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Preface

Every hypotbesis must derive indubitable results from mechanically well-defined

assumptions by mathematically correct methods. If the results agree with a

large series of facts, we must be content, even if the true nature of facts ia

not revealed in every respect. No one hypotbesis has hitherto attained this last

end, the Theory of Gases not excepted, Boltzmann,[11, p.536,#112].

In recent years renewed interest grew about the problems of nonequilib-
rium statistical mechanics. I think that this has been stimulated by the new
research made possible by the availability of simple and efficient computers
and of the simulations they make possible.

The possibility and need of performing systematic studies has naturally
led to concentrate efforts in understanding the properties of states which are
in stationary nonequilibrium: thus establishing a clear separation between
properties of evolution towards stationarity (or equilibrium) and properties
of the stationary states themselves: a distinction which until the 1970’s was
rather blurred.

A system is out of equilibrium if the microscopic evolution involves non
conservatives forces or interactions with external particles that can be modeled
by or identified with dissipative phenomena which forbid indefinite growth of
the system energy. In essentially all problems the regulating action of the
external particles can be reliably modeled by non Hamiltonian forces. The
result is that nonzero currents are generated in the system with matter or
energy flowing and dissipation being generated.

Just as in equilibrium statistical mechanics the stationary states are iden-
tified by the time averages of the observables. As familiar in measure theory,
the collections of averages of any kind (time average, phase space average,
counting average ...) are in general identified with probability distributions
on the space of the possible configurations of a system; thus such probability
distributions yield the natural formal setting for the discussions with which
we shall be concerned here. Stationary states will be identified with probabil-
ity distributions on the microscopic configurations, i.e. on phase space which,
of course, have to be invariant under time evolution.

A first problem is that in general there will be a very large number of
invariant distributions: which ones correspond to stationary states of a given
assembly of atoms and molecules? i.e. which ones lead to averages of observ-
ables which can be identified with time averages under the time evolution of
the system?

This has been a key question already in equilibrium: Clausius, Boltzmann,
Maxwell (and others) considered it reasonable to think that the microscopic
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evolution had the property that, in the course of time, every configuration
was reached from motions starting from any other.

Analyzing this question has led to many developments since the early
1980’s: the purpose of this monograph is to illustrate a point of view about
them. My interest on the subject started from my curiosity to understand the
chain of achievements that led to the birth of Statistical Mechanics: many
original works are in German language; hence I thought of some interest to
present and comment the English translation of large parts of a few papers by
Boltzmann and Clausius that I found inspiring at the beginning of my studies.
Chapter 6 contains the translations: I have tried to present them as faithfully
as possible, adding a few personal comments inserted in form of footnotes or,
if within the text, in slanted characters; original footnotes are marked with
“NdA”.

I have not included the celebrated 1872 paper of Boltzmann, [20, #22],
on the Boltzmann’s equation, which is widely commented and translated in
the literature; I have also included comments on Maxwell’s work of 1866,
[152, 155], where he derives and amply uses a form of the Boltzmann’s equation
which we would call today a “weak Boltzmann’s equation”: this Maxwell’s
work was known to Boltzmann (who quotes it in [16, #5]) and is useful to
single out the important contribution of Boltzmann (the “strong” equation
for the one particle distribution and the H-theorem).

Together with the many cross references Chapter 6 makes, hopefully, clear
aspects, relevant for the present book, of the interplay between the three
founders of modern statistical mechanics, Boltzmann, Clausius and Maxwell
(it is only possible to quote them in alphabetical order) and their influence
on the recent developments.

I start, in Chapter 1, with a review on equilibrium statistical mechanics
(Chapter 1) mostly of historical nature. The mechanical interpretation of the
second law of thermodynamics (referred here as “the heat theorem”) via the
ergodic hypothesis and the least action principle is discussed. Boltzmann’s
equation and the irreversibility problem are briefly analyzed. Together with
the partial reproduction of the original works in Chapter 6 I hope to have given
a rather detailed account of the birth and role (and eventual “irrelevance”) of
the ergodic hypothesis from the original “monocyclic” view of Boltzmann, to
the “policyclic” view of Clausius, to the more physical view of Maxwell1 and

1 “The only assumption which is necessary for the direct proof is that the system,
if left to itself in its actual state of motion, will, sooner or later, pass through
every phase which is consistent with the equation of energy. Now it is manifest
that there are cases in which this does not take place
...
But if we suppose that the material particles, or some of them, occasionally
encounter a fixed obstacle such as the sides of a vessel containing the particles,
then, except for special forms of the surface of this obstacle, each encounter will
introduce a disturbance into the motion of the system, so that it will pass from
one undisturbed path into another...”, [156, Vol.2, p.714]
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to the modern definition of ergodicity and its roots in the discrete conception
of space time.

In Chapter 2 thermostats, whose role is to permit the establishment of
stationary non equilibria, are introduced. Ideally interactions are conservative
and therefore thermostats should ideally be infinite systems that can indefi-
nitely absorb the energy introduced in a system by the action of non conser-
vative external forces. Therefore models of infinitely extended thermostats are
discussed and some of their properties are illustrated. However great progress
has been achieved since the 1980’s by studying systems kept in a stationary
state thanks to the action of finite thermostats: such systems have the great
advantage of being often well suited for simulations. The disadvantage is that
the forces driving them are not purely Hamiltonian: however one is (or should
be) always careful that at least they respect the fundamental symmetry of
Physics which is time reversal.

This is certainly very important particularly because typically in non equi-
librium we are interested in irreversible phenomena. For instance the Hoover’s
thermostats are time reversible and led to new discoveries (works of Hoover,
Evans, Morriss, Cohen and many more). This opened the way to establishing
a link with another development in the theory of chaotic system, particularly
with the theory of Sinai, Ruelle, Bowen and Ruelle’s theory of turbulence.
It achieved a major result of identifying the probability distribution that in
a given context would be singled out among the great variety of stationary
distributions that it had become clear would be generically associated with
any mildly chaotic dynamical system.

It seems that this fact is not (yet) universally recognized and the SRB
distribution is often shrugged away as a mathematical nicety.2 I dedicate a
large part of Chapter 2 to trying to illustrate the physical meaning of the SRB
distribution relating it to what has been called (by Cohen and me) “chaotic
hypothesis”. It is also an assumption which requires understanding and some
open mindedness: personally I have been influenced by the ergodic hypothesis
(of which it is an extension to non equilibrium phenomena) in the original form
of Boltzmann, and for this reason I have proposed here rather large portions
of the original papers by Boltzmann and Clausius, see Chapter 6. The reader
who is perplex about the chaotic hypothesis can find some relief in reading
the mentioned classics and their even more radical treatment, of what today
would be chaotic motions, via periodic motions. Finally the role of dissipation
(in time reversible systems) is discussed and its remarkable physical meaning
of entropy production rate is illustrated (another key discovery due to the
numerical simulations with finite reversible thermostats mentioned above).

2 It is possible to find in the literature heroic efforts to avoid dealing with the SRB
distributions by essentially attempting to do what is actually done (and better)
in the original works.
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In Chapter 3 theoretical consequences of the chaotic hypothesis are dis-
cussed: the leading ideas are drawn again from the classic works of Boltzmann
see Sec.6.2,6.12: the SRB distribution properties can conveniently be made vis-
ible if the Boltzmann viewpoint of discreteness of phase space is adopted. It
leads to a combinatorial interpretation of the SRB distribution which unifies
equilibrium and non equilibrium relating them through the coarse graining
of phase space made possible by the chaotic hypothesis. The key question of
whether it is possible to define entropy of a stationary non equilibrium state
is discussed in some detail making use of the coarse grained phase space: con-
cluding that while it may be impossible to define a non equilibrium entropy it
is possible to define the entropy production rate and a function that in equi-
librium is the classical entropy while out of equilibrium is “just” a Lyapunov
function maximal at the SRB distribution.

In Chapter 4 several general theoretical consequences of the chaotic hy-
pothesis are enumerated and illustrated: particular attention is dedicated to
the role of the time reversal symmetry and its implications on the universal
(i.e. widely model independent) theory of large fluctuations: the fluctuation
theorem by Cohen and myself, Onsager reciprocity and Green-Kubo formula,
the extension of the Onsager-Machlup theory of patterns fluctuations, and an
attempt to study the corresponding problems in a quantum context. Univer-
sality is, of course, important because it partly frees us from the non physical
nature of the finite thermostats.

In Chapter 5 I try to discuss some special concrete applications, just as
a modest incentive for further research. Among them, however, there is still
a general question that I propose and to which I attempt a solution: it is to
give a quantitative criterion for measuring the degree of irreversibility of a
process, i.e. to give a measure of the quasi static nature of a process.

In general I have avoided technical material preferring heuristic arguments
to mathematical proofs: however, when possible references have been given for
the readers who find some interest in the topics treated and want to master
the (important) details. The same applies to the appendices some of which
also contain really open problems.

In Chapter 6 several classic papers are presented, all but two in partial
translation from the original German language. These papers illustrate my
personal route to studying the birth of ergodic theory and its relevance for
statistical mechanics and, implicitly, provide motivation for the choices (ad-
mittedly very personal) made in the first five chapters and in the Appendices.

The Appendices A-K contain a few complements, Appendix M (with more
details in appendices N,O,P) gives an example of the work that may be nec-
essary in actual constructions of stationary states in the case of a forced
pendulum in presence of noise and Appendices Q-T discuss an attempt (work
in progress) at studying a stationary case of BBGKY hierarchy with no ran-
dom forces but out of equilibrium. I present this case because I think that is
it instructive although the results are deeply unsatisfactory: it is a result of
unpublished work in strict collaboration with G. Gentile and A. Giuliani.
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The booklet represents a viewpoint, my personal, and does not pretend to
be exhaustive: many important topics have been left out (like [7, 59, 114, 39],
just to mention a few works that have led to further exciting developments). I
have tried to present a consistent theory including some of its unsatisfactory
aspects.

The Collected papers of Boltzmann, Clausius, Maxwell are freely avail-
able: about Boltzmann I am grateful (and all of us are) to Wolfgang Reiter,
in Vienna, for actively working to obtain that Österreichische Zentralbiblio-

thek für Physik undertook and accomplished the task of digitizing the “Wis-
senschaftliche Abhandlungen” and the “Populäre Schriften” at

https://phaidra.univie.ac.at/detail object/o:63668

https://phaidra.univie.ac.at/detail object/o:63638

respectively, making them freely available.

Acknowledgments: I am indebted to D. Ruelle for his teaching and examples.
I am indebted to E.G.D. Cohen for his constant encouragement and stimu-
lations as well as, of course, for his collaboration in the developments in our
common works and for supplying many ideas and problems. To Guido Gentile
and Alessandro Giuliani for their close collaboration in an attempt to study
heat conduction in a gas of hard spheres.
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