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Abstract

This is, with minor modifications, a text read at the 114th Statisti-
cal Mechanics meeting, in honor of D.Ruelle and Y.Sinai, at Rutgers,
Dec.13-15, 2015. It does not attempt to analyze, or not even just
quote, all works of David Ruelle; I discuss, as usual in such occasions,
a few among his works with which I have most familiarity and which
were a source of inspiration for me.

The more you read David Ruelle’s works the more you are led
to follow the ideas and the references: they are, one would say,
“exciting”.

The early work, on axiomatic Qugantum Field Theory, today
is often used and referred to as containing the “Haag-Ruelle”
formulation of scattering theory, and is followed and developed
in many papers, in several monographs and in books, [1]. Ruelle
did not pursue the subject after 1963 except in rare papers, al-
though clear traces of the background material are to be found in
his later works, for instance the interest in the theory of several
complex variables.

Starting in 1963 Ruelle dedicated considerable work to Statisti-
cal Mechanics, classical and quantum. At the time the deriva-
tion of rigorous results and exact solutions had become of central
interest, because computer simulations had opened new hori-
zons, but the reliability of the results, that came out of tons of
punched paper cards, needed firm theoretical support. There
had been major theoretical successes, before the early 1950’s,
such as the exact solution of the Ising model and the location of
the zeros of the Ising partition function and there was a strong
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revival of attention to foundations and exactly soluble models.
Many new results were about to appear; Ruelle contributed by
first setting up a proper formalism to define states via correla-
tion functions, and then achieving a proof of the convergence
of the virial expansion. The result had been also obtained by
C.B. Morrey in 1955, in a paper which remained unknown in the
community until the ’970’s, then by H. Groeneveld in 1961 and
finally by O. Penrose and, independently, by Ruelle in 1963.

Ruelle’s contribution, [2], is distinctive and original as it sets
up a clearly general method (“algebraic method”) to study the
convergence of perturbation expansions in Statistical Mechan-
ics, Classical Mechanics, Quantum Field Theory. Such expan-
sions are often possible but at the cost of expressing the objects
of interest (e.g. correlation functions or density, magnetization,
entropy, ...) as sums of power series whose n-th order terms are
sums of many more than the fateful Cn.

Ruelle’s systematic approach (the “algebraic method”) to solve
the combinatorial problems has been continuously used since,
giving rise to a growing literature where results obtained via his
algebraic method approaches have been developed and merged.
It made possible to many colleagues to solve problems considered
difficult in the theory of phase transitions and in other fields. I
just mention here its application to Constructive Quantum Field
theory via the the Renormalization Group.

The method (today usually known as the “cluster expansion”) is
constantly studied and improved: it contributes to a variety of
fields, like to stochastic processes, fluctuations theory, combina-
torial problems. It is remarkable that the community is divided
into those who use the method and consider it natural and many
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who refrain from even envisaging its use; although this is a dif-
fuclt to understand attitude, it adds to the continued impact
of Ruelle’s method. The systematic theory of convergence of a
class of perturbation expansions is to be considered among the
conceptually deepest developments in the 1960’s.

Ruelle’s simultaneous more conceptual works on the foundations
of Statistical Mechanics, on the theory of the thermodynamic
limit, on phase transitions, on the proper way to address ques-
tions like “what is a pure state”, “what are the conditions of
stability” for making thermodynamics deducible from micro-
scopic mechanics have been extremely influential: the subject
is reviewed concisely but without compromise in his book “Sta-
tistical Mechanics”, 1969, which has become a standard part of
the curriculum of graduate students, [3], and a reference book
for advanced research.

A characteristic aspect of Ruelle’s attitude towards science is the
continuous interplay between the need to clarify the concepts
and the prodution of unexpected solutions to concrete problems
which seem to follow naturally after the clarification. Far from
dealing only with general fundamental questions Ruelle dealt
with very concrete problems among which I mention
a) the DLR equations, 1969, characterizing equilibrium states
in lattice systems, [4]
b) the theory of superstable interactions, [5], which enabled a
general approach to estimates not only in equilibrium statistical
mechanics but also in quantum field theory.
c) the theory, [6], of the transfer operator and its connection
with the theory of stationary states in 1D Statistical Mechanics
which, shortly after, plaid a surprising and unifying role in the
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theory of chaotic systems.
d) the first example of a phase transition in a continuous (i.e
not lattice) system, [7].
e) the extension of the Lee-Yang circle theorem following Asano’s
work and pushing it to deal with new cases, [8, 9]: a work that
Ruelle kept refining and improving until quite recently,[10].

An important contribution has been to establish close contact
with pure Mathematicians driving their interests to new Physics
problems, particularly in the field of Dynamical Systems. I think
that the above mentioned work, [4], with Lanford on the “DLR
equations” has been fundamental for the introduction into Anal-
ysis of the “thermodynamic formalism” (name acquired after the
title of his later, 1978, book, [11]).

The language adopted was often formal (particularly in the
book) and not really easy reading for a physicist but it hit the
right chords in mathematics and remains a standard reference.
Many among Ruelle’s studies have strong mathematical conno-
tation, [12], and have spurred research on subjects like the “pres-
sure” of a dynamical system, variational principles for invariant
distributions, zeta functions and periodic orbits in chaotic sys-
tems, ...

The above works are among the highlights, from my limited per-
spective, of the period 1963-1978. However, starting in the early
’970’s, Ruelle introduced, with Takens, a new fundamental inter-
pretation of the chaotic motions in Fluid Mechanics, [13], which
he shortly after developed from a original theory of the onset
of turbulence into an ambitious theory aiming at understanding
various aspects of developed turbulence: the new theory did not
meet immediate recognition perhaps because, at the time, it was
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a revolution for its sharp contrast with the very foundation of
Landau’s theory, namely already on the onset of turbulence.

It met the fate of many novel theories of natural phenomena:
many dismissed it as “mathematical considerations” of little im-
port to Physics. However soon it became strictly interwoven
with the works of Feigenbaum, with several successful numeri-
cal simulations, and mainly with an ever increasing amount of
experimental evidence, starting with Swinney’s experiments. I
still remember, at a conference, a well known experimenter giv-
ing a talk and saying that his results were in agreement with
Ruelle’s theory on the onset of turbulence, in spite of his not
being able to understand it and why.

A rather early sign of the relevance of the theory is the new ver-
sion of chapter 3 in the Landau-Lifshitz book on fluids, where
the onset of turbulence based on the Ptolemaic succession of
quasi periodic motions (leading to Sec.31 of the 1959 English
edition) is replaced by the sudden appearance of a strange at-
tractor (in the updated 1984 English version) and its statistical
properties which link the problem of developing as well as of de-
veloped fluid turbulence to elsewhere well understood systems
like 1D Ising models with short range interaction.

Ruelle dedicated most of his work in the last thirty years to
developing, refining and explaining the importance of “strange
attractors” and to presenting and popularizing dynamical hy-
perbolicity as a guide to the conceptual unification of chaotic
motions and their stationary states.

Besides providing tools for concrete studies, simulations and
experiments in fields apparently quite distant the unification
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achieved is, I think, extremely original and deep.

At this point I want to recall that Boltzmann, Clausius and
Maxwell did not hesitate to imagine microscopic motions as pe-
riodic, thus introducing and using the often still misunderstood
and vilified ergodic hypothesis to develop equilibrium statisti-
cal mechanics. The paradigm of the hyperbolicity (exhibited
rigorously in systems like Anosov’s or Axiom A attractors) is a
general paradigm, not to be dismissed (as often done) as a math-
ematical fiction; rather it is a guide to turn chaotic systems into
conceptually tractable systems, by claiming their equivalence to
very well understood ones.

The problem encountered by the new ideas seems to be that im-
mediate solutions to simple but difficult problems are expected
to follow new ideas. This means forgetting the time that has
been needed to develop Gibbs distributions into the modern the-
ory of equilibrium: phase transitions, phase coexistence, scaling
properties in short and long range molecular forces. The time
since the late 1800’s to the 1970’s has been necessary to begin (I
say “begin”) to understand equilibrium and criticality. Similarly
we have to learn how to convert the SRB distributions (which ,
in equilibrium, reduce to the now “usual” Gibbs distributions)
into a powerful tool to classify and understand nonequilibrium
phenomena.

Hyperbolic systems might turn out to play, in the modern the-
ory of stationary nonequilibrium, the role plaiyed by periodic
motions in the early days of Equilibrium Statistical Mechanics,
with the SRB distributions generalizing (and containing as a
special case) the Gibbs distributions.
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Since the 1990’s the focus of Ruelle’s research has been on the
stationary non-equilibrium distributions of systems undergoing
chaotic motions: beginning to show the relevance for applica-
tions of the general vision. Hence the works on strange at-
tractors occupy a substantial fraction of his list of publications:
always paying strict attention to mathematical precision Ruelle
has given contributions to the integral representation of invari-
ant measures, [14], to theory of unstable foliations in diffeo-
morphisms, [15], to periodic orbits and zeta functions, [16], to
analyticity of the maximal Lyapunov exponent in certain dy-
namical systems [17], to “pressure” in Dynamical Systems, [18],
to several examples of strange attractors, [19], to application to
fluid motions, [20], to new ideas and proposals on data analysis,
[21, 22], to statistical properties of vortexes in 2D turbulence
[23], to resonances, [24], to an extension of the Green-Kubo
formula to stationary states far out of equilibrium, [25, 26], to
intermittency in the energy cascade, [27],...

The works, aside from several review papers aimed at a general
public, have a formal mathematical aspect. Nevertheless they
are currently being used, for instance, in the interpretation and
theory of applications to fluid motions and atmospheric motion,
[28, 29].

In the mid ’980’s the state of the art on turbulence has been
summarized in a review with Eckmann which is now a standard
reference, [30]. And Ruelle is author of several review articles
and eight books, some of which also provide a refreshing insight
into the inner workings of the scientific community.

Ruelle’s interest in Statistical Mechanics proper has neverthe-
less continued returning to the thermodynamic limit (e.g.in spin
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glasses) and inspiring also works on combinatorics, [31, 32, 33].
The attention to combinatorics and theory of polynomials is an-
other facet of his contributions intimately related and inspired
by his own works on Dynamical Systems and Statistical Me-
chanics.

I cannot skip mentioning the close relation of Ruelle’s works to
the work of Sinai: they are close in age, in methods, in mathe-
matical clarity in defining and studying problems from Physics,
and are complementary in achievements. For instance I think of
the early contribution of Sinai on the theory of Anosov systems,
i.e on the theory of Chaos,[34, 35] and of the related extension
of the Gibbs distributions to stationary non equilibria (the SRB
distributions, named after their initials, and that of Bowen,[36].

Let me conclude with a personal note: I am slowly catching up
to David by age: but I remain far behind in my understanding
of nature, and I know that I am not the only one who waits to
read his work and get inspired. At the same time I am conscious
that I am falling behind in my attempts to follow the ideas
that he keeps clarifying or proposing. I am grateful for what I
learned from him in Physics, and for his indirect influence on
my abandoning my naive mathematical formation which had
addressed me in strange directions, where the axiom of choice
had a key role.

Acknowledgement: I am grateful to a referee for his intervention
to clarify the original text in the form as well as in the contents.
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