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Abstract The s — d model describes a chain of spin-1/2 electrons interacting magnetically with a
two-level impurity. It was introduced to study the Kondo effect, in which the magnetic susceptibility
of the impurity remains finite in the O-temperature limit as long as the interaction of the impurity
with the electrons is anti-ferromagnetic. A variant of this model was introduced by Andrei, which he
proved was exactly solvable via Bethe Ansatz. A hierarchical version of Andrei’s model was studied by
Benfatto and the authors. In the present letter, that discussion is extended to a hierarchical version
of the s — d model. The resulting analysis is very similar to the hierarchical Andrei model, though the
result is slightly simpler.
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The s — d model was introduced by Anderson [1] and used by Kondo [4] to study what would
subsequently be called the Kondo effect. It describes a chain of electrons interacting with a fixed
spin-1/2 magnetic impurity. One of the manifestations of the effect is that when the coupling is anti-
ferrmoagnetic, the magnetic susceptibility of the impurity remains finite in the 0-temperature limit,
whereas it diverges for ferromagnetic and for vanishing interactions.

A modified version of the s — d model was introduced by Andrei [2], which was shown to be exactly
solvable by Bethe Ansatz. In [3], a hierarchical version of Andrei’s model was introduced and shown to
exhibit a Kondo effect. In the present letter, we show how the argument can be adapted to the s — d
model.

We will show that in the hierarchical s — d model, the computation of the susceptibility reduces
to iterating an explicit map relating 6 running coupling constants (rccs), and that this map can be
obtained by restricting the flow equation for the hierarchical Andrei model [3] to one of its invariant
manifolds. The physics of both models are therefore very closely related, as had already been argued
in [3]. This is particularly noteworthy since, at 0-field, the flow in the hierarchical Andrei model is
relevant, whereas it is marginal in the hierarchical s —d model, which shows that the relevant direction
carries little to no physical significance.
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The s — d model [4] represents a chain of non-interacting spin-1/2 fermions, called electrons, which
interact with an isolated spin-1/2 impurity located at site 0. The Hilbert space of the system is F7, @ C2
in which F7, is the Fock space of a length-L chain of spin-1/2 fermions (the electrons) and C? is the
state space for the two-level impurity. The Hamiltonian, in the presence of a magnetic field of amplitude
h in the direction w = (w1, wq, ws), is

Hy = Ho+Vo+ Vi@ Hy+V
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where )\ is the interaction strength, A is the discrete Laplacian ¢t (z), o =t,] are creation and

annihilation operators acting on electrons, and ¢/ = 77, j = 1,2, 3, are Pauli matrices. The operators
7J act on the impurity. The boundary conditions are taken to be periodic.

In the Andrei model [2], the impurity is represented by a fermion instead of a two-level system, that
is the Hilbert space is replaced by F ® Fi, and the Hamiltonian is defined by replacing 77 in Eq.(1)
by d*77d~ in which df(z), a =1, | are creation and annihilation operators acting on the impurity.

The partition function Z = Tre #Hx can be expressed formally as a functional integral:

Z :Tr/P(di/}) i(—l)”/ dty - -dtp, V(1) - V(tyn) (2)

=0 0<ty < <tn<f

in which V(t) is obtained from V by replacing ¢ (0) in Eq.(1) by a Grassmann field X (0,t), P(di)
is a Gaussian Grassmann measure over the fields {1/ (0,t)}; . whose propagator (i.e. covariance) is,

in the L — oo limit,
eiko(t—t/)

1
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and the trace is over the state-space of the spin-1/2 impurity, that is a trace over C2.

We will consider a hierarchical version of the s — d model. The hierarchical model defined below is
inspired by the s —d model in the same way as the hierarchical model defined in [3] was inspired by the
Andrei model. We will not give any details on the justification of the definition, as such considerations
are entirely analogous to the discussion in [3].

The model is defined by introducing a family of hierarchical fields and specifying a propagator for
each pair of fields. The average of any monomial of fields is then computed using the Wick rule.

Assuming 3 = 2% with Ng = log, 8 € N, the time axis [0, 3) is paved with boxes (i.e. intervals)
of size 2™ for every m € {0, —1,..., —Ng}: let

def

Om = {[iQ‘m', (i+ 1)2""‘)} B mml_y )

i=0,1,
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Given a box A € Q,,, let t5 denote the center of A, and given a point ¢t € R, let A™(¢) be the
(unique) box on scale m that contains ¢t. We further decompose each box A € Q,,, into two half bozes:
for n € {—,+}, let

AndéfA[m-&-l] (tA + n2—m—2) (4)

for m < 0. Thus A_ can be called the “lower half” of A and A, the “upper half”.
The elementary fields used to define the hierarchical s — d model will be constant on each half-box

and will be denoted by ¥i"*(A,) for m € {0,—1,---, =Nz}, A€ Qp, n € {—, +}, a € {1, 1}.



The propagator of the hierarchical s — d model is defined as

m]— m de
(vir=(a i ay)) < (5)
for m € {0,-1,---, —Ng}, A€ Q,,, n € {—,+}, @ € {1,1}. The propagator of any other pair of fields
is set to 0.
Finally, we define
v Y 2Bl A e)). (6)
m=0

The partition function for the hierarchical s — d model is
Z="Tr Z(—n”/ dty---dt, V(t1) - V(t,) (7)
n—0 0<ty <<ty <B
in which the ¥X(0,¢) in V(t) have been replaced by the ¢F (t) defined in Eq.(6):

X D U (B0, 0 ta, )T —h > wir (8)
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This concludes the definition of the hierarchical s — d model.

We will now show how to compute the partition function Eq.(7) using a renormalization group
iteration. We first rewrite

Z(—l)”/dtl ~dt, V(t1) - =I] II ( V(ta,) ) (9)

"0 0<ty <--<tn<fB A€Qo n=%

and find that
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(the numbering is meant to recall that in [3]) in which 7 = (71,72, 73) and AL,SO](A) is a vector of
polynomials in the fields whose j-th component for j € {1,2,3} is
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in which h := h/2.
By a straightforward induction, we find that the partition function Eq.(7) can be computed by

defining
dWMWPWAWW@<IIOWWuWW)> (14)

in which (), denotes the average over ¥[™, O™ > 0 and

win=(Alml) =14 " dmlolsmialm) (15)
P
in terms of which o
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in which |Q,,| = 2V®)~I™l is the cardinality of Q,,. In addition, similarly to [3], the map relating ELm]
to fj[gm_l] and C™ can be computed explicitly from Eq.(14):

[m] _ 2 2 82 62 62 2
ctml =1+ é+£o€6+9€ i Rl
ggn 1] _ =5 (60 _ EO + 34gl1 — £0€6>
poiol(a 8, bl 8 60 G
4 02+8+12+24+4+24
@; 1 _ (64 4 05 3ol + 30144 + == 84 3€6€7>
C 2 E
m— 1
= L (2t 4 200t + 360067 + 20405 (an
m— 1 e g
[([3 1 _ 6 (66 + 6066 + 36156 + % + 3£4£7>
[m—l] o l gl % % %
& —C(2+12+4+12>

in which the ™ have been dropped from the right hand side.

The flow equation Eq.(17) can be recovered from that of the hierarchical Andrei model studied in
[3] (see in particular [3, Eq.(C1)]) by restricting the flow to the invariant submanifold defined by

1 1

p W=
This is of particular interest since K[Qm] is a relevant coupling and the fact that it plays no role in the
s — d model indicates that it has little to no physical relevance.

The qualitative behavior of the flow is therefore the same as that described in [3] for the hierarchical
Andrei model. In particular the susceptibility, which can be computed by deriving —3~!log Z with
respect to h, remains finite in the O-temperature limit as long as A\g < 0, that is as long as the interaction
is anti-ferromagnetic.

m m 1 m
o o= (18)

Acknowledgements We are grateful to G. Benfatto for many enlightening discussions on the s — d and
Andrei’s models.

References

1. Anderson, P.: Local magnetized states in metals. Physical Review 124, 41-53 (1961)

2. Andrei, N.: Diagonalization of the Kondo Hamiltonian. Physical Review Letters 45, 379-382 (1980)

3. Benfatto, G., Gallavotti, G., Jauslin, I.: Kondo effect in a fermionic hierarchical model. arXiv: 1506.04381
2015)

4. Kondo, J.: Resistance Minimum in Dilute Magnetic Alloys. Progress of Theoretical Physics 32, 37-49 (1964)



