:

lim
|Λ|→∞

1

|Λ|
E0(N, M, Λ) ≤ e0(ρ↑, ρ↓) + 8πaρ↑ρ↓(1 + γUr2

0) (B.2)

Since Ur2
0 = 8πa/r0(1 + const a/r0), we have that γUr2

0 ≤ const (ρ1/3a)2/9 and the proof is
concluded.
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