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Abstract – We rigorously establish the asymptotic equivalence between the height function of
interacting dimers on the square lattice and the massless Gaussian free field. Our theorem explains
the microscopic origin of the sine-Gordon field theory description away from the free fermion point,
which has previously been elusive. We use a novel technique, based on the combination of discrete
holomorphicity with exact, constructive, renormalization group methods, which has the potential
of being applicable to a variety of other non-integrable models at or close to criticality.

High temperature superconductivity and the physics
of Resonance Valence Bonds (RVB) [1] was the original
motivation for studying two-dimensional (2D) quantum
dimers, which later became an important model for frus-
trated magnetism, cold bosons, and many other systems
with hard constraints [2]. In these contexts also classical
dimers are of interest, not only because they capture the
high temperature physics of their quantum counterpart,
but also because for special values of the parameters the
quantum static correlations can be expressed in terms of
the classical ones [3]. The properties of a wide class of
classical dimer models can be understood by using a cele-
brated result of half a century ago, the Kasteleyn theorem
[4], ensuring exact solvability and explicit expressions of
the correlations, which can be written in terms of Pfaffi-
ans. By using this result and the above mentioned equiv-
alence, the correlations of certain quantum dimer models
at special values of the parameters on the square [3] and
triangular lattice [5] were computed, finding a power law
(critical), and an exponential (massive) large distance de-
cay, respectively.

However, exact solvability is limited to a special class
of systems, and further progress in our understanding of
the physics of dimers requires the analysis of what hap-
pens away from integrability. We consider a prototypical
non-solvable dimer model obtained by assuming a local
interaction between parallel dimers: given a periodic box

Λ ⊂ Z2 of side L (with L even), the partition function is

ZΛ(λ,m) =
∑

M∈MΛ

[ ∏
b∈M

t
(m)
b

]
eλ

∑
P⊂Λ NP (M) (1)

where MΛ is the set of dimer coverings of Λ, λ = v/T
with T the temperature, P is a plaquette (face of Z2)
and NP (M) = 1 if the plaquette P is occupied by two
parallel dimers in M , and NP (M) = 0 otherwise; the

m-dependence in the reference weight t
(m)
(x,x+êj) = 1 +

δj,1m(−1)x1 tunes the distance from criticality; λ tunes
the distance from solvability, with λ > 0 corresponding to
a local attractive interaction. This model, in the m = 0
case, describes polar crystals [6] and it was recently re-
considered in [7–12] where its connection with quantum
dimer models, RVB physics and large spin quantum anti-
ferromagnets was worked out in detail and used to in-
fer informations on the RVB spin-liquid order parame-
ters. MonteCarlo simulations show the presence of non-
universal anomalous exponents in the dimer correlations
decay. This confirms the general picture that the asymp-
totic properties can be captured by a quantum field theory
(QFT) of the sine-Gordon type, the fundamental field be-
ing a coarse-grained version of the height function. Using
this effective QFT description, several informations were
derived about the phase diagram, including the Kosterlitz-
Thouless universality of the phase transition from a liquid
to a crystalline phase. The same effective description is be-
lieved to be applicable to a variety of dimer and interface
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models, and it is at the basis of our current understanding
of their physics. However, while the validity of the QFT
description is supported a posteriori by the agreement of
its prediction with simulations, a purely deductive and rig-
orous microscopic argument establishing its correctness is
currently not available [2], with the only exception of the
integrable, non-interacting, case. Even then, the deriva-
tion is very non-trivial, and it has been provided only re-
cently [13] using Discrete Holomorphicity (DH) methods.

In this letter we present the first mathematical justi-
fication of the quantum field theory description of non-
integrable dimer models. We prove a theorem establishing
the convergence, in the scaling limit, of the height function
of model (1) to the massless Gaussian Free Field (GFF),
in a suitable range of parameters. This is done by a new
method, based on the combination of DH methods with
Constructive Renormalization Group (CRG) techniques
[14], which can be applied in a much wider context, in-
cluding interacting dimers on different lattices (either bi-
partite or not) and non-integrable deformations of Ising
models.

Given a dimer covering M , two faces of Λ centered at x
and y and a path Cx→y from x to y with trivial winding
around the torus Λ, we define the height difference between
x and y as

hx − hy =
∑

b∈Cx→y

(
1b(M)− 1

4

)
σb (2)

where σb = +1/ − 1 depending on whether Cx→y crosses
b with the white site on the right/left. Moreover, 1b(M)
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Fig. 1: A dimer configuration for L = 4 and the associated
height function. The height of the central plaquette is conven-
tionally set to 0.

is equal to 1 if b is occupied by a dimer in M , and 0
otherwise. A crucial property of the height function is
that hx − hy is independent of the choice of Cx→y. The
dimer correlation is given by 〈1b;1b′〉, where 〈. . . ; . . . 〉 is
the truncated expectation with the weight in (1), and the

two point height correlation is

〈 (hx − hy)2 〉 =
∑

b1∈Cx→y

∑
b2∈Cx→y

σb1σb2〈1b1 ;1b2〉. (3)

Our main result is the following.

Theorem. For λ 6= 0 sufficiently small, L → ∞, and
m→ 0, the height correlation for x 6= y verifies:

〈(hx − hy)2〉 =
K(λ)

π2
log |x− y|+R(x− y), (4)

with K(λ) an analytic function such that K(0) = 1, and
R(x) a bounded remainder. The higher order truncated
correlations are bounded uniformly in |x − y|. At large
distances, the coarse graining of hx converges to the Gaus-
sian Free Field (GFF), in the sense that, if α ∈ R and
f is a smooth, compactly supported function on R2 with∫
R2 f(u)du = 0, one has

〈eiαε2
∑

x hxf(εx)〉 ε→0→ e
Kα2

4π2

∫
f(u)f(v) log |u−v|dudv, (5)

where ε−1 represents the coarse-grain scale, to be sent to
infinity after the thermodynamic limit.

Let us mention that the logarithmic growth of the height
variance (without sharp control of the constant in front of
the log) for some discrete (2 + 1)-dimensional interface
models (Solid-on-Solid and discrete Gaussian model) was
obtained in [15].

The choice of the specific interaction in (1) is just for
illustrative purposes: the same result remains valid for
generic finite range interactions, translationally and rota-
tionally invariant.

Eq.(5) can be re-read in a more evocative form: if χ0 is
a smooth, compactly supported, probability distribution
centered at the origin, χξ(u) = χ0(u − ξ) is its translate,

and h̃ε(ξ) = ε2
∑

x hxχξ(εx), then choosing f = χξ − χη
in (5) we find

lim
ε→0
〈eiα(h̃ε(ξ)−h̃ε(η))〉 ' (const.)|ξ − η|−Kα2/(2π2),

asymptotically as |ξ−η| → ∞. The left side is the coarse-
grained “electric correlator” (eiαhx being the lattice ana-
logue of the electric vertex operator in the Coulomb gas
picture): our theorem proves its anomalous power law de-
cay at large distances. In the λ = 0 case, the asymptotic
computation of the electric correlator 〈eiα(hx−hy)〉, with-
out any coarse-graining, has been obtained in [16] for all
α ∈ (−π, π).

An important step in proving the above result is the
computation of the asymptotic behavior of the dimer cor-
relation by CRG methods [14, 17]. In the limit L → ∞,
if m 6= 0, it decays exponentially at large distances with
rate O(m1+ηm(λ)) (gaseous phase), with ηm(λ) an analytic
function such that ηm(0) = 0. If m → 0, it decays as a
power law (liquid phase): e.g., if b, b′ are both horizontal
with b′ − b = (x1, x2) and z = x1 + ix2, then it decays
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polynomially, with critical exponent min{2, 2+η(λ)}, and
η(λ) = −(32/π)λ+O(λ2) an analytic function of λ,

〈1b;1b′〉=
(−1)x1+x2

2π2
K(λ)Re

1

z2
+ (−1)x1

K̄(λ)

|z|2+η(λ)
+ h.o.

(6)
Here K(λ) is the same as in (4), K̄(λ) is another analytic
function such that K̄(0) = 1, and h.o. indicates faster de-
caying terms at infinity. The above formula reduces as
λ → 0 to the one known by Kasteleyn’s exact solution.
The main effect of the interaction is to produce an anoma-
lous exponent in the second term, in agreement with the
numerical simulations of [7]. Remarkably, there are no ra-
diative corrections to the exponent of the first term. The
model belongs to the same universality class as the XXZ
chain, vertex models and Luttinger liquids.

While the dimer characteristic function is a local observ-
able, the height differences are non-local “string” observ-
ables, as apparent from (3). Even at λ = 0, the compu-
tation of the height correlation is very subtle. Indeed, by
inserting the λ = 0 version of (6) into (3), one gets an ap-
parently very singular expression: take e.g. x and y on the
same horizontal line. In the large separation limit, the ob-
ject of interest is formally proportional to

∫ η
ξ
dudv

(u−v)2 , where

ξ, η are the (suitably rescaled) horizontal coordinates of x
and y. Such an integral requires a proper interpretation,
because of its singularity at u = v, and the result depends
on the specific ultraviolet regularization. Of course, an
“ad hoc” regularization can be chosen [18] in order to re-
produce the expected result, but the problem remains of
a general derivation, which can unambiguously return the
correct exponents without any external bias. The problem
was finally solved in [13], and the (1/π2) factor in front
of the logarithm in (4) at λ = 0 was rigorously computed,
by taking advantage of DH (lattice) methods. In the in-
teracting case, the problem is much more puzzling. In
fact, in addition to the problem of the ultraviolet diver-
gences affecting the computation of the (1/π2) prefactor,
the anomalous decay in (6), once inserted into (3), may
change the logarithmic growth into an anomalous growth.
Our theorem proves that this is not the case: logarithmic
fluctuations are robust, stability being guaranteed by so-
phisticated cancellations arising from emerging chiral sym-
metry. Spurious ultraviolet divergences are avoided by us-
ing the irrelevant terms coming from the lattice: in this
respect, the use of exact CRG methods (which, in contrast
to field theoretic RG, takes the irrelevant terms into full
account) is essential. A detailed proof of our main theo-
rem is rather technical and is given elsewhere [17]; below
we explain its main ideas.

Sketch of the proof. The first step consists in an ex-
act rewriting of the finite volume/finite lattice generat-
ing function of dimer correlations, Z(A), (defined so that

〈1b1 ; · · · ;1bk〉 = ∂k

∂Ab1
···∂Abk

logZ(A))|A=0, bi labeling the

nearest neighbor bonds) as a finite Grassmann integral

[17, Section 2]:

Z(A) =
1

2

∑
θ,τ

Cθ,τ

∫
θ,τ

Pθ,τ (dψ)eV (ψ)+B(ψ,A). (7)

Here ψx are Grassmann variables, V is sum of monomi-
als in ψx of order 4 or higher, B(ψ,A) is a source term,
sum of monomials in ψ and in A, θ/τ ∈ {0, 1} label
the boundary conditions for the Grassmann variables in
the horizontal/vertical directions (0/1 corresponding to
periodic/antiperiodic conditions), and C0,0 = −1, while
Cθ,τ = +1 otherwise. By cluster expansion methods, we
prove that V and B are analytic in λ. Pθ,τ (dψ) is a gaus-
sian Grassmann integration with propagator g(x,y)

1

L2

∑
k

e−ik(x−y) i sin k1 + sin k2 +m(−1)y1 cos k1

2D(k,m)
, (8)

where D(k,m) = m2 + (1 −m2)(sin k1)2 + (sin k2)2, and
k1, k2 are in (2π/L)Z or (2π/L)(Z + 1/2), depending on
boundary conditions.

If λ = 0, then V = 0, in which case the integral is
gaussian and can be computed exactly. When λ 6= 0 the
integral is not gaussian, and it can be evaluated by a mul-
tiscale analysis using CRG methods [14]. We are inter-
ested in the case of m small or vanishing. As L → ∞
and m → 0, the propagator in (8) becomes singular in
correspondence of four momenta, namely p1 = (0, 0),
p2 = (π, 0), p3 = (π, π), p4 = (0, π). Therefore, g(x,y)
can be naturally written as the superposition of four terms,
each of which is concentrated in momentum space around
one of the singularities. Correspondingly, we decompose
the Grassmann field as:

ψx = eip1xψx,1− ieip2xψx,2 + ieip3xψx,3 + eip4xψx,4, (9)

where ψx,γ are Grassmann variables, often referred to as
Majorana variables, since their effective action is a lattice
regularization of the standard 2D Majorana action. Their
propagator is block-diagonal, the fields with γ = 1, 2 being
independent of γ = 3, 4; the propagator G(x − y) of the
γ = 1, 2 fields is the same as that of the γ = 3, 4 fields,
and reads (using the symbol

∫
dk/(2π)2 as a shorthand

for the discrete sum in (8)): G(x) =

1

Z

∫
dk

(2π)2

χ(k)e−ikx

2D(k,m)

(
i sin k1 + sin k2 im cos k1

−im cos k1 i sin k1 − sin k2

)
where χ(k) is a smoothed characteristic function of the
set max{|k1|, |k2|} ≤ π/2, and Z = 1. To evaluate the
Grassmann integral (7) we use (9) and write the propa-
gator G(x) as sum of propagators living on momentum
scales 2h, h ≤ 0. After integrating the scales 0, . . . , h + 1,
the (θ, τ) contribution to Z(A) is rewritten as

eSh(A)

∫
θ,τ

PZh,mh
(dψ(≤h))eV

(h)(
√
Zhψ

(≤h))+B(h)(
√
Zhψ

(≤h),A)

where PZh,mh
has propagator G(h)(x), defined in the same

way as G(x), with Z replaced by Zh, m by mh and χ(k)
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by χh(k), a (smoothed) characteristic function of the set
|k| ≤ (π/2)2h. The effective potential V (h) is:

V (h)(ψ) = λh
∑
x

ψx,1ψx,2ψx,3ψx,4 + ir.,

where ir. indicates the irrelevant terms (non-local quartic
terms, and terms of order 6 or higher in ψ). Remarkably,
the kernels of the irrelevant terms in V (h) are analytic in
λ provided that |Zh+1/Zh − 1|, |λh| are sufficiently small,
as long as |mh| < 2h: the proof of this fact uses fermionic
cluster expansion methods, including the use of Gram-
Hadamard determinant bounds. Similarly, under the same
assumptions, the effective source B(h) is analytic in λ. Its
structure is expressed most easily by using Dirac rather
than Majorana fields: the former are defined as ψ±x,1 :=
1√
2
(ψx,1 ∓ iψx,3), ψ±x,−1 := ± i√

2
(ψx,2 ∓ iψx,4), and they

are referred to as Dirac variables, because their action is
the lattice analogue of that of 2D Dirac fields. In terms
ψ±ω , the effective source reads:

B(h)(ψ) =
Z

(1)
h

Zh
F1(ψ,J) +

Z
(2)
h

Zh
F2(ψ,J) + ir. ,

where ir. are the irrelevant terms (non local, or of higher
order in A or ψ as compared to Aψψ). Moreover, denoting
Jx,i = J(x,x+êi) with Jb = eAb − 1:

F1 = 2
∑

x, ω=±
(−1)x(Jx,1 + iωJx,2)ψ+

x,ωψ
−
x,ω,

F2 = 2
∑

x, ω=±

[
(−1)x1Jx,1 + iω(−1)x2Jx,2

]
ψ+
x,ωψ

−
x,−ω.

Summarizing, the effective theory on scale h has the
same structure as a theory of interacting 2D lattice Dirac
fermions with a wave function renormalization Zh, an ef-
fective mass mh, an effective coupling λh, and effective

source couplings Z
(1)
h , Z

(2)
h . It is completely analogous

to that obtained in the multiscale analysis of the 8 Ver-
tex, Ashkin-Teller, XXZ, or Luttinger liquid models [14]:
the only differences have to be found in the oscillating
factors appearing in the definition of F1, F2 and in the
specific structure of the irrelevant terms. The flow equa-
tion for the effective couplings of all these models is the
same, up to irrelevant contributions, which are exponen-
tially negligible in the infrared limit. Therefore, λh ap-
proaches exponentially, as h→ −∞, a line of fixed points:
λ−∞(λ) = −32λ(1 + O(λ)). Moreover, Zh ∼ 2η(λ)h,

Z
(i)
h ∼ 2ηi(λ)h, mh ∼ m 2ηm(λ)h, where ∼ means that the

ratio of the two sides is bounded from above and below
by two universal positive constants, uniformly in h. Re-
markably, using the emergent chiral gauge symmetry of
the theory, we find that η = η1, which implies the robust-
ness (exact non-renormalization) of the exponent 2 in the
first term of (6). The integration goes on until mh ' 2h,
at which point the Dirac field is massive and can be inte-
grated in one step. If m→ 0 and L→∞, the integration
has no infrared cutoff.

In order to evaluate the height fluctuations, we use
the path-independence of the height difference, which is
a (weak) instance of DH. We proceed as in [13](c). Con-
sider e.g. the height variance: in the right side of (3) we
deform the two paths along which b1 and b2 are summed
over, in such a way that they are “as much separated as
possible”, as in Fig.2. In the vicinity of x and y, the two

x y

C(1)
x→y

C(2)
x→y

Fig. 2: A schematic view of the paths along which b1, b2 are
summed over, to be called C(1)

x→y and C(2)
x→y.

paths are lattice approximations of straight lines, depart-
ing from and arriving at the points x,y in different direc-
tions. After the path deformation, we replace the dimer
correlation in the right side of (3) by its asymptotic ex-
pression (6) (and its analogues in the cases that b, b′ have
different orientations). The h.o. terms contribute a finite
constant, uniformly in |x − y|. The contribution to (3)
from the term with decay exponent 2 reads:

−K(λ)

2π2

∑
b1∈C(1)

x→y

∑
b2∈C(2)

x→y

Re
∆zb1∆zb2

(zb1 − zb2)2
, (10)

where zbi are the representatives in complex coordinates
of the centers of the bonds bi, and ∆zbi are the oriented

elementary path elements of C(i)
x→y crossing bi, expressed

in complex coordinates. Note that no oscillatory factor
appears in (10): the factors σb1σb2 in (3) compensate ex-
actly the oscillatory factor of the term under consideration
in the dimer correlation. Eq.(10) is the Riemann approx-

imation to −K(λ)
2π2 Re

∫
γ1
dz
∫
γ2
dw 1

(z−w)2 , where γ1 and γ2

are two completely disjoint complex paths (this is what
makes the integral non-singular!) going from zx = z

b
(1)
x

to

zy = z
b
(1)
y

, and from z′x = z
b
(2)
x

to z′y = z
b
(2)
y

, where b
(i)
x

and b
(i)
y are the first and last bonds of C(i)

x→y. Its value is
K

2π2 Re log
(z′y−zx)(z′x−zy)

(z′y−zy)(z′x−zx) , which is the same as (4) up to a

bounded error. Finally, consider the contribution to (3)
from the term with exponent 2 + η: in this case the fac-
tors σb1σb2 do not compensate exactly with the oscillatory
signs in the dimer correlation; the left-over oscillations
act, after summation along the paths, as discrete deriva-
tive, which effectively makes this term decay faster, thus
making its contribution to (3) finite, uniformly in |x− y|.
Similar considerations apply to higher order cumulants,
and (5) follows as a corollary.
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In conclusion, we presented a rigorous microscopic
derivation of massless gaussian free field behavior of the
height field of a non integrable interacting dimer model.
Our method combines constructive field theory techniques
with discrete holomorphicity ideas, which are used for the
first time in a unified way to analyze a non-local fermionic
observable. The method can be applied to several other
non-integrable 2D critical or quasi-critical theories and we
expect it to be capable, in perspective, of rigorously prov-
ing conformal invariance of the scaling limit.

The hypothesis of bipartite lattice, which we used ex-
tensively in this work (the very definition of height func-
tion requires the lattice to be bipartite), is not necessary
for the applicability of our method. Rather, the required
ingredient is that the model can be formulated as the per-
turbation of a gaussian Grassmann integral, a feature valid
much more in general than for dimers on the square lat-
tice: models like the 2D Ising model with next-to-nearest-
neighbor interactions on the square, hexagonal or trian-
gular lattices, or interacting dimers on the hexagonal or
triangular lattices fall all in the category of models treat-
able by our method. There are several important open
questions still to be investigated in these contexts, for
which the methods we introduced may play an important
role. Examples include: the study of the crossover from
the (anomalous) gapped RVB phase to the liquid phase
in interacting dimer models on the triangular lattice as
the diagonal hopping is sent to zero [5]; the computation
of other non-local fermionic observables such as the spin-
spin correlation in non-integrable 2D Ising models, or the
monomer and vison [2] correlations in interacting dimer
models. For these, the use of DH in a stronger form will
be needed, in the spirit of [16,19].
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