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We perform an exact Renormalization Group analysis of an interacting Weyl semimetal on a
lattice. The existence of a Weyl semimetallic phase, and the absence of quantum instabilities is
rigorously proved for interactions not too strong, even arbitrarily close to the boundary of the
semimetallic regime, where the Fermi points are merging and the Fermi velocity is vanishing. Rel-
ativistic behavior emerges at low energies and the optical conductivity remains equal to the free
value, with renormalized velocities replacing by bare ones and up to subdominant corrections.
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I. INTRODUCTION

Weyl semimetals are three dimensional fermionic sys-
tem whose Fermi ”surface” consists of disconnected
points. Their properties, somewhat intermediate be-
tween a metal and an insulator, are quite different with
respect to systems with extended surfaces. The possibil-
ity of Weyl semimetallic behavior has been theoretically
predicted to occur in several systems [1]-[23] and recent
experiments in Bi1−xSBx [24] or in Bi2Ir2O7 [25] found
indications of it. In Weyl semimetals the dispersion rela-
tion close to the Fermi points is approximately linear and
the elementary excitations nearby can be effectively de-
scribed in terms of massless Dirac (or Weyl) particles in
D = 3 + 1. This fact suggests that phenomena typical of
high energy physics (quarks and leptons in the standard
model are Weyl particles) can have a low energy analogue
in these systems. The emerging description in terms of
Dirac particles [26],[27] in Weyl semimetals is common to
other materials, among which is graphene, in which the
excitations are 2+1 massless Dirac particles; however the
different dimensionality produces important differences.
In addition to the point-like Fermi surface, other impor-
tant features of Weyl semimetals are the Fermi arcs and
the fact that the Weyl points approach to each other at
the boundary of the semimetallic phase and finally merge
together; such non trivial features are captured by a sim-
plified lattice model proposed in [28].

It is of course important to understand the effect of the
interaction in Weyl semimetals. Coulomb interaction has
been analyzed in [29],[30],[31] finding logarithmic correc-
tions to the conductivity and other physical quantities; in
[32] the case of strong Hubbard interactions has been in-
stead considered finding evidence of instabilities. In such
studies the interaction has been considered in an effec-
tive relativistic model (or a regularization of it as in [31])
directly in terms of Dirac particles. There are however
good reasons to go beyond such approximation and con-
sider a more realistic lattice description of an interacting
Weyl semimetal. First, the relativistic effective descrip-
tion of Weyl semimetals misses important phenomena as
the merging of Fermi points or the presence of insulat-

ing phases at the boundary of the semimetallic phase.
Moreover, it does not capture effects like the movement
of Weyl points due to the interaction [33]. Finally, we
recall that, in the case of graphene, certain quantities
computed within the effective relativistic description are
regularization dependent, see [34]-[43]; in particular the
universality of the optical conductivity in graphene with
short range interactions can be rigorously explained only
taking into account the irrelevant terms due to the hon-
eycomb lattice [44], [45]. It is therefeore likely that also
in the conductivity of Weyl semimetals lattice effects and
non linear bands must be taken into account.

In this paper we consider the lattice model introduced
in [28] and we add to it a Hubbard like interaction. The
physical properties are analyzed by using exact Renor-
malization Group methods (similar to the one already
adopted for graphene [44], [45]); such methods allow to
fully take into account the lattice and do not require any
approximation. In §II the model is precisely defined and
in §III we derive a set of lattice Ward Identities relating
several physical quantities. In §IV we consider the system
for values of the parameters well inside the semimetal-
lic phase (where the Fermi velocity is not too small and
the Weyl points are far enough). Contrary to what hap-
pens for extended Fermi surfaces, we can exclude the
presence of quantum instabilities for interactions not too
strong, even at a non perturbative level (convergence of
the series expansion is proved); Weyl semimetallic behav-
ior persists even in presence of interaction. In particular,
the interaction does not change the qualitative behavior
of the 2-point function, and simply changes by a finite
amount (depending on the lattice and microscopic detail)
the Fermi velocities and the wave function renormaliza-
tion (effects missed in an effective relativistic descrip-
tion). The optical conductivity remains equal to the free
value, with the renormalized velocities replacing the bare
ones and up to subdominant corrections; this is a conse-
quence of Ward Identities, providing an universal relation
between the current and velocity renormalizations. Fi-
nally in §V we extend our analysis to the boundary of the
semimetallic phase, where the Fermi velocity v3 becomes
arbitrarily small and the Weyl points are very close. In
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a description in terms of Weyl particles the parameter
expansion is U/v3; therefore one may suspect that even
a weak interaction could produce some quantum insta-
bility close to the boundary of the semimetallic phase.
However, this is not what happens; no quantum instabil-
ities are found even at the boundary of the semimetal-
lic phase, as a consequence of a crossover phenomenon
between regions with different scaling properties. Rela-
tivistic behavior still emerges, but in a range of energies
smaller and smaller as we are closer to the boundary of
the semimetallic phase.

II. THE MODEL

Let us consider the tight binding model defined in [28],
defined on a three dimensional lattice, with nearest and
next to nearest neighbor hopping and with a magnetic
flux density, such that the flux over each surface of the
unit cell is vanishing. As it was shown in [28], the flux,
whose effect is to decorate the hopping with phase fac-
tors [46], can be properly chosen so that a semimetallic
phase is present. There are of course other physical and
probably more realistic mechanism to produce semimet-
als, see [1]-[23]; this one is however simple enough to be
accessible to an analytic analysis and at the same time it
retains several non trivial features present in more com-
plicated systems. It is therefore a good theoretical model
where to investigate the effect of the interaction.

One introduces a sublattice ΛA = Λ with side L given
by the points ~x = (~n~δ), with ~δ1 = (1, 0, 0), ~δ2 = (0, 1, 0),
~δ3 = (0, 0, 1), and a sublattice ΛB whose points are ~x+~δ+

with ~δ+ =
~δ1+~d2

2 and ~δ− =
~δ1−~d2

2 . The planar nearest-
neighbor hopping between A and B sublattice is t, the
planar next-to-nearest-neighbor hopping between A and
A, or B and B is t′ while the vertical hopping is t⊥. In-
troducing fermionic creation and annihilation operators
(a±~x , b

±
~x+~δ+

), the hopping (or non-interacting) Hamilto-

nian is H1 + H2 + H3 where H1 describes the hopping
between the A and B sublattice

H1 =
1

2

∑
~x∈Λ

{[−it(a+
~x b
−
~x+~δ+

+ b+
~x+~δ+

a−
~x+2~δ+

) +H.c.] +

[t(a+
~x b
−
~x−~δ−

− b+
~x−~δ−

a−
~x−2~δ−

) +H.c.]} (1)

while H2 contains AA or BB hopping

H2 =
1

2

∑
~x∈Λ

{[t⊥(a+
~x a
−
~x+~δ3

− b+
~x+~δ+

b−
~x+~δ++~δ3

) +H.c.]

−t′
∑
i=1,2

[(a+
~x a
−
~x+~δi

− b+
~x+~δ+

b−
~x+~δ++~δi

) +H.c.]} (2)

and H3 takes into account the on site energy difference
between the two sublattices

H3 =
µ

2

∑
~x∈Λ

(a+
~x a
−
~x − b

+

~x+~δ+
b−
~x+~δ+

) (3)

The hopping parameters t, t⊥, t
′ are assumed O(1) and

positive. The dispersion relation is given by |E(~k)| where

E(~k) = t sin(~k~δ+)σ1 + t sin(~k~δ−)σ2 +

σ3(µ+ t⊥ cos k3 −
1

2
t′(cos k1 + cos k2)) (4)

The functions sin(~k~δ+) and sin(~k~δ−) vanish in correspon-
dence of two points (kx, ky) = (0, 0) and (kx, ky) = (π, π);
we assume from now on µ+t′ > t⊥ so that the coefficient
multiplying σ3 is always non zero for (kx, ky) = (π, π).
Therefore the dispersion relation vanishes only in corre-
spondence of (kx, ky) = (0, 0) and µ−t′+t⊥ cos k3 = 0. In

the region in the space of parameters such that |µ−t
′|

t⊥
< 1

one has semimetallic behavior [28]; the dispersion rela-
tion vanishes in correspondence of the two Weyl points

±~pF , with ~pF = (0, 0, cos−1( t
′−µ
t⊥

)), and close to such
points it becomes approximately linear. The boundary

of the semimetallic region is t′−µ
t⊥

= ±1; moving close to
the boundary the Weyl points move closer to each other
and the quadratic corrections to the linear dispersion re-

lation become more relevant. At t′−µ
t⊥

= ±1 the two Weyl
points are merging and beyond two insulating phases are
reached. Such features, and others like the presence of
Fermi arcs [28], are present also in more realistic realiza-
tion of lattice semimetals.

We want now to investigate if the semimetallic behav-
ior survives in presence of an interaction. We assume that
the electrons interact through a short range interaction,
so that the Hamiltonian becomes

H = H1 +H2 +H3 + UV (5)

where

V =
∑
~x,~y

v(~x−~y)[a+
~x a
−
~x +b+

~x+~δ+
b−
~x+~δ+

][a+
~y a
−
~y +b+

~y+~δ+
b−
~y+~δ+

]

(6)
and v(~x) is a short-range interaction.

The currents are defined as usual via the Peierls substi-
tution, see App. A, by modifying the hopping parameter
along the bond : using the notation

∫
dk = 1

βL3

∑
k one

obtains, if ψ̂±~k
= (â±~k

, b̂±~k
)

ĵ+;~p = e

∫
d~kψ̂+

~k+~p
[wa,+(~k, ~p)σ1 + wb,+(~k, ~p)σ3]ψ̂−~k

ĵ−;~p = e

∫
d~kψ̂+

~k+~p
[wa,−(~k, ~p)σ2 + wb,−(~k, ~p)σ3]ψ̂−~k

ĵ3,~p = e

∫
d~kψ+

~k
w3(~k, ~p)σ3ψ̂

−
~k

(7)

where

wa,±(~k, ~p) =
i

2
tη±(~p)(ei(

~k+~p)δ± + e−i
~kδ±)

wb,±(~k, ~p) = i
t′

2

∑
i=1,2

ηi(~p)[e
i(~k+~p)~δi − e−i~k~δi ]

w3(~k, ~p) = −i t⊥
2
η3(~p)(ei(

~k+~p)~δ3 − e−i~k~δ3) (8)
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with ηi(~p) = 1−e−i~p~δ
i~p~δ

= 1 + O(~p). We have defined

a+
~x = 1

L3

∑
~k e

i~k~xâ+
~k

and b+
~x+~δ+

= 1
L3

∑
~k e

i~k(~x+~δ+)b̂+~k
,

where ~k = 2π
L ~n. The diamagnetic current is defined as

j~p = ∂2H( ~A)

∂Â~p∂Â~p
|0 and the density operator is defined as

ρ~x = a+
~x a
−
~x + b+

~x+~δ+
b−
~x+~δ+

. Moreover σ0 = I and σi,

i = 1, 2, 3 are Pauli matrices.
If Ox = ex0HO~xie

−x0H , with x = (x0, ~x), we denote
by

〈O(1)
x1
· · ·O(n)

xn 〉β = lim
L→∞

Ξ−1Tr{e−βHT(O(1)
x1
· · ·O(n)

xn
)}
(9)

where Ξ = Tr{e−βH} and T is the operator of
fermionic time ordering; moreover we denote by

〈O(1)
x1 ; · · · ;O

(n)
xn 〉β the corresponding truncated expecta-

tions and by 〈O(1)
x1 ; · · · ;O

(n)
xn 〉 their zero temperature

limit.

We will particularly interested in the two-point
Schwinger function 〈ψ−x ψ+

y 〉 and in the conductivity,
which is defined via Kubo formula. Denoting by
〈ĵi;pĵi;−p〉, p = (ω, ~p), the Fourier transform of 〈ĵi;xĵi;y〉,
the Kubo formula for conductivity is

σii(iω) = − 1

ω

[
〈ĵi;ω,0; ĵi;−ω,0〉β + ∆i

]
(10)

where ∆i is the diamagnetic contribution.

In the non interacting case U = 0 the properties of the
system can be easily computed. The 2-point Schwinger
function 〈ψ−x ψ+

y 〉|U=0 ≡ g(x− y) is given by

g(x) =

∫
dkeikx

(
−ik0 + t⊥(cos k3 − cos kF ) + E(~k) t(sin k+ − i sin k−)

t(sin k+ + i sin k−) −ik0 − t⊥(cos k3 − cos kF )− E(~k)

)−1

(11)

with E(~k) = t′(cos k+ cos k− − 1). For momenta respec-
tively close pF or −pF , pF = (0, ~pF ), the 2point function
has the following form, if k = k′ ± pF , pF = (0, ~pF )

ĝ±(k′) ∼
(
−ik0 ± v3,0k

′
3 v±,0(k+ − ik−)

v±0(k+ + ik−) −ik0 ∓ v3,0k
′
3

)−1

(12)

with

v±,0 = t v3,0 = t⊥ sin pF (13)

The two 2 × 2 matrices ĝ(k′ + pF ) and ĝ(k′ − pF )
can be combined in a 4 × 4 matrix coinciding with the
propagator of a massless Dirac (or Weyl) article, with
anisotropic light velocity. Close to the boundary of the
semimetallic phase this relativistic behavior is present
only in a region O(

√
ε) around the Fermi momentum,

where ε = 1− |t
′−µ|
t⊥

; indeed for ε small the the distance

between the Fermi points and v3 is O(
√
ε), and therefore

the linear part of the dispersion relation v3k
′
3 is dominat-

ing over the quadratic correction only in that region.
In the collisionsless regime ω >> β−1 information on

the optical conductivity can be obtained by Kubo for-
mula, as collisions with thermally excited carriers can be
neglected; for β−1 << ω << v3,0 (10) is approximately
equal to the conductivity of Weyl fermions up to a rescal-
ing factor ; indeed if l = +,−, 3

σll(iω)|U=0 ∼ e2
v2
l,0

(v±,0)2v0
3,0

σii,weyl(iω) (14)

where σii,weyl(iω) is the conductivity of Weyl fermions
with light velocity c = 1. By analytic continuation

iω → ω+ıε one can verify that the real part of σll,weyl(ω)
vanishes as O(ω) [47] while the imaginary part vanishes
as O(ω log |ω|) [31]. Therefore, the optical conductivity
in the free case has a rather different behavior with re-
spect to graphene, in which the optical conductivity in
a wide range of frequencies is essentially constant and
universal, that is independent from the microscopic pa-
rameters like the hopping or the Fermi velocity [48]. In
the present case one has instead a linear dependence from
the frequencies, with a non-universal prefactor depend-
ing from the velocities.

III. WARD IDENTITIES

The physical observables can be expressed as usual
in terms of Grassmann integrals. We denote by ψ±x =

(a±x , bx+d+
), x = (x0, x), d = (0, ~δ) a set of Grassmann

variables; with abuse of notation, we denote them by the
same symbol as the fermionic fields. As we expect that
the location of the Weyl points will be in general modi-
fied by the presence of the interaction, we find convenient
to fix them to their non interacting value by replacing µ
with t⊥cospF +ν, where ν is a counterterm to be suitably
chosen as function of U ; a non vanishing ν means that
the location of the Weyl points is shifted. We introduce
the generating functional, A = (A0, ~A)

eW(A,φ+,φ−) =

∫
P (dψ)eV(ψ)+B(A)+(ψ,φ) (15)
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where P (dψ) is the fermionic integration with propagator
(11) and V is the interaction

V = νN + UV (16)

where, if
∫
dx =

∫
dx0

∑
~x

N =

∫
dxψ+

x σ3ψ
−
x (17)

V =

∫
dxdyv(x− y)(ψ+

x σ0ψ
−
x )(ψ+

y σ0ψ
−
y )

if v(x) = δ(x0)v(x). Moreover (ψ, φ) =
∫
dx[ψ+

x σ0φ
−
x +

ψ−x σ0φ
+
x ] and

B(A, ψ) =

∫
dxA0(x)ψ+

x σ0∂0ψ
−
x + B1(A,ψ) + B2(A,ψ)

(18)
where the explicit expression of B1(A,ψ) and B2(A,ψ)
is obtained by H1(A) and H2(A) (see (56) below)
by replacing

∑
~x with

∫
dx0

∑
~x, the Fermi opera-

tors a~x, b~x with the Grassmann variables ax, bx and

Ux,x+d(A) = eie
∫ 1
0
~δ· ~A(x+sd)ds. As in lattice gauge the-

ory, by the change of variables a±x → e∓ieαxa±x , b±x+d+
→

e∓ieαx+d+ b±x+d+
and using the relation Ux,x+d(A) =

eieαx+d−ieαxU(A) one obtains

W (A + ∂α, φ+eieα, φ−e−ieα) = W (A, φ+, φ−) (19)

where the fact that the Jacobian of the transformation
is equal to 1 has be exploited; due to the presence of the
lattice, no anomalies are present. From (19) we get the
following identity

∂αW (A + ∂α, φ+eieα, φ−e−ieα) = 0 (20)

from which by differentiating with respect to the external
fields A, φ an infinite number of Ward Identities connect-
ing correlation functions is obtained.

In particular, if p = (ω, ~p)

−iω < ρ̂p; ψ̂kψ̂k+p > +
∑
j=±,3

pj < ĵj,p; ψ̂kψ̂k+p >= 0

(21)
where the currents j+, j−, j3 are given by (7).

Similarly we can derive equation for the current-
current correlation

−iω〈ρ̂p; ρ̂−p〉+
∑
l=±,3

pl〈ĵl,p; ρ̂−p〉 = 0 (22)

−iω〈ρ̂p; ĵi,−p〉+
∑
l=±,3

pl〈ĵl,p; ĵi,−p〉+ pi∆i = 0

where we have used that

∂2W(A)

∂Ai,p∂Al,−p
|0 = 〈ĵi,p; ĵl,p〉 i 6= j

∂2W(A)

∂Ai,p∂Ai,−p
|0 = 〈ĵi,p; ĵi,−p〉+ ∆i (23)

From (22) we get the following equality

ω2

p2
i

〈ρ̂p̄; ρ̂−p̄〉 = 〈ĵi;p̄; ĵi;−p̄〉+ ∆i (24)

where p̄ is obtained from p setting pl = 0, l 6= (0, i).
From the above equation we get, differentiating with re-
spect to ω

2ω

p2
i

〈ρ̂p̄; ρ̂−p̄〉+
ω2

p2
i

∂ω〈ρ̂p̄; ρ̂−p̄〉 = ∂ω〈ĵi;p̄; ĵi;−p̄〉 (25)

from which we get

〈ĵi;p̄; ĵi;−p̄〉|ω=0 + ∆i = 0 ∂ω〈ĵi;p̄; ĵi;−p̄〉|ω=0 = 0
(26)

From (26) we see that the properties of the conductivity
(10) depend crucially on the continuity and differentia-
bility of the Fourier transform of the current-current cor-
relations. Indeed if 〈ĵi,p; ĵi,−p〉 is continuous in p then
from the first of (26) we get

σll(iω) = − 1

ω

[
〈ĵl;ω,0; ĵl;−ω,0〉 − 〈ĵi;0,0; ĵl;0,0〉

]
(27)

and if the derivative is continuous then is vanishing by
the second of (26). In the non interacting case 〈ji;x; ĵi;x〉
decays as O(|x − y|−6) at large distance; therefore the
Fourier transform is continuous and with continuous first
derivative, hence σ0

ii(ω) vanishes as ω → 0. However the
second derivative is not continuous, and this explains the
logarithmic behavior to the free conductivity.

The above Ward Identities provide relations between
physical observables in presence of interactions and will
play a crucial role for the analysis of the interaction ef-
fects in the following sections.

IV. THE EFFECT OF THE INTERACTION
WELL INSIDE THE SEMIMETALLIC PHASE

Renormalization Group analysis

We consider first the behavior well inside the
semimetallic phase, that is for values of the parameters
µ, t, t′, t⊥ such that µ+ t′ > 2t⊥ and π

4 ≤ pF ≤
3π
4 where

cos pF = µ−t′
t⊥

; this condition ensures that the Fermi ve-

locity vF = sin pF is not too small, that is vF ≥ t⊥√
2
.

In order to investigate the effect of the electron-
electron interaction on the physical behavior we perform
a Renormalization Group analysis of the generating func-
tional (45). The starting point is the decomposition of
the frequency-energy space in circular sectors of radius
and width O(2h); more technically, one introduces a de-
composition of the unity 1 =

∑∞
h=∞ fh(k) where fh(k) is

non vanishing in a2h−1 ≤
√
k2

0 + |E(~k)|2 ≤ a2h+1 and a
is a suitable constant. We can then write the propagator
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as ĝ(k) =
∑∞
−∞ ĝ(h)(k) with ĝ(h)(k) = fh(k)ĝ(k); this

implies a similar decomposition of the Grassman vari-

ables ψk =
∑∞
h=−∞ ψ

(h)
k .

The first step of the Renormalization Group analysis
of the generating function (15) is the integration of the
positive ultraviolet scales; due to the presence of the lat-
tice, making the dispersion relation |E(~k)| bounded, the
ultraviolet integration poses no problems and the results
of the integration of ψ(>0) is an expression similar to (15)
with ψ(≤0) replacing ψ and V(ψ) + B(ψ,A) replaced by
V(0)(ψ(≤0)) + B(0)(ψ(≤0), A), sum of monomials of any
order in ψ(≤0) and A.

The propagator ĝ(≤0)(k) is non vanishing in a range of

frequency and energies verifying

√
k2

0 + |E(~k)|2 ≤ 2a. We
can choose the constant a so that such region corresponds
to two disconnected regions in k space, centered around
the Fermi points and labeled by ε = ±. This means that
the Grassmann fields can be conveniently written as sum
of two independent fields

ψ(≤0)
x =

∑
ε=±

eiεpFxψ(≤0)
ε,x (28)

with ψ
(≤0)
ε,x with propagator g

(≤0)
ε (x) =

∫
dk′eik

′xϑ(εk′3 +

pF )ĝ(≤0)(k′+εpF ). As we will see, ĝ
(h)
ε (k), h ≤ 0, is very

close to the propagator of the upper (ε = +) or lower
(ε = −) components of Weyl fermions, up to corrections
smaller and smaller as h increase; therefore, the emerg-
ing description in terms of Weyl fermions is a natural
byproduct of the Renormalization Group analysis.

Let us consider the integration of the infrared scales.

After the integration of ψ(>0), ψ
(0)
ε , .., ψ

(h+1)
ε one gets

eW =

∫ ∏
ε

P (dψ(≤h)
ε )eV

(h)(
√
Zhψ

(≤h))+B(h)(A,
√
Zhψ

(≤h),φ) (29)

where P (dψ
(≤h)
ε ) has propagator given by

g(≤h)(x) =

∫
dk′eik

′xχh(k)

Zh

(
−ik0 + v3,h(cos(k′3 + ε~pF )− cos kF ) + E(~k) v±,h(sin k+ − i sin k−)

v±,h(sin k+ + i sin k−) −ik0 − v3,h(cos(k′3 + ~pF )− cos kF )− E(~k)

)−1

(30)

with χh(k′) =
∑h
h=−∞ ϑ(εk′3 + pF )fh(k′ + εpF ) is non

vanishing in a region O(2h) around εpF . Moreover
V(h), the effective potential, is sum over monomials of

eiσlppFxlψ
σl(≤h)
ε,x multiplied by kernels W

(h)
n,0 ; similarly the

effective source (at φ = 0 for definiteness) is sum of mono-

mials with n fields eiσlppFxlψ
σl(≤h)
ε,x and m A-fields mul-

tiplied by kernels W
(h)
n,m. Note that the Fermi velocities

and the wave function renormalization are modified by
interaction and depend on the energy scale.

At large distances the single scale propagator decays
faster than any power; that is for any N

g(h)(x) ∼ 23h

1 + [2h|x|]N
(31)

As consequence of (45), the scaling dimension of the
monomials in the effective potential and in the effective
source with n ψ-fields and m A-field is

D1 = 4− 3

2
n−m (32)

and the terms with negative scaling dimension are called
irrelevant. As in the case of graphene with short range
interaction (in which D = 3−n−m), the terms with four
or more fermionic fields are irrelevant; this is in sharp

contrast to what happens for Dirac fermions in 1 + 1
dimension (D = 2−n/2−m) in which the quartic terms
are marginal.

The only non irrelevant terms are the ones with
(n,m) = 2, 0 (D1 = 1 relevant) or (n,m) = (2, 1) (D1 = 0
marginal). Before integrating the field ψ(h) one has renor-
malize the relevant and marginal terms. This consists

in rewriting W
(h)
2,0 (k) as its Taylor expansion around the

Fermi point k = εpF up to the first order (D1 = 1 is
its dimension) plus a rest; one them moves the first or-
der terms in the free integration, where they produce a
renormalization of the wave function and the velocities
, while the zero-th order terms contribute to the run-
ning coupling constant νh expressing the possible shift
of the Fermi points. The fact that the terms generated
by the integration of higher energy fields are of the same
kind of the terms present originally is a consequence of

symmetries, see App. B. Similarly we rewrite W
(h)
2,1 (k,p)

as its Taylor expansion around εpF up to zero-th order
(D1 = 0 is its dimension) and a rest, and the zeroth-
term contribute to the renormalization of the currents
Zµ,h, µ = 0,±, 3. We can therefore write (29) as∫ ∏

ε

P̃ (dψ(≤h)
ε )eṼ

(h)(
√
Zh−1ψ

(≤h))+B̃(h)(
√
Zh−1ψ

(≤h),A,φ)
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where P̃ (dψ
(≤h)
ε ) has a propagator similar to g(≤h)

(30) with Zh, v±,h, v3,h replaced by Zh−1, v±,h−1, v3,h−1.

Moreover Ṽ (h)(ψ) =

2jνh
∑
ε=±

∫
dk′ψ̂+

k′+εpF ,ε
σ3ψ̂

−
k′+εpF ,ε

+ Irr.Terms (33)

and Irr.Terms are terms with negative scaling dimension,
for instance terms like ψ+∂2ψ− or monomials with n > 2
fermionic fields. Similarly the effective source is given by
B(h)(A,

√
Zh−1ψ

(≤h), 0) =

∑
ε=±

∫
dk′dpψ̂

(≤h)
k′+εpF ,ε

[Z0,hA0(p)σ0 + Z+,hA+(p)σ1

+Z−,hA−(p)σ2 + εZ3,hσ3]ψ̂
(≤h)
k′+p+εpF ,ε

+ Irr.Terms

The relation between the renormalized parameters at
scale h− 1 and h is the following

νh−1 =
Zh
Zh−1

(γνh + γ−hŴ
(h)
2 (εpF ))

Zh−1

Zh
= 1 + ∂0Ŵ

h
2 (εpF ) (34)

vα,h−1 =
Zh
Zh−1

(vα,h + ∂αŴ
(h)
2,0 (εpF )) α = ±, 3

Zµ,h−1

Zµ,h−1
=

Zµ,h
Zh−1

[1 + Ŵ
(h)
2,1 (εpF )] µ = 0,±, 3 (35)

We can write χh(k′) = χh−1(k′) + fh(k′) and

P̃ (dψ
(≤h)
ε ) = P (dψ

(≤h−1)
ε )P (dψ

(h)
ε ) where P (dψ

(≤h−1)
ε )

and P (dψ
(h)
ε ) have propagator given by g(≤h−1) and g(h),

similar to (44) with respectively χh−1 and fh replacing
χh. The integration of the single scale propagator can
be performed, and one obtains an expression similar to
(29) with h replaced by h− 1; the procedure can be then
iterated.

It can be shown that, for U not too large, for 0 < ϑ < 1

1

L3β

∫
dx|W (h)

n,m| ≤ C|U |2(4− 3
2n−m)h2ϑh (36)

Note that in addition to the factor 2(4− 3
2n−m)h corre-

sponding to the scaling dimension there is a dimensional
gain 2ϑh due to the irrelevance of the effective electron-
electron interaction: every contribution in perturbation
theory involving an effective scattering in the infrared is
suppressed thanks to the irrelevance of the kernels with
four or more legs.

The extra factor 2ϑh in (36) has a crucial role in the
study of the flow of the effective velocities and renor-
malizations; for instance by using (36) in (34) we get
v±,h−1 = v±,h + O(U2ϑk) so that by iteration v±,h−1 =

v±,0 +
∑
k O(U2ϑk) = v0 +O(U). Therefore

Zh →h→−∞ Z = 1 +O(U2) (37)

v3,h →h→−∞ v3 = t⊥ sin(pF ) + a3U +O(U2)

v±,h−1 →h→−∞ v± = t+ a±U +O(U2)

Z0,h →h→−∞ Z0 = 1 +O(U2)

Z±,h → Z± = t+ b±U +O(U2)

Z3,h →h→−∞ Z3 = t⊥ sin pF + b3U +O(U2)

where the explicit form of the coefficients is in App. C.
Finally note that νh is a relevant coupling so that it would
increase at each RG iteration; however we can choose the
counterterm ν so that νh is O(U2ϑh) for any h.

Absence of quantum instabilities

As a consequence of the previous analysis we get that
the the interacting 2-point function is given by, in the
limit L, β →∞ < ψ̂−k′+εpF ψ̂

+
k′+εpF

>=

1

Z

(
−ik0 ± v3k

′
3 v±,(k+ − ik−)

v±(k+ + ik−) −ik0 ∓ v3k
′
3

)−1

(1+R(k′)) (38)

with |R(k′)| ≤ CU |k|ϑ. Moreover, for µ = 0,±, 3 and
|p| << |k− εpF | << 1

< ĵµ,p; ψ̂+
k ψ̂
−
k+p >= (39)

eZµ〈ψ̂−k ψ̂
+
k 〉σ̃µ〈ψ̂

−
k+pψ̂

+
k+p〉 (1 +O(|k− εpF |ϑ))

where Zµ is given by (37) and σ̃+ = σ1, σ̃− = σ2, while
σ̃0 = σ0 and σ̃3 = σ3.

The interaction does not qualitatively change the
asymptotic behavior of the 2-point Schwinger function
close to the Fermi points for couplings not too large; its
effect is essentially to change by a finite amount the wave
function renormalization, the Fermi velocities and the lo-
cation of the Fermi points. Similarly, it changes the cur-
rent renormalization in the vertex functions.

The presence of quantum instabilities in the ground
state is then excluded at weak coupling. This is peculiar
feature of interacting Weyl semimetals (or for graphene
with weak short range interaction, see [44]) due to point-
like Fermi surfaces; in case of Fermi liquids in D = 2, 3
with extended Fermi surface the short range interactions
is marginal and quantum instabilities at T = 0 are gener-
ically present.

We stress that the persistence of the Weyl semimetal-
lic behavior in presence of interaction is proved at a non
perturbative level. Usually the physical quantities of in-
teracting fermionic systems are written in terms of expan-
sion in Feynman diagrams, which are not convergent or at
least whose convergence is not known. Without knowing
convergence, some non-perturbative phenomenon cannot
be excluded. However in a small number of case the
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methods of constructive Quantum Field Theory are able
to establish convergence. In particular, this is true for
QED4 for massless fermions and massive photons, [49],
and one can check that the proof of convergence there
can be easily adapted to the present case. The possibil-
ity of a non perturbative construction of interacting Weyl
semimetals is a property shared with graphene which
makes them radically different with respect to Fermi liq-
uids with extended (symmetric) Fermi surfaces, for which
a non-perturbative understanding of the ground state
properties is still far to be reached.

Consequences of the Ward Identities

The above Renormalization Group analysis makes
clear the close relationship between the model (15) and a
relativistic Quantum Field Theory like QED4 with mass-
less fermions and massive photons, or a Nambu-Jona
Lasinio model in d = 4 + 1 with an ultraviolet cut-off
is imposed (in Weyl semimetals the cut-off is provided
by the lattice). There are however important differences
related to the symmetries. Indeed any infrared regular-
ization of a relativistic Quantum Field Theory must re-
spect Lorentz symmetry, which implies that the velocity
should not be modified by the interaction, and the renor-
malizations of the currents should be all equal.

In the case of Weyl semimetals described by (45) a dif-
ferent behavior is found: the velocities are renormalized
by the interaction and they have a non universal value
function on all the microscopic details. In addition, the
current renormalizations are not constrained to be equal
by Lorentz symmetry. Nevertheless, lattice symmetries
still imply relations among the dressed quantities. In-
serting (38) and (40) in the Ward Identity (21) one finds
the following identities

Z±
Z

= v±
Z3

Z
= v3 (40)

At lowest order, the above identities simply says that
a⊥ = b⊥ and a± = b±, and this can be explicitly checked,
see App. C. However, (40) is a non perturbative identity,
implying an infinite series of identities between Feynman
graphs of arbitrary order.

The optical conductivity

The current current correlation is given by, i = ±, 3,
< ji,x; ji,0 >=

e2[
Zi
Z

]2
∑
ε=±

∫
dkTr(σ̃ig

(≤0)
rel,ε(k)σ̃ig

(≤0)
rel,ε(k + p)) +Hi(x)

where g
(≤0)
rel,ε(k) =

χ0(k)

(
−ik0 ± v3k

′
3 v±,(k+ − ik−)

v±(k+ + ik−) −ik0 ∓ v3k
′
3

)−1

and |Hi(x)| contains the higher order contribution or the
correction to the zero-th contribution due to the non lin-
ear term

|Hi(x)| ≤ C|x|−6−ϑ (41)

The first term is the same as the one in a non-interacting
theory with velocities v±, v3 instead of v0,±, v0,3. In ad-
dition Hi(x) has a faster decay, as for large distances
behaves as O(|x|−6−ϑ); therefore the Fourier transform

Ĥi(p) admits a continuous second derivative; hence

Ĥi(ω,~0)− Ĥi(0,~0) =

ω∂ωĤi(0,~0) +
1

2
ω2∂2

ωĤi(0,~0) + ω2Ri(ω,~0) (42)

with Ri(0,~0) = 0 and by (26) ∂ωHi(0,~0) = 0; by using
(27) we get therefore, for β−1 << ω << v3 and using (40)
to relate the current renormalization to the velocities

σll(iω) = (43)∑
ε=±

v2
l

∫
dkTr(σ̃ig

(≤0)
rel,ε(k)σ̃ig

(≤0)
rel,ε(k + (ω, 0))) +R(ω))

with |R(ω)| ≤ C|ω|. Therefore the optical conductiv-
ity is equal to the one of Weyl fermions with renor-
malized velocities, up to subdominant corrections (they
are O(ω) while the conductivity of free Weyl fermions is
O(ω logω)).

V: ANALYSIS CLOSE TO THE MERGING OF
THE FERMI POINTS

Renormalization Group analysis in the first regime

The analysis of the previous section is restricted to
value of parameters well inside the semi-metallic phase,
where the Fermi velocity is O(1); however at the bound-
ary of the semimetallic regime the Fermi velocity v3 can
be arbitrarily small. An effective description in terms
of Weyl fermions would lead to a series expansion in
terms of U/v3, hence small v3 apparently corresponds
to a strong coupling regime even for a weak electronic
coupling U . Therefore one may suspect that even a weak
interaction could produce some quantum instability close
to the boundary of the semimetallic phase. As we will
see, that is not what happens; a weak interaction can-
not produce instabilities even close to the boundary of
the semimetallic phase. This is a phenomenon that can-
not be understood, even qualitatively, using a linearized
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model of Weyl fermions, and the full lattice description
is necessary.

Let us introduce the parameters ε defined as ε =

1 − t′−µ
t⊥

, and we consider ε small (the case t′−µ
t⊥
∼ −1

is done similarly); when ε = 0 the Weyl points coa-
lesces and the Fermi velocity vanishes, that is v3,0 =
O(
√
ε) and pF = O(

√
ε). As before, we decompose

frequency-energy space in circular sectors of radius and
width O(2h), that is each field at scale h lives in the

region a2h−1 ≤
√
k2

0 + |E(~k)|2 ≤ a2h+1 with a small
enough. The renormalization Group analysis naturally
identifies two different regimes, separated by an energy
scale a2h̄ ∼ ε. For scales greater than h̄ the dispersion
relation in the third direction is essentially quadratic and

cos k − 1 + ε ∼ k2

2t⊥
; the behavior in this region is essen-

tially the same as at the boundary of the semimetallic
regime, and the Weyl points have no role. It is only at
smaller scales, that is h ≤ h̄, that the dispersion relation
in the third direction becomes linear around the Weyl
points, and the fermions acquire an extra label corre-
sponding to their closeness to pF or −pF .

After the integration of the ultraviolet scales h > 0 we
start the integration of the scales h ≥ h̄; we integrate of
the fields ψ(>0), ψ(0), ψ(−1), .., ψ(h), h ≥ h̄ and we get

∫
P̃ (dψ(≤h))eṼ

(h)(
√
Zh−1ψ

(≤h))+B̃(h)(
√
Zh−1ψ

(≤h),A,φ)

where P̃ (dψ(≤h)) has propagator given by

g(≤h)(x) =

∫
dkeikx

χh(k)

Zh

(
−ik0 + v3,h(cos(k3)− cos pF ) + E(~k) v±,h(sin k+ − i sin k−)

v±,h(sin k+ + i sin k−) −ik0 − v3,h(cos(k3)− cos pF )− E(~k)

)−1

(44)

Note that cos pF = 1 − ε and, choosing (say) a2h̄ =
10ε one has cos k3 − 1 + ε ≤ a2h so that k3 is smaller
thanO(2

h
2 ); therefore the single scale propagator behaves

asymptotically as

g(h)(x) ∼ 2
5h
2

1 + [2h(|x0|+ |x+|+ |x|) + 2
h
2 |x3|]N

(45)

and correspondingly the scaling dimension is

D2 =
7

2
− 5

4
n−m (46)

As before, the non irrelevant terms are only the ones with
(n,m) = (2, 0) (D2 = 1) and (n,m) = (2, 0) (D2 = 0).
Before integrating the field ψ(h) one has renormalize the
relevant and marginal terms. This consists in rewriting

Ŵ
(h)
2,0 (k) as its Taylor expansion around k = 0 up to the

first order (D2 = 1 is its dimension) in k0, k+, k− and up
to second order in k3 (remember that k3 ∼ 2h/2 so first
order in k3 is not sufficient to make the dimension neg-
ative) plus a rest; one moves the first and second order
terms in the free integration, where they produce a renor-
malization of the wave function and the velocities , while
the zero-th order terms contribute to the running cou-
pling constant νh. Note that the Taylor expansion is now
around k = 0 and not around the Fermi points; moreover

∂3Ŵ
(h)
2,0 (0) = 0 by parity. Similarly we rewrite Ŵ

(h)
2,1 (k,p)

as its Taylor expansion around k = 0 up to zero-th order
(D2 = 0 is its dimension) and a rest, and the zeroth-
term contribute to the renormalization of the currents
Zµ,h, µ = 0,±; note that Z3,h = 0 by symmetry so that

the current in the third direction is ∼ A3ψ
+∂ψ, hence

irrelevant according to dimensional arguments. The re-
lation between the effective renormalizations at scale h
and h− 1 is

νh−1 =
Zh
Zh−1

(γνh + γ−hŴ
(h)
2 (0)

Zh−1

Zh
= 1 + ∂0Ŵ

h
2 (0) (47)

v±,h−1 =
Zh
Zh−1

(v±,h + ∂±Ŵ
(h)
2,0 (0)) α = ±

v3,h−1 =
Zh
Zh−1

(vα,h + ∂2
3Ŵ

(h)
2,0 (0))

Zµ,h−1

Zµ,h−1
=

Zµ,h
Zh−1

[1 + Ŵ
(h)
2,1 (0, 0)] µ = 0,± (48)

As before, we can choose ν = O(U) so that νh is bounded
uniformly in h; moreover a bound like (36) holds, with

2(4− 3
2n−m)h2ϑh in the r.h.s. replaced by 2( 7

2−
5
4n−m)h2ϑh;

again the presence of the extra factor 2ϑh implies (as in
(37)) that the limiting Zh̄, v±,h̄, v3,h̄, Z±,h̄ remain close
O(U) to their initial value.

Renormalization Group analysis in the second
regime

We have now to discuss the integration of the scales
≤ h̄; after a finite number of integrations again the region√
k2

0 + |E(~k)|2 ≤ 2h̄a corresponds to two disconnected
regions in moments space k, centered around the Fermi



9

points, so that the Grassmann fields can be conveniently
written as sum of two independent fields

ψ(≤h)
x =

∑
ε=±

eiεpFxψ(≤h)
ε,x (49)

In this case v3k
′ ∼ γh; therefore the asymptotic behavior

of the singe scale propagator is

g(h)(x) ∼ 1

v3

23h

1 + [2h|x̄|]N
(50)

where x̄ is equal to x with x3 replaced by v−1
3 x3. The

Renormalization group analysis proceed essential as in
§IV; the starting point is a functional integral with inte-
gration P (dψ(≤h)) and effective potential given by V(h̄),
sum of monomials of any degree in ψ(≤h̄). The main dif-
ference, with resepct to the case treated in §IV, is in the
1
v3

factors in (50) producing ”small divisors” for small
ε which could destroy convergence. Indeed each term

of the renormalized expansion contributing to W
(h)
n,m ob-

tained contracting mi vertices with i-fields has a factor
v−P3 where

P =
∑
i

imi

2
− n̄+ 1− n

2
(51)

and n̄ =
∑
imi. For large n̄ one as P = O(n̄) and pos-

itive; as v3 = O(
√
ε) this factor seems to destroy the

convergence of the renormalized expansion for ε small
enough (unless U is not chosen vanishing with ε). How-
ever the scaling dimension of the second regime D2 is
different from the dimension of the first regime, and the
difference is

D2 −D1 = −1

2
+
n

4
(52)

Therefore each term in V h̄ has an extra factor γh̄(D2−D1)

and therefore one has an extra εQ where

Q = − n̄
2

+
∑
i

imi

4
(53)

and as v3 = O(
√
ε) one has that the total extra factor

(with respect to the analysis in §IV) at each order of the
renormalized expansion is

ε−
P
2 εQ = ε

n
4−1 (54)

Therefore the small denominators due to the vanishing
of the Fermi velocity v3 are exactly compensated by the

extra factors due to the difference in scaling dimensionles
in the two regimes; convergence is achieved for couplings
U small but independent from ε.

In conclusions, even near the merging of the Fermi
points there are no quantum instabilities for U not too
large: Weyl semimetallic behavior persists up to the
boundary in presence of interaction. The two point func-
tion behaves as (38), provided that |k̄| << 1, where k̄
is equal to k with k3 replaced by v3k3 (that is |R(k′)| ≤
CU |k̄′|ϑ). In other words, relativistic behavior is found
at extremely small momenta k′3 << O(

√
ε). Similarly

the optical conductivity is given by (43) for extremely
small frequencies, that is ω << O(

√
ε).

VI.CONCLUSIONS

We have considered for the first time a true interacting
lattice model for Weyl semimetals exhibiting, in addition
to the semimetallic phase, the merging of Weyl points
at the onset of the insulating phase. The Renormaliza-
tion group analysis reveals that there are generically two
regimes, one in which the dispersion relation is essen-
tially quadratic and another in which asymptotic mass-
less Dirac fermion behavior emerges; this second regime
begins at lower and lower energy scales as we approach
the boundary of the semimetallic behavior. The analy-
sis establishes the absence of quantum phase transitions
for coupling small enough, even arbitrarily close to the
boundary where the Fermi velocity is arbitrarily small,
a region not accessible to a effective relativistic descrip-
tion. The optical conductivity remains equal to the free
value, with the renormalized velocities replacing by bare
one and up to subdominant corrections.

APPENDIX A: LATTICE CURRENTS

The current is defined as usual via the Peierls substi-
tution, by modifying the hopping parameter along the

bond (~x, ~x+ ~δ) as U~x,~x+~δ(
~A) = eie

∫ 1
0
~δ· ~A(~x+s~δ)ds, where e

is the electric charge and ~A = (A1, A2, A3) is the vector
electromagnetic field; the modified Hamiltonian is

H( ~A) = H1( ~A) +H2( ~A) +H3 + UV (55)

where
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H1(A) =
1

2

∑
~x∈Λ

{[−it(a+
~x U~x,~x+~δ+

b−
~x+~δ+

+ b+
~x+~δ+

U~x+~δ+,~x+2~δ+
b−
~x+2~δ+

) + it(b+
~x+~δ+

U~x+~δ+,~x
a−~x + a+

~x+2~δ+
U~x+2~δ+,~x+~δ+

b−
~x+~δ+

)](56)

+[t(a+
~x U~x,~x−~δ−b

−
~x−~δ−

− b+
~x−~δ−

U~x−~δ−,~x−2~δ−
a~x−2~δ−

) + (b+
~x−~δ−

U~x−~δ−,~xa
−
~x − a

+

~x−2~δ−
U~x−2~δ−,~x−~δ−b~x−~δ−)]

H2(A) =
1

2

∑
~x∈Λ

{[t⊥(a+
~x U~x,~x+~δ3

a−
~x+~δ3

− b+
~x+~δ+

U~x+~δ+,~x+~δ++~δ3
b~x+~δ++~δ3

) + a+

~x+~δ3
U~x+~δ3,~x

a−~x −

b+
~x+~δ++~δ3

U~x+~δ++~δ3,~x+~δ+
b~x+~δ+

)]

−t′
∑
i=1,2

[(a+
~xiU~x,~x+~δi

a−
~x+~δi

− b+
~x+~δ++~δi

U~x+~δ+,~δj ,~x+~δ+
b−
~x+~δ++~δi

) + a+
~x U~x,~x+~δi

a−
~x+~δi

− b+
~x+~δ+

U~x+~δ+,~x+~δ++~δi
b−
~x+~δ++~δi

)]}

The paramagnetic lattice current is given by

j±(~p) = −∂H( ~A)

∂A±,~p
|0, j3(~p) = −∂H( ~A)

∂A3,~p
|0 (57)

if A± = A1±A2

2 .

APPENDIX B: SYMMETRY PROPERTIES

In the effective action there are no bilinear terms
ψ+
ε ψ
−
−ε; in the case m = 0 this follows from conserva-

tion of momentum and when m = 1 this follows from
the fact that we assume p small. Note that the propa-
gator verifies the following symmetry properties, calling
k∗ = (k0,−k1,−k2, k3)

ĝ1,1(k) = ĝ1,1(k∗) ĝ2,2(k) = ĝ2,2(k∗)

ĝ1,2(k) = −ĝ1,2(k∗) ĝ2,1(k) = −ĝ2,1(k∗) (58)

Moreover the kernels of the currents verify

wa,±(~k, 0) = wa,±(~k∗, 0) wb,±(~k, 0) = −wb,±(~k∗, 0)

w3(~k, 0) = w3(~k∗, 0) (59)

By using the above symmetry properties it is easy to
check that

1. The non diagonal terms Ŵ
(h)
2,0 (εpF ) are vanishing

by (58) as they contain an odd number of non di-
agnal propagators, by (58).

2. The non diagonal terms contributing to

∂0Ŵ
(h)
2,0 (εpF ) or ∂3Ŵ

(h)
2,0 (εpF ) are vanishing

as they contain an odd number of non diagonal
contributions; similarly diagonal terms contribut-

ing to ∂1Ŵ
(h)
2,0 (εpF ) or ∂2Ŵ

(h)
2,0 (εpF ).

3. The diagonal contributions to Ŵ±;2,1(εpF , 0) are
vanishing; indeed the terms containing wb,± con-
tains an even number of non diagonal propagators,
hence they are vanishing; the terms containing wa,±
contains instead an odd number of non diagonal
propagators.

4. The non diagonal contributions to Ŵ
(h)
3;2,1(εpF , 0)

are vanishing as they contain an odd number of
non diagonal propagators.

APPENDIX C: LOWEST ORDER
COMPUTATIONS

The explicit value of the coefficients in (37) is

a3σ3 =

∫
dkv̂(k)∂3ĝ(k)

a+σ1 =

∫
dkv̂(k)∂+ĝ(k) (60)

b3σ3 =

∫
dkv̂(k)w3(k, 0)ĝ(k)σ3ĝ(k)

b+σ1 =

∫
dkv̂(k)[wa,+(~k, 0)ĝ(k)σ1ĝ(k) +

wb,+(~k, 0)ĝ(k)σ3ĝ(k)]

In agreement with (38) a⊥ = b⊥, a± = b± as they can

be easily checked from the relations, p3 = (0, ~p~δ3), p± =

(0, ~p~δ±)

g−1(k)− g−1(k + p3) = p3w3(~k, 0)σ3 +O(p2)

g−1(k)− g−1(k + p±) = p±[wa,±(~k, 0)σ1

+wb,±(~k, 0)σ3] +O(p2) (61)
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