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Abstract

We consider two forced dissipative pendulum systems, the pendulum with vertically oscillat-
ing support and the pendulum with periodically varying length, with a view to draw comparisons
between their behaviour. We study the two systems for values of the parameters for which the
dynamics are non-chaotic. We focus our investigation on the persisting attractive periodic orbits
and their basins of attraction, utilising both analytical and numerical techniques. Although in
some respect the two systems have similar behaviour, we find that even within the perturbation
regime they may exhibit different dynamics. In particular, for the same value of the amplitude
of the forcing, the pendulum with varying length turns out to be perturbed to a greater extent.
Furthermore the periodic attractors persist under larger values of the damping coefficient in
the pendulum with varying length. Finally, unlike the pendulum with oscillating support, the
pendulum with varying length cannot be stabilised around the upward position for any values
of the parameters.

1 Introduction

Perturbations of the simple pendulum exhibit an extremely rich variety of dynamics whilst still
allowing a complete control over the unperturbed system. For this reason perturbed pendula are
often used as toy models to study new phenomena in dynamics — for instance in [3, 21, 49, 60, 59, 64]
— or act as simplified models for more complex real world systems — see [46, 57, 62]. One of the most
commonly studied perturbations is the pendulum with vertically oscillating support [6, 12, 13, 30, 64],
often also referred to as the parametrically forced pendulum, see for example [21, 29, 32, 44, 66].
Another much studied perturbation of the simple pendulum is the pendulum with periodically
varying length [8, 16, 58, 18, 56]. In [22, 53] it was noted that the pendulum with varying length is
an example of a periodically forced system whose linearisation is different from Mathieu’s equation,
but no further analysis was completed. A brief comparison between the pendulum with oscillating
support and the pendulum with varying length was made in [18], drawing the conclusions that
the two systems are qualitatively different and further comparison of the two systems deserved a
separate study. However there has not been further work focused on exploring the differences of the
two systems. In fact, there are still instances, even as recent as 2014 [27], where the two systems
are mistaken with one another — see also [35, 51, 52]. Therefore to avoid further confusion and
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misguidance it is important not only to highlight the differences between the two systems but also
to note where they are similar to one another. In the present paper we expand on the study made
in [18] and directly compare some aspects of the two systems.

The motion of a simple pendulum with length `0 is governed by the equation

θ̈(s) +
g

`0
sin θ(s) = 0, (1)

where θ(s) is the angle between the pendulum and the downward vertical, g is the acceleration due
to gravity and the dots denote derivatives with respect to the time s.

Consider a perturbation of the pendulum with fixed length `0 which is subject to frictional forces
and whose pivot oscillates vertically with amplitude a and frequency ω. The non-dimensionalised
equation of motion is

θ̈(t) + γ θ̇(t) + (α− δ cos t) sin θ(t) = 0, (2)

where
α :=

g

`0ω2
, δ :=

a

`0
, t := ωs,

the damping coefficient γ is non-negative and the dots now denote derivatives with respect to the
rescaled time t. Consider also a pendulum with fixed pivot, but whose length periodically varies
with time s as `(s) = `0 + `1 cosωs, with `1 < `0. The non-dimensionalised equation of motion is

θ̈(t) +
(
− 2ε sin t

1 + ε cos t
+ ζ

)
θ̇(t) +

α

1 + ε cos t
sin θ(t) = 0, (3)

where
α :=

g

`0ω2
, ε :=

`1
`0
, t := ωs,

the damping coefficient ζ is non-negative and again the dots denote derivatives with respect to t.
It may be seen that the parameters α in the two equations (2) and (3) correspond to one another,

as both the systems are perturbations of the simple pendulum (1). As a consequence, at least within
the perturbation regime (δ, ε� 1) it is not unreasonable to expect some similarities in the dynamics
of the two systems with the same values of α. On the other hand, the perturbation parameters δ and
ε appear very differently and in general there is no direct link between particular values of δ in the
system (2) and ε in the system (3). Furthermore, as the perturbation parameters are increased, the
two systems and their dynamics become increasingly different. We therefore focus our comparison
of the two systems on the case δ, ε small, and show that even in this scenario they can exhibit
significantly different dynamics.

In Section 2 we study the linearised equations of the two systems. In particular we study the
transition curves, that is the curves in parameter space separating the regions of stable and unstable
dynamics of the corresponding linearised systems. Here, a first difference between the two systems
appears. Whilst it is well known [61, 40, 1, 2, 6, 13, 30] that for α sufficiently small and δ chosen
accordingly, it is possible to stabilise the upward fixed point (θ, θ̇) = (π, 0) for the system (2), on the
contrary we show that, as observed numerically in [18], stability of the upward fixed point cannot
be achieved for any values of the parameters in the system (3). In Section 3 we calculate sufficient
conditions on the damping coefficient in each system for the origin to achieve global attraction (up
to a zero measure set). In Section 4 we investigate analytically the subharmonic solutions, which
represent the dominant attractors of the two systems in the perturbation regime. In particular we
give results for the thresholds values, that is the values of the damping coefficient under which such
attractors persist. The threshold values from the first order calculations are compared with results
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from numerical simulations, from which we find that the system (2) is more suited to study by
perturbation theory than the system (3), where higher order approximations may be necessary to
achieve the same level of accuracy. In Section 5 we investigate the systems by means of numerical
analysis and compare results concerning the phase curves of the attracting solutions as well as the
sizes and topology of their corresponding basins of attraction. In Section 6 we study and compare
the bifurcation structures of the two systems, which we relate to the results contained in the previous
sections. In Section 7 we provide concluding remarks and comment on some open problems.

2 Linearised systems

We first consider the linearisation of the system (2) for which we wish to study the stability of
the two fixed points. Linearising about the downward (θ = 0) and upward (θ = π) fixed points,
respectively, results in the two equations

ψ̈(t) + (α− δ cos t)ψ(t) + γ ψ̇(t) = 0, (4a)

ψ̈(t)− (α− δ cos t)ψ(t) + γ ψ̇(t) = 0, (4b)

where ψ represents the angle between the pendulum and the downward and upward vertical, re-
spectively. It is evident, due to the properties of cos t, that a change in the sign of δ is equivalent
to a shift of π in time t, hence the invariant curves do not depend on the sign of δ [12]. Therefore,
even though changing the sign of α makes little sense physically (since α is proportional to positive
constants by definition), for the purpose of both analytical computations and numerical simulations
it is convenient to consider only the equation (4a) and change the sign of α when studying the
stability of the upward position. Setting γ = 0, the linearisation of (2) about either one of its fixed
points results in Mathieu’s equation, a special case of Hill’s equation, see [45, 5, 39].1

Figure 1: Transition curves for the linearised system of the pendulum with oscillating support (2) with
γ = 0. The dashed lines correspond to 2π-periodic solutions and the solid lines to 4π-periodic solutions.
The shaded regions are those in which the solutions are unstable (and hence are called instability tongues).

By Floquets theorem [45, 39] the curves on which the period 2π and period 4π solutions occur
separate the regions of parameter space where all solutions of (4a) are bounded from the regions

1Usually, in particular in mathematics textbooks, Mathieu’s equation is written as ψ̈+(α+δ cos 2t)ψ = 0; however
we shall use the writing with cos t, following [12, 39], more natural from a physical point of view.
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where unbounded solutions may occur. Such curves, usually referred to as transition curves, can
be computed by standard algorithms; see for instance [39, Chapter 9]. The regions of stability and
instability are shown in Figure 1: choosing values of the parameters α and δ inside the white regions
results in stable solutions, whilst for parameters chosen in the grey regions the solutions are unstable,
according to Magnus and Winkler’s terminology [45].

We now consider the pendulum with varying length. Instability domains in parameter space for
the system with ζ > 0 have been previously calculated in [16, 58]. Here we wish to compute the
transition curves when ζ = 0, for comparison with those of the system (2). For ζ = 0, in terms of
the new variable Θ(t) := `(t)θ(t), the system (3) may be put into a form2 which does not contain
any term involving θ̇:

Θ̈(t) +
ε cos(t)

1 + ε cos t
Θ(t) + α`0 sin

(
Θ(t)

`0(1 + ε cos t)

)
= 0. (5)

Linearising (5) about the downward fixed point (θ = Θ = 0) we obtain an equation in the form of
Hill’s equation, given by

ψ̈(t) +
α+ ε cos t
1 + ε cos t

ψ(t) = 0, ε < 1. (6)

The above is not in the form of Mathieu’s equation, as previously noted [22], however keeping only
the terms at first order in ε yields

ψ̈(t) +
(
α+ ε(1− α) cos t

)
ψ(t) = 0, (7)

which is of the form of Mathieu’s equation, even though now the parameter α appears in the forcing
term as well. By calculating the transition curves in the same way as previously for the pendulum
with oscillating support, we find the regions of stability and instability for equation (7) as shown in
Figure 2(a). There are three important points to note:

1. The transition curves appear different from the transition curves for Mathieu’s equation (4a).
This is a consequence of the forcing coefficient in (7) depending also on the parameter α. In
particular the unstable tongue which emanates from α = 1 has completely vanished.

2. The first order approximation to (6) results in a system of the form of Mathieu’s equation.
Therefore it is not surprising that there exits stable regions for α < 0. However this does
not correspond to the stability of the upward fixed point for the pendulum with varying
length. Indeed, when considering higher order approximations the transition curves change
drastically. For instance, approximating the linearised system (6) as far as O(ε8), we find the
stability curves shown in Figure 2(b). For α > 0 the curves show good agreement with those
in Figure 2(a) only for ε� 1, whilst for α < 0 the stable region has almost vanished: the first
transition curve, that is the transition curve emanating from the origin, becomes more and
more close to the vertical axis. To obtain the transition curves for the full linearised system
(6) a careful analysis is needed, because the higher order corrections becomes more and more
relevant when ε becomes close to 1. This has been done in [4], by using a combination of
both analytical and numerical methods. In fact, in [4] only the region of postive α has been
considered explicitly, however it is not difficult to show that the first transition curve is the
axis α = 0, see Appendix A.

2The transformation to Θ may also be written in the form Θ(t) = `(t)θ(t) = e
1
2

R
a(t) dtθ(t), with a(t) := 2 ˙̀(t)/`(t),

which is the standard transformation used to cast Hill’s equation in Hamiltonian form [45, 15].
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3. More care must be taken when considering the stability of the upward position θ = π. The
transformation Θ = `θ does not preserve both fixed points of the system (3): under that
transformation θ = 0 is mapped into Θ = 0, while θ = π is mapped into Θ = π`0(1 + ε cos t),
thus the hyperbolic fixed point θ = π corresponds to a hyperbolic orbit of order ε in the Θ
coordinates. However, if we consider the original system (3) with ζ = 0 and transform to the
coordinates ϕ = θ − π we obtain the system

ϕ̈(t)− 2ε sin t
1 + ε cos t

ϕ̇(t)− α

1 + ε cos t
sinϕ(t) = 0,

which is the same as equation (3), except for a change in sign of α. Transforming to coordinates
Φ(t) = `(t)ϕ(t) and linearising around Φ = 0, we obtain a system of the form (6), where only
the sign of α is changed. Therefore, by changing the sign of α in equation (6) we are still able
to obtain the stability of the inverted position θ = π. As remarked in the previous comment,
there is no stability region in the half-plane α < 0, so that we conclude that the upward
position is always linearly unstable for the pendulum with varying length.

(a) (b)

Figure 2: Figure (a) shows the transition curves for the linearised system described by the equation (7). The
dashed and solid lines correspond to the 2π-periodic and 4π-periodic solutions, respectively. The shaded
regions are those in which the solutions are unstable. Figure (b) shows transition curves for an O(ε8)
approximation of equation (6). The transition curves for the full linearised system 6 can be found in [4].

As far as the full nonlinear systems are concerned, when the fixed points are linearly unstable
we can conclude that a fortiori they are unstable as well. In particular the pendulum with varying
length cannot be stabilised around its upward fixed point for any values of the parameters. To
deduce stability from linear stability, that is for values of the parameters inside the stability regions
of the linearised systems, requires a more delicate analysis, involving KAM-type arguments [6, 14].

3 Global attraction to the origin

We now return to the full nonlinear systems (2) and (3). To compute the conditions for which the
origin attracts the full phase space, up to a zero-measure set, we use the approach outlined in [11];
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see also [10, 64]. First we consider the system (2) and define f(t) as

f(t) := α− δ cos(t) (8)

with the requirement f(t) > 0. The consequences of this restriction are that the method can only be
applied to the pendulum centred about θ = 0 and |δ| < α. By applying the Liouville transformation

τ =
∫ t

0

√
f(u) du (9)

and introducing the variable x(τ) = θ(t), we write the equation (2) in terms of the new time τ as a
first order ODE on T× R,

x′ = y, y′ = − y√
F

(
F ′

2
√
F

+ γ

)
− sinx, (10)

where the dashes represent derivatives with respect to τ and F (τ) := f(t). By setting E(x, y) :=
1− cosx+ y2/2 and H(τ) := E(x(τ), y(τ)), one finds H′ ≤ 0 provided γ satisfies

γ > γ0 := −min
τ≥0

F ′

2
√
F

= −min
t≥0

ḟ

2f
= −min

t≥0

δ sin t
2(α− δ cos t)

. (11)

In [64, Appendix 1] it is proven that under the condition (11) all trajectories move towards the
origin, up to a zero measure set of initial conditions, and hence the basin of attraction of the origin
has full measure for α > 0 and |δ| < α.

The conditions for global attraction to the origin for the pendulum with varying length are
studied in a similar way. In this instance we define h(t) and g(t) as

h(t) :=
α

1 + ε cos t
, g(t) := − 2ε sin t

1 + ε cos t
, (12)

and again require h(t) > 0, which results in the restrictions α > 0 and ε < 1. Applying the Liouville
transformation (9), with h instead of f , and setting x(τ) = θ(t), the system may be written in terms
of the new time τ as

x′ = y, y′ = − y√
H

(
2G+H ′

2
√
H

+ ζ

)
− sinx, (13)

where again the dashes represent derivatives with respect to τ and H(τ) := h(t), G(τ) := g(t).
There is a clear similarity between the equations (13) for the pendulum with varying length and
(10) for the pendulum with oscillating support. The analysis follows through in exactly the same
manner and it is found that the otigin attracts a full measure set of phase space provided ζ satisfies

ζ > ζ0 := −min
τ≥0

2G+H ′

2
√
H

= −min
t≥0

2g
√
h+ ḣ

2h
= −min

t≥0

(
ε sin t

2(1 + ε cos t)
− 2ε sin t√

α(1 + ε cos t)

)
. (14)

For instance, for α = 0.5 and ε = δ = 0.1 one finds γ0 ≈ 0.102 and ζ0 ≈ 0.334. The numerical
computations reported in Section 5 show that in fact the origin attracts almost every trajectory
even for smaller values of the damping coefficient: taking γ > γ1 or ζ > ζ1, with γ1 ≈ 0.060 and
ζ1 ≈ 0.090, turns out to be enough. As expected, condition (14) on ζ for the pendulum with varying
length has some similarity to that in (11) for the pendulum with oscillating support. However for the
system of the pendulum with varying length we find that damping coefficient must be taken larger,
so as to exceed the forcing also created by the term g(t). This shows that the periodic attractors
of (3) are more robust and persist under larger values of the damping coefficient. This could be
expected by looking at (3), since the coefficient of θ̇(t) is not of definite sign for ζ = 0.
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4 Thresholds values of the subharmonic solutions

A solution to (2) or (3) is said to be in a p : q resonance with the forcing if it completes p cycles, before
closing, every q periods of the forcing. According to standard terminology [55, 23], such a solution
represents a subharmonic solution of order q . In this section we shall be interested in subharmonic
solutions which depend on the perturbation parameter so as to reduce to periodic solutions of the
unperturbed pendulum as the parameter goes to zero; thus, they will be refered to as perturbative
subharmonic solutions. As we shall see in Section 5, subharmonic solutions which do not have such
a property may appear as well: we shall call the latter non-perturbative subharmonic solutions.

The threshold values for the two systems are the largest values of γ or ζ under which a periodic
solution which is in a p : q resonance with the forcing persists. For δ or ε small, respectively, the
periodic solutions which are perturbative subharmonic solutions exist for all values of the damping
coefficient below the corresponding threshold. Moreover the threshold values may be calculated
using perturbation techniques. The method is described, for instance, in [7], where it was used for
a forced cubic oscillator, and has since been applied to the spin-orbit system [9] and the pendulum
with oscillating support [64]. To implement the method, one writes γ and ζ as power series in δ and
ε, respectively, as γ = δB1 + δ2B2 + δ3B3 + . . . and ζ = εC1 + ε2C2 + ε3C3 + . . . and computes
the coefficients Bi, Ci at each level, by requiring that there is a periodic solution to all orders of
perturbation theory. For any given resonance, there will be a first non-zero coefficient, say Bk for
some k ∈ N for the system (2), such that Bkεk provides an approximate value of the corresponding
threshold value, while the higher order contributions only provide small corrections to these values.

q k1 B1(1/q)
2 0.885201568846 0.597944
4 0.998888384493 0.489649
6 0.999986981343 0.487616
8 0.999999846887 0.487578
10 0.999999998199 0.487577
12 0.999999999979 0.487577

Table 1: ConstantsB1 for the oscillating attractors of
the pendulum with oscillating support with α = 0.5.

q k2 B1(1/q)
2 0.924397052341 0.432005
4 0.998899257272 0.485542
6 0.999986983601 0.487439
8 0.999999846887 0.487577
10 0.999999998199 0.487577
12 0.999999999978 0.487577

Table 2: Constants B1 for the rotating attractors of
the pendulum with oscillating support with α = 0.5.

q k1 C1(1/q)
2 0.885201568846 0.896916
4 0.998888384493 0.734474
6 0.999986981343 0.731424
8 0.999999846887 0.731354
10 0.999999998199 0.731279
12 0.999999999979 0.731747

Table 3: Constants C1 for the oscillating attractors
of the pendulum with varying length with α = 0.5.

q k2 C1(1/q)
2 0.924397052341 0.648007
4 0.998899257272 0.728313
6 0.999986983601 0.731309
8 0.999999846887 0.731365
10 0.999999998199 0.731363
12 0.999999999978 0.729694

Table 4: Constants C1 for the rotating attractors of
the pendulum with varying length with α = 0.5.

For the pendulum with oscillating support, in [64, Section 2] we derived the equations of motion
in terms of the action-angle variables and looked for the conditions for perturbative subharmonic
solutions to exist. To zeroth order one finds the resonance conditions π

√
α/2K(k1) = p/q for

oscillating solutions inside the separatrix and π
√
α/2k2K(k2) = p/q for rotating solutions outside,
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with p, q ∈ N — we refer to [64] for notations (see also Appendix B below). This fixes the resonance
p : q . To first order, in both cases, we need p = 1 and q to be even for B1 not to vanish, see also [42].
The corresponding values of the coefficients B1 = B1(p/q) for the system with α = 0.5 are given in
Tables 1 and 2; the values k1 and k2 are the elliptic moduli corresponding to each solution. It is
expected that the threshold values for attractors whose period is an odd multiple of the forcing are
found at the second order in the power series, that is that B2 does not vanish for p = 1 and q ∈ N:
thus, ε2B2 provides a second order correction to εB1 for q even, while it represents the dominant
contribution for q odd. We refer once more to [64, Section 2] for details.

For the pendulum with varying length, one can reason in a similar way; details can be found in
Appendix B. Of course the equations of the two systems coincide when δ = ε = 0: this is a result
of the two systems sharing the same unperturbed system. In particular the resonance condition is
the same in both systems. To first order, we find again the conditions p = 1 and q even for C1 not
to vanish. The corresponding values of the coefficients C1 = C1(p/q) for α = 0.5 are given in Tables
3 and 4; the values k1 and k2 are the elliptic moduli corresponding to each solution.

For both systems with α = 0.5, as q is increased, the values of B1(1/q) and C1(1/q) approach limit
values: approximately 0.488 for the pendulum with oscillating support and 0.731 for the pendulum
with varying length. Nevertheless, for a fixed value of δ or ε, only a finite number of attractors are
found; this phenomenon was already observed in [64], and we refer to that paper for an explanation.
In particular, by setting δ = ε = 0.1, inside the separatrix for all values of γ and ζ below γ1 and
ζ1, respectively, numerically we only find the attractor corresponding to the 1:2 resonance (OSC),
besides the downward fixed point (FP). For the pendulum with oscillating support, the calculated
value of δB1(1/2) is very close to the numerical result for the threshold value γ, see Table 5. On the
contrary, for the pendulum with varying length, the calculated value of εC1(1/2), as deduced from
Table 3, does not match so closely the numerical results for the threshold value ζ in Table 6.

Basin of attraction %
γ FP OSC

0.05970 98.59 1.41
0.05979 99.20 0.80
0.06000 100.00 0.00

Table 5: Relative areas of the basins of attraction
for equation (2) with α = 0.5 and δ = 0.1

Basin of attraction %
ζ FP OSC

0.08900 94.94 5.06
0.09022 98.98 1.02
0.09023 100.00 0.00

Table 6: Relative areas of the basins of attraction
for equation (3) with α = 0.5 and ε = 0.1

Basin of attraction %
ζ FP OSC

0.0890 99.77 0.23
0.0896 99.95 0.05
0.0900 100.00 0.00

Table 7: Relative areas of the basins of attraction
for equation (3) with α = 0.5 and ε = 0.01

Basin of attraction %
ζ FP OSC

0.0890 96.13 3.87
0.0896 98.16 1.84
0.0900 100.00 0.00

Table 8: Relative areas of the basins of attraction
for equation (15) with α = 0.5 and ε = 0.1

In order to compute the threshold values at the first order in ε the functions h(t) and g(t) —
see (12) — are approximated by h1(t) := α(1 − ε cos t) and g1(t) := −2ε sin t. Apparently the
approximation to h(t) is reasonable, however the approximation of g(t) is significantly different.
Taking ε smaller, we find the numerical results fit more closely with the computed threshold values,
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see Table 7 where ε = 0.01. Furthermore, if we replace g(t) in (3) with g1(t), to obtain the system

θ̈(t) + (−2ε sin t+ γ) θ̇(t) +
α

1 + ε cos t
sin θ(t) = 0, (15)

the numerical results with ε = 0.1 better coincide with the first order calculations for the thresholds
values — see Table 8. Therefore we can conclude that, for the chosen values of the parameters δ
and ε, while the pendulum with oscillating support is well described by a first order perturbation
analysis, in the case of the pendulum with varying length the higher order corrections are relevant
and hence should be taken into account to match the numerical results.

5 Numerical results

We now consider the two pendulum systems (2) and (3), and estimate numerically the relative areas
of the basins of attraction; previous study has be completed in [12, 64, 66] for the pendulum with
oscillating support and in [16, 18] for the pendulum with varying length. Throughout all this section,
we fix the parameter values at α = 0.5 and δ = ε = 0.1.

We take initial conditions from the same region Q of phase space used in [12, 64], namely
θ ∈ [−π, π], θ̇ ∈ [−4, 4]. This is due to the consideration that all the attracting solutions which are
found are contained entirely inside the region Q. By collecting together all points whose trajectories
end up on the same attractor, we reconstruct the corresponding basins of attraction. The percentage
of points belonging to the same basin of attraction provides an estimate of its relative area with
respect the sample regionQ. The simulations to calculate the relative areas of the basins of attraction
used 300 000 pseudo-random initial conditions in Q: with a 95% confidence interval [50], this
corresponds to an approximation correct to the first or second decimal — see Table 1 in [65]

Figure 3: Attracting periodic solutions for the system (2) with α = 0.5, δ = 0.1 and γ = 0.02, namely two
period-1 rotations (PR and NR) and one period-2 solution which oscillates about the downward fixed point
(OSC). Periods can be deduced by circles corresponding to the Poincaré map.

For the chosen values of α and δ and for γ ∈ [0.002, 0.06], the pendulum with oscillating support
exhibits a set of four main attracting solutions, the fixed point (θ, θ̇) = (0, 0) (FP) and three
subharmonic solutions: a positive rotating solution (PR), a negative rotating solution (NR) and an
oscillating solution (OSC). For brevity, in the following, we shall say that a solution has period n if
it comes back to its initial value after n times the forcing period. Under this convention, both the
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rotating solutions PR and NR (corresponding to 1:1 resonances) have period 1 and the oscillating
solution OSC (corresponding to a 1:2 resonance) has period 2. Examples of the three periodic
attractors are shown in Figure 3. In Table 9 and Figure 4 we give the corresponding relative areas of
the basins of attraction for γ in the range investigated. A similar table and figure are shown in [64],
where fewer values of γ were investigated. For γ = 0.027 we also find a fifth attractive solution,3

which persists only in a small range of values for γ. Indeed it does not exist for γ = 0.025 or 0.030.
The solution is an oscillation which is in a 5:10 resonance with the forcing, and attracts approximately
1.1% of phase space. Contrary to the main periodic attractors, it is a non-perturbative subharmonic
solution, as it does not continue any periodic solution of the unperturbed system. Subharmonic
solutions corresponding to resonances p:q , with p and q not relatively prime, were also found in [31],
where it was remarked that they are stable over narrow parameter regions.

Basin of attraction %

γ FP PR/NR OSC

0.00200 84.57 3.35 8.73
0.00500 79.91 3.88 12.32
0.01000 72.24 4.60 18.57
0.02000 71.95 4.57 18.90
0.02300 70.73 5.18 18.90
0.02500 69.28 5.19 20.35
0.03000 69.94 4.42 21.23
0.03300 68.92 3.75 23.59
0.03500 68.77 3.16 24.90
0.03700 70.76 2.51 24.23
0.04000 73.84 1.42 23.32
0.04300 78.12 0.15 21.59
0.04500 80.87 0.00 19.13
0.04700 82.88 0.00 17.12
0.05000 85.61 0.00 14.39
0.05300 87.95 0.00 12.05
0.05500 91.13 0.00 8.87
0.05900 96.96 0.00 3.04
0.05970 98.59 0.00 1.41
0.05979 99.20 0.00 0.80
0.06000 100.00 0.00 0.00

Table 9: Relative areas of the basins of
attraction for the system (2) with α =
0.5, δ = 0.1 and different values of γ.

Figure 4: Plot of the relative areas of the basins of
attraction for the system (2) with α = 0.5, δ = 0.1,
for different values of γ as per Table 9.

For the same parameter values α = 0.5 and ε = 0.1, the pendulum with varying length offers
a wider variety of dynamics. As the calculations in Sections 3 and 4 show, the periodic attractors
persist for larger values of the damping coefficient. As previously mentioned, even though both
systems are perturbations of the same simple pendulum with α = 0.5, there is not necessarily any
relation between the values of δ and ε. We have already seen that, by taking δ = ε, the first order
approximations for the threshold values are less accurate for the system (3) than for the system (2);
this suggests that for a given value of the perturbation parameter the system (3) is further away
from the unperturbed one. Indeed, even though the four main attractors of (3) are of the same

3This solution was not observed in [64], as the value γ = 0.027 was not studied there.

10



kind as for the system (2) — that is FP, PR/NR and OSC —, in addition to these we also find six
other non-perturbative subharmonic solutions. In particular, a second set of positive and negative
rotations with period-1 (PR1/NR1), corresponding to 2:1 resonances, a set of positive and negative
rotations with period 3 (PR3/NR3), corresponding to 3:3 resonances, and two oscillating attractors
with period 4 which are reflections of each other through the origin (θ, θ̇) = (0, 0)(OSCL/OSCR),
corresponding to 2:4 resonances. Examples of the persisting attractive solutions are shown in Figure
5 and the sizes of their corresponding basins of attraction are given in Tables 10 to 13.

(a) (b) (c)

(d) (e)

Figure 5: Examples of the attracting periodic solutions for the system (3) with α = 0.5 ε = 0.1. Figure
(a) shows the period-1 rotations PR1 and NR1 for ζ = 0.005. Figure (b) shows the positive and negative
rotations PR and NR and the period-2 oscillation OSC for ζ = 0.047. Figure (c) shows the period 3 rotations
PR3 and NR3 with ζ = 0.04. Figures (d) and (e) show the period 4 oscillating solutions OSCL and OSCR,
respectively, for ζ = 0.05. The periods may be deduced from the circles corresponding to the Poincaré map.

The numerical results in Table 10 show that the solutions PR, NR and OSC persist for larger
values of the damping coefficient in the system (3) than for the system (2): this is consistent with the
calculations in Sections 3 and 4. Further to this, we also find that the periodic attractors PR3, NR3,
OSCL and OSCR exist only in small windows of values for ζ. This is similar to the oscillation found
for the pendulum with oscillating support for γ = 0.027. However for the pendulum with varying
length, not only do we find four such attractors, but they exist for larger values of the damping
coefficient. This gives further confirmation that the system is perturbed to a greater extent.

Upon comparing the curves in Figures 3 and 5(b) another difference between the two systems
becomes clear. The oscillating attractors for the system (3) clearly cross the rotating attractors when
projected into the phase plane — a behaviour not observed for the system (2). Through conserva-
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tion of momentum, when the pendulum extends (or retracts) the angular velocity θ̇ decreases (or
increases). Thus an oscillating solution may temporarily move faster than a rotating solution, with-
out escaping the potential well. Another interesting difference is given by the rotations PR1/NR1
shown in Figure 5(a). Following the convention in [31] the rotating attractors corresponding to r :n
resonances, which complete r rotations in n periods of the forcing, are called (r, n) orbits. Then the
rotations PR1/NR1 are classified as (2, 1) orbits. In [31] the authors studied the system (2) and
noted that, excluding transient behaviour, orbits with r > n do not seem to appear. We find that
such solutions do exist in the system (3) and attract a non-zero measure set of phase space for some
values of the parameters. It may be that such solutions are also possible in the system (2), but, if
so, they only occur for values of the parameters outside of those investigated here and in [31].

Basin of attraction %
ζ FP PR/NR OSC

0.00700 91.50 1.67 5.16
0.00900 90.98 1.77 5.48
0.01000 90.67 1.81 5.70
0.02000 83.39 2.90 10.81
0.03000 79.90 1.60 16.91
0.03700 78.28 1.59 18.53

... See Table 12
0.04500 75.65 3.69 16.97
0.04700 73.86 3.82 18.50
0.04800 72.76 3.65 19.95

... See Table 13
0.05500 73.00 2.94 21.12
0.06000 70.84 1.93 25.31
0.06500 73.39 0.26 26.10
0.06600 74.15 0.00 25.85
0.06700 74.29 0.00 25.71
0.07000 75.99 0.00 24.01
0.08000 84.83 0.00 15.18
0.08700 91.71 0.00 8.29
0.08800 93.14 0.00 6.86
0.08900 94.94 0.00 5.06
0.09000 97.62 0.00 2.38
0.09010 98.06 0.00 1.94
0.09020 98.71 0.00 1.29
0.09022 98.98 0.00 1.02
0.09023 100.00 0.00 0.00
0.09030 100.00 0.00 0.00

Table 10: Relative areas of the basins of attrac-
tion for the system (3) with α = 0.5, ε = 0.1.
The solutions are named as per Figure 5.

Basin of attraction %
ζ FP PR/NR PR1/NR1 OSC

0.005 91.62 1.49 0.50 4.42
0.006 91.74 1.62 0.00 5.02

Table 11: Relative areas of the basins of attrac-
tion for the system (3) with α = 0.5, ε = 0.1 and
ζ = 0.005, 0.006. The solutions are named as per
Figure 5.

Basin of attraction %
ζ FP PR/NR PR3/NR3 OSC

0.038 78.29 1.77 0.00 18.17
0.039 77.24 2.29 1.20 15.77
0.040 77.16 1.36 2.12 15.88
0.041 77.34 1.56 1.76 16.00
0.042 77.35 2.61 0.78 15.87
0.043 77.11 3.36 0.00 16.17

Table 12: Relative areas of the basins of attrac-
tion with α = 0.5, ε = 0.1 and ζ ∈ [0.038, 0.043].
The solutions are named as per Figure 5.

Basin of attraction %
ζ FP PR/NR OSC OSCL/R

0.049 71.58 3.53 21.36 0.00
0.050 71.30 3.67 17.79 1.79
0.051 71.21 3.68 18.09 1.67
0.052 71.52 3.54 21.40 0.00

Table 13: Relative areas of the basins of attrac-
tion with α = 0.5, ε = 0.1 and ζ ∈ [0.049, 0.052].
The solutions are named as per Figure 5.

However, comparing Figures 4 and 6 it is also apparent that the basins of attraction for the two
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systems share some common traits. For both systems, when the damping coefficient is large enough,
the downward fixed point attracts a full measure set of phase space. Decreasing the coefficient,
the periodic attractors (PR/NR and OSC) appear and attract more of the phase space as γ and ζ
continue to decrease. First the size of the basin of attraction of the period-2 oscillating attractor
peaks and then begins to decrease as the size of the basins of attraction of the period-1 rotating
attractors increases. Decreasing γ and ζ further, the periodic attractors attract less of the phase
space and the basin of attraction belonging to the downward fixed point increases again. This was
not observed for the cubic oscillator in [9], where decreasing the damping coefficient causes the basin
of attraction of the fixed point to decrease. This is linked to the bifurcation structure of the two
systems and the choice of parameters α, δ and ε. We shall return to this phenomenon in Section 6.

Figure 6: Relative areas of basins of attraction with α = 0.5, ε = 0.1 and different values of ζ as per Tables
10, 12 and 13. The plots are labelled as in Table 10. Regions in which a solution is created or destroyed are
marked with a dot. The basins of attraction for the solutions PR3/NR3 and OSCL/OSCR have not been
included due to their small sizes and the low range of ζ under which the solutions persist.

Although the plots of the relative areas of the basins of attraction show similarities in their shape,
for any particular value of the damping coefficient they are significantly different. For example, for
γ = 0.06 the fixed point attracts a full measure set of phase space for the system (2), whilst in the
system (3) with ζ = 0.06 the period-1 rotations still persist and the period-2 oscillations attract
approximately a quarter of phase space. In this sense, the basins of attraction for the two systems
differ greatly, which is not surprising following the analysis of the previous sections. In Figure 7 we
show the basins of attraction for γ = ζ = 0.02 and 0.04. It is clear that not only do the sizes of
the basins of attraction of similar attractors differ, but the regions of phase space attracted to given
attractors also differ.

In Section 4, it was shown that the threshold values for the period-2 oscillations of the system
(3) to first order is given by ζ ≈ 0.8969ε. Choosing ε = 0.0667 we have ζ = 0.8969ε ≈ 0.0598.
This value matches with the threshold value of γ for the pendulum with oscillating support when
δ = 0.1. In Table 14 and Figure 8, we give the sizes of the basins of attraction for the system (3)
with ε = 0.0667. Note that for ζ = 0.025 we also find positive and negative rotations with 4:4
resonance, which each attract 0.57% of phase space. When the 4:4 rotations appear, the size of
the fixed points basin of attraction reduces in size. When the 4:4 rotations disappear their basin
of attraction is absorbed essentially by the 1:1 rotations; resulting in the increase in size shown in
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Table 14 for ζ = 0.027. It is evident that both the sizes of the basins of attraction and the values at
which attractors disappear are similar to the pendulum with oscillating support with δ = 0.1, see
Table 9.

(a) (b)

(c) (d)

Figure 7: Basins of attraction for the two systems (2) and (3). The basins of attraction on the top correspond
to the system (2) and those on the bottom to the system (3). Figures (a) and (c) show the basins of attraction
for γ = ζ = 0.02 and Figures (b) and (d) for γ = ζ = 0.04. The basins are colour coded with the fixed points
(FP) shown in blue, the period-2 oscillations (OSC) in green, the period-1 positive and negative rotating
solutions (PR/NR) in red and yellow, respectively, and the period 3 positive and negative rotating solutions
(PR3/NR3) in (d), for the pendulum with varying length, in cyan and magenta, respectively.

6 Bifurcation structures and regions of existence

The bifurcations in the pendulum with oscillating support have been extensively studied in the
literature — see for instance [19, 20, 26, 29, 31, 32, 36, 38]. Usually, the location of the bifurcation
curves, that is the curves in parameter space along which bifurcations occur, are investigated in
terms of the amplitude and frequency of the forcing (more precisely in the ω-p plane for the equation
θ̈(s) + βωθ̇(s) + (1 + p cosωs) sin θ(s) = 0), with the damping coefficient being fixed at a constant
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value. Here, first of all we shall describe the bifurcation curves for the system (2) in the α-δ plane,
at constant γ: this frames the results of the quoted papers in the context of the parameters we use
throughout.4 The location of the curves will then be related to the damping coefficient γ and the
results in Table 9. Finally we shall be able to explain the seemingly strange phenomenon, observed
in [64], that the basin of attraction of the downward fixed point increases as γ decreases below 0.35
(as shown in Figure 4).

Basin of attraction %

ζ FP PR/NR OSC

0.00500 79.53 4.44 11.60
0.01000 72.02 5.94 16.11
0.01500 70.55 3.93 21.59
0.02000 72.33 3.68 20.32
0.02500 68.48 3.90 22.61
0.02700 68.78 4.45 22.32
0.03000 68.40 4.25 23.11
0.03500 68.20 3.13 25.54
0.04000 73.40 1.39 23.82
0.04300 77.50 0.24 22.01
0.04500 80.39 0.00 19.61
0.05000 85.42 0.00 14.58
0.05500 91.27 0.00 8.73
0.05900 96.78 0.00 3.22
0.05970 98.34 0.00 1.67
0.05979 98.64 0.00 1.36
0.06000 100.00 0.00 0.00

Table 14: Relative areas of the basins of
attraction for the system (3) with α = 0.5,
ε = 0.0667. The solutions are named as
per Table 10.

Figure 8: Plot of the relative areas of the basins of
attraction for the system (3) with α = 0.5, ε = 0.1,
for different values of ζ as per Table 14.

Bifurcations in a dynamical system may be studied numerically by starting on a particular
attractor and allowing a parameter of the system to slowly vary until the attractor either vanishes
or bifurcates into another attractor. The bifurcation curves for the rotating attractors PR/NR
with γ = 0.05 are shown in Figure 9(a). For fixed α, by increasing δ from zero the rotations
appear by a saddle-node bifurcation at the curve A. For α large enough, by increasing δ further the
rotations undergo a series of period doubling (also called flip) bifurcations, ultimately leading to
chaos. The first and second period doubling bifurcations are marked in Figure 9(a) by the curves
B and C, respectively. The curve above curve C marks the birth of a rotating chaotic attractor,
which persists only in a very small interval of parameter values and disappears by a catastrophic
bifurcation [19, 30, 32]. The appearance of chaotic attractors for small sets of parameter values
and with small basins of attraction has been observed in similar contexts of multistable dissipative
systems close to the conservative limit [34].

The bifurcation curves of the oscillating solution OSC are shown in Figure 9(b). Here the focus
is on the region of parameter space around the primary instability tongue in Mathieu’s equation (the
curve marked as F in the figure). At the curve F the origin loses stability by a pitchfork bifurcation,

4Due to the use of different parameters (more precisely to the fact that α is proportional to ω−2), the images
appear reversed when compared with those papers.
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which is supercritical to the left and subcritical to the right of the “turning point” c [20]. Indeed, if we
fix α and let δ increase, to the left of c the stable fixed point bifurcates into a stable symmetric period-
2 oscillation at the curve F , while to the right of c, along the curve D, a stable period-2 oscillation
appears by a saddle-node bifurcation, together with an unstable period-2 oscillation which coalesces
with the stable fixed point at the curve F. The curve E is where a symmetry breaking bifurcation
takes place. Here the stable symmetric period-2 oscillation bifurcates into two stable asymmetric
period-2 oscillations, which are reflections of each other through the origin [36]. At the curve G the
asymmetric oscillations undergo a period doubling bifurcation. This is closely followed by a period
doubling cascade which leads to chaos; which again persists only in a small interval of parameter
values.

(a) (b)

Figure 9: Bifurcation curves for the equation (2) with fixed γ = 0.05. Figure (a) shows the bifurcation
curves of the rotations PR/NR and (b) the curves of the oscillation OSC. For details see the text.

Note that the curve D can be obtained analytically from the perturbation theory calculations in
Section 4, which allow to express the threshold value for γ in terms of δ, for given α. In practice, for
any fixed value of γ, we can invert the expression to deduce the value of δ at which the bifurcation
occurs in terms of α. In that way, we construct the curve D in α-δ. It is evident that for p = 1, q = 2
and α < 1/4 the resonance condition π

√
αq = 2K(k1)p can no longer be satisfied for k1 ∈ (0, 1),

since K(k1) > π/2 for k1 > 0 [43]. This agrees with the fact that the curve D terminates at α = 1/4,
that is in correspondence of the point c.

It is possible to stabilise the upward fixed point (that is to have stable oscillations about the
upward vertical position θ = π). However, as such solutions appear outside the perturbation regime,
they are not comparable with the pendulum with varying length. Therefore, so as not to overwhelm
Figure 9(b), the regions in which these solutions exist have not been included.

Increasing (decreasing) the value of damping coefficient γ causes the bifurcation curves for the
rotating solutions shown in Figure 9(a) to move up and to the right (down and to the left). Similarly,
by increasing (decreasing) the value of γ, the curves in Figure 9(b) move up (down). Hence a point
corresponding to fixed values of α and δ in the system (2) may be found inside a given region of
existence rather than another depending on the value of γ.

In particular, the point P corresponding to the values α = 0.5, δ = 0.1 is in a region of parameter
space for which the fixed point is stable even when γ = 0, see Figure 1. Hence the fixed point remains
asymptotically stable however small γ may be, as far as it is positive. As γ → 0 the bifurcation
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curves move downward: the point c gets closer and closer to the α-axis and the point P turns out
to be situated close to the curves B and E in Figure 9(a) and (b), respectively. By moving toward
the edge of the region of existence of an attractor, the size of the corresponding basin of attraction
decreases. As there are no new attractors in this region of parameter space, the basin of attraction
of the fixed point increases, in agreement with Figure 4. Hence the increase is related to the location
of parameters α and δ in respect to the regions of existence of the attractors at fixed γ, shown in
Figure 9. In particular, by choosing (α, δ) either to the left of c in Figure 9(b) or in a region where
the fixed point is unstable for γ = 0, this phenomenon would not be observed.

An analogous study of the bifurcation structure for the pendulum system (3) is not currently
available elsewhere in the literature — see however [18], where bifurcation diagrams are studied.
The bifurcation curves for both the rotations PR/NR and oscillations OSC of the system (3) are
shown in Figure 10(a) and (b), respectively. The curves are labeled so as to match with those in
Figure 9.

(a) (b)

Figure 10: Bifurcation curves for the system (3) with fixed ζ = 0.05. Figure (a) shows the bifurcations
curves of the rotations PR/NR and (b) the curves of the oscillation OSC. For details see the text.

Figure 10(a) shows the bifurcation structure of the rotating attractors PR/NR with ζ = 0.05.
The scenario is similar to that of the pendulum with oscillating support. At the curve A the rotating
solutions appear at a saddle-node bifurcation. At the curve B the the rotations undergo a period
doubling bifurcation, resulting in 2:2 rotations. This is closely followed by a period doubling cascade
starting at the curve C, which leads to chaos.

Figure 10(b) shows the bifurcation curves for the oscillation OSC with ζ = 0.05. At D the
oscillation becomes stable at a saddle-node bifurcation. At E the oscillation undergoes symmetry
breaking, resulting in two asymmetric oscillations, still corresponding to 1:2 resonance. These asym-
metric oscillations undergo a period doubling cascade starting at the curve G, which leads to chaotic
dynamics. Note that the asymmetric oscillations created by the symmetry breaking bifurcation at
E are different from the attractors OSCL and OSCR shown in Figure 5 (d) and (e), respectively.
Not only do the attractors OSCL and OSCR correspond to 2:4 resonance, but they also coexist with
the oscillations OSC (corresponding to 1:2 resonances). At F the fixed point loses stability. The
bifurcations which occur at the curve F are the same as in the pendulum with oscillating support
(see previous discussion).

The bifurcation curves for the rotations in 2:1 and 3:3 resonances have not been included here,
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the reason being that they were not found for the pendulum with oscillating support and hence
we are unable to make any comparison. However we found that the structure is analogous to that
of the 1:1 rotations, but happens over a much smaller region of parameter space. In particular,
by increasing ε the rotations PR1/NR1 and PR3/NR3 appear by a saddle-node bifurcation. By
continuing to increase ε the attractors vanish. In the case of the 3:3 rotations this happens by
a period doubling cascade, leading to chaos. The oscillations in a 2:4 resonance also appear by
a saddle-node bifurcation as ε is increased. By increasing ε further, the asymmetric oscillations
undergo a period doubling cascade, leading to chaotic dynamics; which again persist only in a small
window of parameter values.

In the region of parameter space which surrounds the first tongue of instability for the corre-
sponding linearised equation, see Figure 2, the bifurcations of the main attractors for the pendulum
with varying length are the same as those for the corresponding attractors of the pendulum with
oscillating support. However, if we were to consider the region around α = 1 the structure would
be quite different, owing to the lack of the unstable tongue in the corresponding linearised equation
of the pendulum with varying length.

7 Conclusions

In the previous sections we contrasted two perturbations of the simple pendulum. It is found that
the pendulum with varying length exhibits a wider variety of attractive solutions for the parameter
α = 0.5 and the same values for the forcing amplitudes δ = ε = 0.1. The periodic attractors in
the system (3) persist under larger values of the damping coefficient, a consequence of the extra
forcing which naturally occurs in the coefficient of θ̇: this was observed numerically as well as in
the threshold calculations of Section 4. By comparing Figures 9 and 10 in Section 6, we see that for
α = 0.5 and ζ = 0.05 the regions of existence of the attractors are lower on the ε axis for the system
(3), than they are on the δ axis for the system (2) with γ = ζ = 0.05. However, for small α the
opposite is true, the underlying reason behind this is unclear and deserves separate investigation.

It is evident from the analysis in Section 4 that the pendulum with varying length is well suited
to study by perturbation theory only for smaller values of the perturbation parameter. This may
be summed up by saying that the pendulum with varying length moves away from the unperturbed
system more quickly as the perturbation parameter is increased. Furthermore, at the end of Section
5 we found that for ε = 0.0667 the pendulum with varying length exhibits similar dynamics to the
pendulum with oscillating support with δ = 0.1.

The numerical results show the two systems to be different both quantitatively and qualitatively.
For example, for the parameter values investigated, apart from the main attractors, we found six
extra attractors in the system of the pendulum with varying length: four rotating solutions and
two oscillating solutions, compared with only one extra oscillating solution for the pendulum with
oscillating support. However there are some similarities between the two systems which are apparent.
The relative areas of the basins of attraction corresponding to the fixed points in both systems follow
a similar curve, as do the period-1 rotations and period-2 oscillations; compare Figure 4 with Figure
6. The shape of these curves is different from those the cubic oscillator, see [9], where decreasing the
damping coefficient leads to a decrease in the fixed points basin of attraction. The reason behind
the increase in the size of the basin of attraction associated with the fixed point is related to the
choice of parameters and the bifurcation structure of the two systems. The bifurcations which occur
for the main, subharmonic attractors were also found to be the same. This is not surprising as the
two systems share the same unperturbed system. However it is possible to choose α such that the
bifurcation curves and the curves in Figures 4 and 6 appear quite different. For example, this may
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be achieved by taking α = 1 and δ = ε, so that the parameters lie inside the unstable region shown
in Figure 1, which does not appear in Figure 2.

Acknowledgements This research was completed during the course of an EPSRC funded PhD.

A Upside-down pendulum with varying length

The transition curves for Hill’s equations, such as (6), are obtained by fixing α = α(ε) in such a way
that the corresponding solutions ψ(t) = ψ(t, ε) are periodic with periods either 2π or 4π [45, 5, 39].
For ε small enough we look for solutions which depend analytically on ε. Therefore we write [39]

α(ε) =
∞∑
k=0

εkαk, ψ(t, ε) =
∞∑
k=0

εkψk(t), (16)

and fix recursively the constants αk in such a way that the functions ψk(t) have all the same period
2π or 4π. By inserting (16) into (6) we obtain a sequence of equations,

ψ̈0(t) + α0ψ0(t) = 0, (17a)

ψ̈k(t) +
∑

k1,k2,k3≥0
k1+k2+k3=k

αk1(− cos t)k2ψk3(t) + cos t
∑

k1,k2≥0
k1+k2=k−1

(− cos t)k1ψk2(t) = 0, k ≥ 1. (17b)

For instance, to first orders, one has

ψ̈1(t) + α0ψ1(t)− α0 cos t ψ0(t) + α1ψ0(t) + cos t ψ0(t) = 0, (18a)

ψ̈2(t) + α0ψ2(t) + α0 cos2 t ψ0(t) + α2ψ0(t)− α0 cos t ψ1(t) (18b)

+ α1ψ1(t)− α1 cos t ψ0(t)− cos2 t ψ0(t) + cos t ψ1(t) = 0,

and so on. For k = 0 one must require α0 = n2/4, with n = 0, 1, 2, . . ., for the solution to be periodic
with period 2π or 4π. Therefore the first transition curve is obtained by setting n = 0, which gives
α0 = 0 and ψ0 = 1 by (17a). For k = 1, (18a) gives

ψ̈1(t) + α1 + cos t = 0,

which yields α1 = 0 and ψ1(t) = cos t. Then, one can easily prove by induction that αk = 0 and
ψk(t) = 0 for all k ≥ 2. Indeed, (18b) becomes

ψ̈2(t) + α2 − cos2 t+ cos2 t = ψ̈2(t) + α2 = 0,

while for k > 2, by using the inductive hypothesis, one finds

ψ̈k(t) + αk + cos t
(
(− cos t)k−1 + (− cos t)k−2ψ1(t)

)
= ψ̈k(t) + αk = 0.

This shows that α(ε) = 0 and ψ(t, ε) = 1+ε cos t. The solution has been found formally by assuming
ε to be small, but, as the series reduces to a polynomial, in fact is defined and solves the equation for
all values |ε| < 1. Therefore the first transition curve is defined by α(ε) = 0 — and as a by-product
of the construction, the corresponding periodic solution is ψ(t, ε) = 1 + ε cos t.
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B Equations of motion in action-angle variables

We begin by describing the dynamics of the simple pendulum in action-angle variables (I, ϕ); see
[54, 33] for the general theory and [25, 64] for the application to the pendulum.

The equations of motion for the simple pendulum, to which both (2) and (3) reduce for δ = 0
and ε = 0, respectively, is θ̈ + α sin θ. Let K(k) and E(k) be the complete elliptic integrals of the
first and second kind with elliptic modulus k [24, 28, 43, 63] — see also [25, 64] for details on the
forthcoming discussion. Let k1 ∈ (0, 1) be such that k2

1 = (E + α)/2α, with E being the energy
of the pendulum (fixed by the initial condition), and set k2 = 1/k1. The action variable for the
pendulum is

I =
8
π

√
α
[
(k2

1 − 1)K(k1) + E(k1)
]
, I =

4
k2π

√
αE(k2), (19)

for librations inside the separatrix and for rotations outside, respectively. Then, by setting (q, p) =
(θ, θ̇), the transformation to action-angle variables (p, q) 7→ (I, ϕ) is given by

p = 2k1

√
α cn

(
2K(k1)
π

ϕ, k1

)
, q = 2 arcsin

[
k1 sn

(
2K(k1)
π

ϕ, k1

)]
(20)

for the dynamics inside the separatrix, and by

p =
2
k2

√
α dn

(
K(k2)
π

ϕ, k2

)
, q = 2 arcsin

[
sn
(

K(k2)
π

ϕ, k2

)]
(21)

for the dynamics outside the separatrix, where k1 and k2 are expressed in terms of I by inverting
the relations (19). Here cn (u, k), sn(u, k) and dn(u, k) are the Jacobi elliptic functions with elliptic
modulus k [28, 43, 63]. In terms of the action-angle variables, the motion is a uniform rotation, with
I being fixed and

ϕ(t) =
π

2K(k1)
√
α (t− t0), ϕ(t) =

π

K(k2)
√
α
t− t0
k2

, (22)

for librations and rotations, respectively, with the parameter t0 depending on the initial condition.
Explicit calculations are given in [64, Appendix 2], which we refer to for further details. From (22)
it can be seen that the solutions are functions of (t − t0), so that the phase of a solution depends
on the initial conditions. Without loss of generality we can fix the phase of the solution to zero by
writing f(t) in equation (8) as f(t− t0), and similarly for h(t) and g(t) in equation (12). This moves
the freedom of choice in the initial condition to the phase of the forcing.

In order to write the equations of motion for the system (3) in terms of the action-angle variables
(I, ϕ), we shall use that (

∂ϕ/∂q ∂ϕ/∂p
∂I/∂q ∂I/∂p

)
=
(
∂p/∂I −∂q/∂I
−∂p/∂ϕ ∂q/∂ϕ

)
, (23)

since the transformation to action-angle variables is canonical.

B.1 Librations

First we consider the librations and write the equations of motions for the perturbed system (3) in
the absence of dissipation. Using (23), the time derivative of the action is

İ =
∂I

∂q
q̇ +

∂I

∂p
ṗ = − ∂p

∂ϕ
q̇ +

∂q

∂ϕ
ṗ

=
4
√
αk1K(k1) sn(·) dn(·)

π
p− 4k1K(k1) cn(·)

π

[
− 2ε sin(t− t0)

1 + ε cos(t− t0)
p+

α

1 + ε cos(t− t0)
sin q

]
,
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where we are shortening (·) = (2K(k1)ϕ/π, k1). Using that sin(2 arcsin(kx)) = 2kx
√

1− k2x2, we
may rewrite the above as

İ =
8k2

1αK(k1) sn(·) cn(·) dn(·)
π

(
1− 1

1 + ε cos(t− t0)

)
+

16k2
1

√
αK(k1)ε sin(t− t0) cn2(·)
π(1 + ε cos(t− t0))

,

where, for ε small, we can expand

1
1 + ε cos(t− t0)

=
∞∑
n=0

(−ε cos(t− t0))n.

In the calculation of ϕ̇ it is required to differentiate p and q with respect to the action I. The
dependence of p and q on the action I is not explicitly obvious from (20), however the dependence
on the elliptic modulus k = k1 is clear and we use the relation [25, 64]

∂

∂I
=
∂k

∂I

(
∂

∂k
+
∂u

∂k

∂

∂u

)
.

where u is the first argument of the functions, i.e. sn(u, k), etc. Doing so we find

ϕ̇ =
∂ϕ

∂q
q̇ − ∂ϕ

∂p
ṗ =

∂p

∂I
q̇ − ∂q

∂I
ṗ =

π
√
α

2K(k1)

{
1 +

[
sn2(·) +

2E(k1)ϕ sn(·) cn(·) dn(·)
π(1− k2

1)

+
k2
1 sn2(·) cn2(·)

1− k2
1

− E(·) sn(·) cn(·) dn(·)
1− k2

1

] ∞∑
n=1

(−ε cos(t− t0))n
}

− πε sin(t− t0) cn(·)
K(k1)

[
sn(·)
dn(·)

+
2E(k1)ϕ cn(·)
π(1− k2

1)
+
k2
1 sn(·) cn2(·)

(1− k2
1) dn(·)

− E(·) cn(·)
1− k2

1

] ∞∑
n=0

(−ε cos(t− t0))n,

where E(u, k) is the incomplete elliptic integral of the second kind [43]. In order to take into account
the dissipative term ζq̇ we note that

q̇ =
∂q

∂I
İ +

∂q

∂ϕ
ϕ̇ = 2k1

√
α cn(·),

and, using the relation E(u, k) = E(k)u/K(k) + Z(u, k), where Z(u, k) is the Jacobi zeta function
[25, 43], we arrive at the equations of motion

İ = −8k2
1αK(k1) sn(·) cn(·) dn(·)

π

∞∑
n=1

(−ε cos(t− t0))n

+
16k2

1

√
αK(k1)ε sin(t− t0) cn2(·)

π

∞∑
n=0

(−ε cos(t− t0))n − 8ζk2
1

√
αK(k1) cn2(·)
π

,

ϕ̇ =
π
√
α

2K(k1)

{
1 +

[
sn2(·) +

k2
1 sn2(·) cn2(·)

1− k2
1

− Z(·) sn(·) cn(·) dn(·)
1− k2

1

] ∞∑
n=1

(−ε cos(t− t0))n
}

− πε sin(t− t0) cn(·)
K(k1)

[
sn(·)
dn(·)

+
k2
1 sn(·) cn2(·)

(1− k2
1) dn(·)

− Z(·) cn(·)
1− k2

1

] ∞∑
n=0

(−ε cos(t− t0))n

+
ζ
√
απ cn(·)

2K(k1)

[
cn(·)− k2

1 sn2(·) cn(·)
1− k2

1

+
Z(·) sn(·) dn(·)

1− k2
1

]
.

(24)
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Then, in (24), we expand formally

ζ =
∞∑
k=1

εkCk, I(t) =
∞∑
k=0

εkI(k)(t), ϕ(t) =
∞∑
k=0

εkϕ(k)(t), (25)

where
I(0)(t) = I(0) :=

8
π

√
α
[
(k2

1 − 1)K(k1) + E(k1)
]
, ϕ(0) =

π

2K(k1)
√
α t, (26)

according to (19) and (22), and fix recursively the constants Ck in such a way that the functions
I(k)(t) and ϕ(k)(t) are periodic with period T := 2πq = 4K(k1)p/

√
α, with p/q ∈ Q, for all k ≥ 1.

By inserting (25) into (24), we obtain

εİ(1)(t) + ε2İ(2)(t) + . . . = εF
(1)
2 (t) + ε2F

(2)
2 (t) + . . . ,

ϕ̇(0)(t) + εϕ̇(1)(t) + ε2ϕ̇(2)(t) + . . . = εF
(1)
1 (t) + ε2F

2)
1 (t) + . . . ,

where both functions F (k)
2 (t) and F

(k)
1 (t) depend on the functions I(h)(t) and ϕ(h)(t), with h < k

only, so that the equations can be solved iteratively — we refer [64, Section 2.1] for details. To any
order the condition for the solution to be periodic turns out to be

〈F (k)
2 〉 :=

1
T

∫ T

0

dt F (k)
2 (t) = 0, (27)

which fixes the value of the constant Ck. For instance, to first order one finds, from (24) and (26),

F
(1)
2 (t) =

8k2
1K(k1)

√
α

π

(√
α sn(

√
αt) cn(

√
αt) dn(

√
αt) cos(t− t0) + (2 sin(t− t0)− C1) cn2(

√
αt)
)
,

so that the condition (27) for k = 1 yields

C1

∫ T

0

dt cn2(
√
αt) =

∫ T

0

dt
(√

α sn(
√
αt) cn(

√
αt) dn(

√
αt) cos(t− t0) + 2 sin(t− t0) cn2(

√
αt)
)
.

For the integrals on the right hand side not to vanish, one needs p = 1 and q even (see again [64] for
more details). By computing explicitly the integrals, for α = 0.5 and k1 such that 2K(k1) = π

√
αq ,

with q even, and taking the maximum over t0, one finds the values listed in Table 3.

B.2 Rotations

For the rotations of the perturbed system without dissipation, the equations of motion are

İ = − ∂p
∂ϕ

q̇ +
∂q

∂ϕ
ṗ = −4αK(k2) sn(·) cn(·) dn(·)

π

∞∑
n=1

(−ε cos(t− t0))n

+
8K(k2)ε sin(t− t0)

√
α dn2(·)

πk2

∞∑
n=0

(−ε cos(t− t0))n,

ϕ̇ =
∂p

∂I
q̇ − ∂q

∂I
ṗ =

πk2
√
α

K(k2)

[
1
k2
2

−
(
ϕE(k) sn(·) cn(·) dn(·)

π(1− k2
2)

+
k2
2 sn2(·) cn2(·)

1− k2
2

− E(·) sn(·) cn(·) dn(·)
(1− k2

2)

) ∞∑
n=1

(−ε cos(t− t0))n
]

+
2επ sin(t− t0) dn(·)

K(k2)

[
ϕE(k2) dn(·)
πk2(1− k2

2)
+
k2 sn(·) cn(·)

1− k2
2

− E(·) dn(·)
k2(1− k2

2)

] ∞∑
n=0

(−ε cos(t− t0))n,
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where (·) = (K(k2)ϕ/π, k2). Note that the following equality, which may be derived using the
identities for the Jacobi elliptic functions [43], was used in finding the expression for ϕ̇

dn2

k2
− k2 sn2 cn2

1− k2
+

sn2 dn2

1− k2
=

dn2

k2
− k2 sn2(1− sn2)

1− k2
+

sn2 dn2

1− k2

=
dn2

k2
+

sn2

1− k2

[
dn2−k2 + k2 sn2

]
=

dn2

k2
+

sn2

1− k2

[
1− k2

]
=

1
k2

[
dn2 +k2 sn2

]
=

1
k2
.

The term ζq̇ may be calculated in the same way as for the librations and we find that, with the
inclusion of friction, the action-angle variables satisfy

İ = −4αK(k2) sn(·) cn(·) dn(·)
π

∞∑
n=1

(−ε cos(t− t0))n

+
8K(k2)ε sin(t− t0)

√
α dn2(·)

πk2

∞∑
n=0

(−ε cos(t− t0))n − 4ζ
√
αK(k2) dn2(·)

k2π
,

ϕ̇ =
πk2
√
α

K(k2)

[
1
k2
2

−
(
k2
2 sn2(·) cn2(·)

1− k2
2

− Z(·) sn(·) cn(·) dn(·)
(1− k2

2)

) ∞∑
n=1

(−ε cos(t− t0))n
]

+
2επ sin(t− t0) dn(·)

K(k2)

[
k2 sn(·) cn(·)

1− k2
2

− Z(·) dn(·)
k2(1− k2

2)

] ∞∑
n=0

(−ε cos(t− t0))n

+
ζ
√
απk2 dn(·)
K(k2)

[
dn(·)
k2
2

+
sn2(·) dn(·)

1− k2
2

− Z(·) sn(·) cn(·)
1− k2

2

]
.

(28)

To determine the constants Ck one proceeds as in the case of librations, the only difference being
that now

F
(1)
2 (t) =

4K(k2)
√
α

πk2

(√
αk2 cos(t− t0) sn(

√
αt) cn(

√
αt) dn(

√
αt) + (2 sin(t− t0)− C1) dn2(

√
αt)
)

which requires once more p = 1 and q even; then, by fixing q , choosing k2 so that 2k2K(k2) = π
√
αq

and taking the maximu over t0, one finds the values of C1 given in Table 4.
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[51] D. Núñez, R. Ortega, Parabolic fixed points and stability criteria for nonlinear Hill’s equation, Z. Angew. Math.
Phys. 51 (2000), no. 6, 890-911.

[52] R. Ortega, The stability of the equilibrium of a nonlinear Hill’s equation, Siam J. Math. Anal. 25 (1994), no. 5,
1393-1401.

[53] Y.G. Panovko, I.I. Gabanova, Stability and oscillation of elastic systems: Modern concepts, paradoxes and
errors, Second edition, Nasa technical translations, 1973.

[54] I. Percival, D. Richards, Introduction to dynamics, First edition - reprint, Cambridge University Press, Cam-
bridge, 1994.

[55] V.A. Pliss, Nonlocal problems of the theory of oscillations, Academic Press, New York-London, 1966.

[56] M.A. Pinsky, A.A. Zevin, Oscillations of a pendulum with a periodically varying length and a model of swing,
Internat. J. Non-Linear Mech. 34 (1999), no. 1,105-109.

[57] R.C.T. Rainey, The dynamics of tethered platforms, Trans. Royal Inst. Naval Architects 120 (1978), 59-80.

[58] A.P. Seyranian, Swing problem, Dokl. Phys. 49 (2004), no.1, 64-68.

[59] A.C. Skeldon, Dynamics of a parametrically excited double pendulum, Phys. D 75 (1994), no. 4, 541-558.

[60] A. Sofroniou, S.R. Bishop, Breaking the symmetry of the parametrically excited pendulum, Chaos Solitons
Fractals 28 (2006), no. 3, 673-681.

[61] A. Stephenson, On a new type of dynamical stability, Mem. Proc. Manch. Lit. Phil. Soc. 52 (1908), 1-10.

[62] D.J. Sudor, S.R. Bishop, Inverted dynamics of a tilted parametric pendulum, European J. Mech. A Solids 18
(1999), no. 3, 517-526.

[63] E. T. Whittaker, G.N. Watson, A course of modern analysis, Fourth edition - reprint, Cambridge University
Press, Cambridge, 1947.

[64] J.A. Wright, M. Bartuccelli, G. Gentile, The effects of time-dependent dissipation on the basins of attraction
for the pendulum with oscillating support, Nonlinear Dynam. 77 (2014), no. 4, 1377-1409.

[65] J.A. Wright, J.H.B. Deane, M. Bartuccelli, G. Gentile, Basins of attraction in forced systems with time-varying
dissipation, Commun. Nonlinear Sci. Numer. Simul. 29 (2015), 72-87.

[66] X. Xu, M. Wiercigroch, M.P. Cartmell, Rotating orbits of a paramtrically-excited pendulum, Chaos Solitons
Fractals 23 (2005), no.5, 1537-1548.

26


