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Abstract

The present work aims at showing some results over the distribu-
tion of electrons in a heavy atom that can be obtained treating such
electrons, given their considerable number, via a statistical method:
i.e. in other words, by regarding them as a gas of electrons surround-
ing the nucleus.

The electron gas is, naturally, in a completely degenerate condition, so
that classical statistics cannot be applied to it; we must instead make use
of the kind of statistics proposed by the Author1 and founded upon the
application to gas theory of Pauli’s exclusion principle. A consequence is
that the electrons kinetic energy results effectively much larger than what it
should be according to the principle of energy equipartition and practically
independent of temperature, at least as long as it does not increase beyond
certain limits.

In this Note we shall show, first, how it is possible to compute the sta-
tistical distribution of the electrons around the nucleus; and from it we shall
compute the energy necessary to a complete ionization of the atom, i.e. to
strip it of all its electrons. The computation of the electrons distribution
around the nucleus allows us, furthermore, to determine the behavior of the
potential at various distances away from the nucleus and, therefore, to know
the electric field in which the electrons of the atom are found. I hope to
be able to show, in a forthcoming work the application of the above to the
approximate calculation of the binding energies of the individual electrons

∗Read at the 4 December 1927 session by the member O.M. Corbino.
1E. Fermi, ≪Zs. f. Phys.≫, 36, 902, (1926).
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and to some questions about the structure of periodic classification of the
elements.

To determine the electrons distribution we must first look for the rela-
tionship between their density and the electric potential at each point. If
V is the potential, the energy of an electron will be −e V , hence, accord-
ing to the classical statistics, the electrons density should be proportional to
ee V/kT . Instead, according to the new statistics, the relation between density
and temperature is the following:

n =
(2πmkT )
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were α is a global constant for the gas; the function F in our case (complete
degeneracy) has the asymptotic expression 2
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Hence in our case it is
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where

v = V +
kT

e
logα (4)

represents, up to an additive constant, the potential. Remark that, since we
deal with a gas of electrons, we must take into account3 that the statistical
weight of the electrons is 2 (corresponding to the two possible orientations of

2
Translator’s note: The computation is

n =

∫

e−β( p2

2m
−µ)

1 + e−β( p2

2m
−µ)

d3p

h3

with A = eβµ and βµ = (logα + βeV ) hence A = α eβeV ≡ eβev with v = V + kT
e
logα.

Notice that in modern notations logα = β
p2

F

2m with pF the Fermi momentum, i.e. the
radius of the Fermi sphere. The formulae for F (A), G(A) were introduced and derived in:
E.Fermi, Zur quantelung des idealen einatomigen gases, ≪Zs. f. Physik≫, 36, 902-912,
1926” [see Eq.(22),(23) and, for degenerate gases, (27)].

3W. Pauli, ≪Zs. f. Phys.≫, 41, 81 (1927).
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the rotating electron); hence for the density of the electrons we must actually
take twice the value in Eq.(3); i.e. we get

n =
2

9

2πm
3

2 e
3

2

3h3
v

3

2 (5)

If in our case the classical statistics held, we would have an average elec-
trons kinetic energy = 3

2
kT . Instead according to the new statistics it is

given by
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where G denotes a function which, at complete degeneracy, assumes the
asymptotic expression
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hence in our case we find
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5
ev (6)

Remark then that the electric density at a point is, evidently, given by
−ne and, therefore, the potential v satisfies the equation
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In our case it will evidently be a function of the distance r to the nucleus,
only; Eq.(7) can therefore be written as
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If by Z we denote the atomic number of our atom it will the clearly be

lim
r=0

rv = Ze,

∫

ndτ = 4π
∫ ∞

0

r2n dr = Z (dτ = volume element). (9)

The last equation, taking into account Eq.(5), can be written as:
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The potential v will therefore be obtained by looking for a function sat-
isfying Eq.(8) with the two conditions Eq.(9) and (10).

To simplify the search for v change the variables r, v into x, ψ setting

r = µx, v = γψ (11)

where it is
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Then Eq.(8),(9) and (10) become
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Such equations further simplify setting

ϕ = xψ (14)

They become, indeed,































ϕ′′ = ϕ
3

2√
x

ϕ(0) = 1

∫∞
0
ϕ

3

2

√
x dx = 1

(15)

It is easy to see that the last condition is certainly satisfied if ϕ vanishes at
x = ∞. Thus it remains to look for a solution of the first of Eq.(15) with
the boundary conditions ϕ(0) = 1, ϕ(∞) = 0.

Having failed to find the general integral of the first of Eq.(15) I solved
it numerically. The graph in Fig.1 represents ϕ(x); for x near 0 it is

ϕ(x) = 1− 1.58x+
4

3
x

3

2 + . . . (16)
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In this way is solved the problem of determining the electric potential of
the atom at a given distance from the nucleus. It is given by

v = γ
ϕ(x)

x
=
γµ

r
ϕ(x) =

Ze

r
ϕ(
r

µ
) (17)

It is therefore possible to say that the potential at each point equals that
of an effective charge

Zeϕ(
r

µ
)

We now compute the total energy of the atom: it should be computed as
the sum of the kinetic energy of all electrons and of the potential energy of
the nucleus and of all electrons. But it is simpler to keep in mind that in an
atom the total energy equals, aside from the sign, the kinetic energy (in any
event, this can be checked in our case via an easy computation). Thus it is

W = −
∫

Lndτ

and by Eq.(5) (6) (11) (12) (14) we get
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The last integral can be evaluated keeping in mind that ϕ satisfies Eq.(15)
and (16); one finds
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W = −1.58
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i.e.
W = −1.54RhZ

7
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where R denotes Rydberg’s number, so that −Rh is the ground state energy
of hydrogen.

Eq.(18) gives the energy necessary to strip an atom of all its electrons. Of
course, by the statistical criteria from which it has been derived, it begins to
be valid only for considerable values of Z; in fact we find that for hydrogen
Eq.(18) givesW = −1.54Rh, while in reality it isW = −Rh; a discrepancy of
54%. For helium the energy to obtain a complete ionization equals evidently
the sum of the ionization of He and of He+; i.e. it is

−W = (1.8 + 4)Rh = 5.8Rh

while from the theory it results 1.54 · 2
7

3Rh; hence the discrepancy is re-
duced to 35% in this case. For the elements immediately following helium
(Li,Be,B,C) the atomic energy is almost entirely due only to the two K-
electrons (in carbon about 86%) and, therefore, the statistical method will
have to yield still considerable discrepancies, For C a discrepancy is still
found close to 34%.

It has to be expected, instead, that for elements of considerable atomic
weight discrepancies between the statistical theory and the empirical data
should be much reduced; unfortunately data for a precise check are missing
and we can only rely on a rough evaluation of the screening numbers for
the various orbits; nevertheless such an evaluation indicates a much better
agreement.

Translated by Giovanni Gallavotti, May 2011

NdT: The applications of the theory, called Thomas-Fermi theory, devel-
oped independently by L.H. Thomas and, one year later, by E. Fermi (this
translation) are very numerous: see the collected works of E. Fermi, Note e
memorie, vol I, Accademia dei Lincei and U. of Chicago Press, 1962, p.77,
where historical remarks can be found. The strength and modernity of the
method can perhaps be best appreciated by the key role that it plays in un-
derstanding the “stability of matter”. In this respect chief references are the
books: E. Lieb, The stability of matter: from atoms to stars, Springer, 2005
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and E.Lieb, R.Seiringer. The Stability of Matter in Quantum Mechanics,
Cambridge University Press, 2010.
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