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Abstract

We present an algorithm for the rapid numerical integration of a time-periodic ODE with a small
dissipation term that is C

1 in the velocity. Such an ODE arises as a model of spin-orbit coupling in a
star/planet system, and the motivation for devising a fast algorithm for its solution comes from the desire
to estimate probability of capture in various solutions, via Monte Carlo simulation: the integration times
are very long, since we are interested in phenomena occurring on times similar to the formation time of the
planets. The proposed algorithm is based on the High-order Euler Method (HEM) which was described
in [Bartuccelli et al. (2015)], and it requires computer algebra to set up the code for its implementation.
The pay-off is an overall increase in speed by a factor of about 7.5 compared to standard numerical methods.
Means for accelerating the purely numerical computation are also discussed.

1 Introduction

The paper first concisely sets out the model for spin-orbit coupling in, for instance, the Sun-Mercury system,
as described by Makarov [Makarov (2012)] and further discussed by Noyelles, Frouard, Makarov and Efroimsky
in [Noyelles et al. (2014)]. We refer to this model as the NFME model throughout. We then describe a fast
numerical algorithm, based on the High-order Euler Method (HEM) introduced in [Bartuccelli et al. (2015)],
for solving the spin-orbit ODE incorporating the NFME model. After rigorous testing, we conclude that the
proposed algorithm is about 7.5 times faster than simply using a general-purpose numerical ODE solver.
There are two main reasons for developing a fast algorithm for solving this version of the spin-orbit ODE,
bearing in mind that the ultimate objective is to establish, by Monte Carlo simulation, the probability of
capture in the various attracting solutions of the ODE. The first reason is that, since the dissipation in the
problem is low, very long integration times — of the order of that of the formation of the planets — are
needed in order to establish capture. The second reason is that to estimate capture probabilities with high
confidence, solutions starting from many randomly-chosen initial conditions need to be considered: in fact, the
width of the confidence interval decreases only as the square root of the number of solutions investigated. In
most of the previous related work, for instance, [Correia and Laskar (2004)], [Celletti and Chierchia (2008)],
[Makarov (2012)], [Makarov et al. (2012)], only about 1000 initial conditions were considered. By contrast, we
are able to consider more than 50,000 here, for which the total computation time is of order two weeks.
The dynamics of the solutions of the spin-orbit ODE with the NFME model are also interesting, and we discuss
these in a separate paper [Bartuccelli et al. (in preparation)].
In [Noyelles et al. (2014)], the authors point out how the model that they advocate describes more realisti-
cally the effect of tidal dissipation, in comparison with the much simpler constant time-lag (CTL) model.
The latter has been used extensively in the literature since the seminal paper by Goldreich and Peale
[Goldreich and Peale (1966)] — see for instance [Correia and Laskar (2004)], [Celletti and Chierchia (2008)],
[Celletti and Chierchia (2009)] and [Bartuccelli et al. (2015)] for recent results on the basins of attraction of
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the principal attractors. A clear drawback of the CTL model is that, for the parameters of the Sun-Mercury
system, the main attractor (with 70% probability of being observed) is quasi-periodic, with an approximate
frequency of 1.256. In fact, Mercury is in a 3:2 spin-orbit resonance, and the CTL model indicates that the
probability of this is only about 8%. On the other hand, with the NFME model, all attractors have mean
velocity close to rational values, and about 42% of the initial data are captured by an attractor with mean
velocity close to 3/2.
The greater realism of the NFME model comes at a cost, however:

1. The NFME model is not smooth; in fact, it is only C1 in the angular velocity, θ̇, as we shall see.

2. There is considerable detail to take into account in implementing the NFME model mathematically.

3. The functions in the model take considerably more computation time to evaluate, and so numerical
calculations are comparatively slow.

The first point is important both for application of perturbation theory to the problem as well as for imple-
menting an appropriate fast HEM-type algorithm to solve the ODE. Both of these objectives are important.
For instance, perturbation theory is a useful tool for obtaining any kind of analytical results for the dynamics;
and the motivation for faster algorithms has already been discussed above.
Throughout this paper, the units for mass, length and time will be kg, km and Earth years, yr, respectively. For
ease of cross-referencing, an equation numbered (N.x) in this paper is equation (x) in [Noyelles et al. (2014)],
modified if necessary. When we refer to a ‘standard numerical method’ or ‘numerical method’ for ODE solving,
we mean one of the family of well-known general purpose ODE solvers (e.g. Runge-Kutta, Adams); when we
mean HEM, which is of course also numerical, we refer to it explicitly by name.

2 The NFME model

2.1 The spin-orbit ODE

The ODE is

θ̈ =
T TRI
z (θ, t) + T TIDE

z (θ̇)

ξMplanetR2
(N.1)

where ξ is a measure of the inhomogeneity of the planet (with ξ = 2/5 for a homogeneous sphere), Mplanet is
the mass of the planet and R is its radius. Numerical values for these, and indeed all relevant parameters can
be found in Table 1.

2.2 The triaxiality torque

The triaxiality-caused torque along the z-axis, T TRI
z (θ, t), is a torque exerted on the planet by the grav-

itational field of the star, arising from the fact that the planet is not a perfect sphere. Goldreich and
Peale [Goldreich and Peale (1966)] and NFME approximate T TRI

z by its quadrupole part, which is given by

T TRI
z ≈ −3a3

2r3
(B −A)n2 sin 2(θ − f) = −3a3

2r3
(B −A)n2(sin 2θ cos 2f − cos 2θ sin 2f) (N.5)

where the principal moments of inertia of the planet, along the x, y and z axes respectively, are A < B <
C = ξMplanetR

2; n is its mean motion; r = r(t) is the distance between the centres of mass of the star and
the planet at time t; a is the semi-major axis of the orbit of the planet; θ(t) is the sidereal angle of the planet,
measured from the major axis of its orbit; and f = f(t) is the true anomaly as seen from the star. We further

define M (t), the mean anomaly, which is such that n = Ṁ , with a good approximation [Noyelles et al. (2014)]
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being given by1 n ≈
√

G(Mplanet +Mstar)/a3, where G is the gravitational constant and Mstar is the mass
of the star. Hence, aside from a constant of integration which we set to zero, M = nt.
The standard procedure from this point is to make the following pair of Fourier expansions:

(

r(t)

a

)n
cos
sin

(mf(t)) =
∑

k∈Z

Xn,m
k (e)

cos
sin

(knt) (N.7, N.8)

where Xn,m
k (e) are the Hansen coefficients, which depend on the orbital eccentricity e. NFME compute them

via [Duriez (2007)]

Xn,m
k (e) = (1 + z2)−n−1

∞
∑

g=0

(−z)g
g

∑

h=0

Cn,m
g−h,h Jk−m+g−2h(ke), (N.9)

where z = (1 −
√
1− e2)/e, Jk(x) is the k-th order Bessel function of the first kind, and

Cn,m
r,s =

(

n+ 1 +m
r

)(

n+ 1−m
s

)

with the binomial coefficients (extended to all integer arguments) being given by

(

l
m

)

=











l(l−1)...(l−m+1)
m! l ∈ Z,m ≥ 1

1 l ∈ Z,m = 0

0 l ∈ Z,m < 0.

For convenience, we define the functions Glpq(e) = X−l−1, l−2p
l−p+q . Then finally,

T TRI
z (θ, t) = −3

2
(B −A)n2

∑

q∈Z

G20q(e) sin(2θ − (q + 2)nt). (N.10)

In practice, NFME sum over q ∈ Q TRI = {−4, . . . , 6}.

2.3 The tidal torque

NFME forcefully point out the problems associated with the constant time-lag (CTL) model, which leads to a
dissipation term of the form γ(θ̇−ω), with γ and ω constants. This model, among other things, can give rise to
quasi-periodic solutions for the spin-orbit problem [Correia and Laskar (2004), Celletti and Chierchia (2009),
Bartuccelli et al. (2015)], and the fact that these have not been observed in practice is evidence that the CTL
model is in some way unphysical.
NFME model tidal dissipation by expanding both the tide-raising potential of the star, and the tidal potential
of the planet, as Fourier series. The Fourier modes are written ωlmpq, where l,m, p, q are integers. Appendix
B of [Noyelles et al. (2014)] justifies the simplification l = m = 2, p = 0, which arises from the smallness of the
obliquity of the orbit (axial tilt), in combination with an averaging argument. This then gives the following
approximation for the polar component of the tidal torque:

T TIDE
z (θ̇) =

3GM2
star

2a

(

R

a

)5
∑

q,j∈Q TIDE

G20q(e)G20j(e)Q2(ω220q) sgn(ω220q) cos[(q − j)M ]. (N.11a)

Here, Q TIDE = {−1, . . . , 7}; Q2(ω220q) = k2(ω220q) sin |ǫ2(ω220q)|, where both k2 (a positive definite, even
function of the mode ωlmpq) and ǫ2 (an odd function of the mode) are functions to be given shortly; and
sgn() is the usual signum function. Hence, overall, Q2(x) sgn(x) is an odd function of x. The reason why

1Numerically, this is true: [Noyelles et al. (2014)] give n = 26.0879 yr−1 for Mercury and the approximation yields n ≈ 26.0897
yr−1.
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Q2 is written in this form is that it will turn out to depend on a fractional power of |ωlmpq|: the oddness of
Q2(x) sgn(x) is thereby retained without raising a negative number to this fractional power.
The additive error terms for this expression are O(e8ǫ), O(i2ǫ) and O

(

ǫR7/a7
)

, in which i is the obliquity
of the orbit and ǫ, which is O(1), is a phase lag. For Mercury, e8 ≈ 10−8, i2 ≈ 10−7 and (R/a)7 ≈ 10−31.
NFME then make the additional approximation that, since the terms with q 6= j oscillate, they naturally
affect the detailed dynamics of the planet, but nonetheless, the overall capture probabilities are insensitive to
them [Makarov et al. (2012)]. Hence, the tidal torque is well approximated by the secular part only, i.e. the
q = j terms; this gives

T TIDE
z (θ̇) = 〈T TIDE

z (θ̇)〉l=2 =
3GM2

star

2a

(

R

a

)5
∑

q∈Q TIDE

G2
20q(e)Q2(ω220q) sgn(ω220q). (N.11b)

Neglecting precessions, we have
ωlmpq = (l − 2p+ q)n−mθ̇ (N.12)

with l ≥ 2, m, p = 0, . . . , l and q ∈ Z. For the reasons mentioned earlier, we consider only the mode
ω220q = (q + 2)n− 2θ̇.
Finally, we give the NFME model for the quality function, Q2(ωlmpq). We use the abbreviation χ = |ωlmpq|,
in terms of which

Q2(ωlmpq) = − 3Al

2(l − 1)

I ′(χ)χ

(R ′(χ) +Alχ)2 + I ′(χ)2
, (N.15 mod.)

where

Al =
4π(2l2 + 4l+ 3)µR4

3lGM2
planet

,

with µ being the unrelaxed rigidity;

R ′(χ) = χ+ χ1−ατ−α
A cos(απ/2) Γ(α+ 1) (N.16 mod.)

and
I ′(χ) = −τ−1

M − χ1−ατ−α
A sin(απ/2) Γ(α+ 1). (N.17 mod.)

In these expressions, Γ is the usual gamma function, τA and τM are the Andrade and Maxwell times of the
mantle respectively and α is the Andrade parameter.

2.4 Parameter values for the Sun/Mercury system

In Table 1 we give numerical values appropriate to the Sun and Mercury for the parameters introduced so far.
We standardise the units to kg for mass, km for length and (Earth) years for time.

2.5 The triaxiality and tidal angular accelerations

In order to study the spin-orbit problem further, it is convenient to introduce two quantities with the dimensions
of angular acceleration

θ̈TRI(θ, t) = T TRI
z (θ, t)/ξMplanetR

2 and θ̈TIDE(θ̇) = T TIDE
z (θ̇)/ξMplanetR

2.

Taken individually, these quantities are not accelerations per se — more correctly, they might be described
as the triaxiality/tidal contributions to the angular acceleration, since, when computed on the solution θ(t),
their sum is θ̈, as we shall see from equation (3) — but for brevity, we refer to them as the triaxiality and tidal
accelerations. We then define

ζ =
3(B −A)n2

2ξMplanetR2
≈ 0.09545 yr−2 so that θ̈TRI(θ, t) = −ζ

∑

q∈Q TRI

G20q(e) sin(2θ − (q + 2)nt), (1)
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Parameter values specific to Mercury
Name Symbol Numerical value
Semimajor axis a 5.791× 107 km
Mean motion n 26.0879 rad yr−1

Planetary radius R 2.44× 103 km
Dimensionless m.o.i. (inhomogeneity) ξ = C/(MplanetR

2) 0.346
Triaxiality (B −A)/C 9.350× 10−5

Planetary mass Mplanet 3.301× 1023 kg
Unrelaxed rigidity µ 7.967× 1028 kg km−1 yr−2

Present-day orbital eccentricity e 0.2056
Andrade time τA 500 yr
Maxwell time τM 500 yr
Andrade parameter α 0.2

Acceleration constants
Triaxiality acceleration constant ζ 0.09545 yr−2

Tidal acceleration constant η 0.03096 yr−2

Other parameter values
Mass of Sun Mstar 1.989× 1030 kg
Gravitational constant G 6.646× 10−5 kg−1 km3 yr−2

Triaxiality index range Q TRI {−4, . . . , 6}
Tidal index range Q TIDE {−1, . . . , 7}

Table 1: Numerical values for the parameters used in the NFME model for the Sun and Mercury.

and

η =
3GM2

starR
5

2a6ξMplanetR2
· 3Al

2(l − 1)
=

3π(2l2 + 4l + 3)

l(l − 1)

µM2
starR

7

ξM3
planeta

6
≈ 0.03096 yr−2

for l = 2, so that

θ̈TIDE(θ̇) = −η
∑

q∈Q TIDE

G2
20q(e)P2 (|ω220q|) sgn(ω220q) (2)

where

P2(χ) =
I ′(χ)χ

(R ′(χ) +A2χ)2 + I ′(χ)2

and R ′(χ) and I ′(χ) are defined in equation (N.17 mod.).
In terms of these angular accelerations, the spin-orbit ODE becomes

θ̈ + ζ
∑

q∈Q TRI

G20q(e) sin(2θ − (q + 2)nt) + η
∑

q∈Q TIDE

G2
20q(e)P2

(∣

∣

∣
2θ̇ − (q + 2)n

∣

∣

∣

)

= 0 (3)

and this is our starting point for the rest of the paper.

3 The NFME model with practical values

We now look at the behaviour and magnitude of the various functions that go to make up the NFME model,
using the values for the Sun and Mercury given in the Table 1.

3.1 Hansen coefficients

In figure 1 we plot the Hansen coefficients relevant to the problem, G20q = X−3,2
q+2 , for e = 0.2056, 0.3 and 0.4

and for q = −12, . . . , 12. These were computed from equation (N.9) by truncating the first sum at p = 120
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Figure 1: Plot of log10 |G20q(e)| for e = 0.2056, 0.3, 0.4 (the latter two values being for illustration) and
q = −12, . . . , 12. Note that, for all values of e considered, (i) only G2,0,−1 is negative, and (ii) G2,0,−2 = 0 and
is therefore not plotted.

and using 20 significant figures for computation — these values allow the computation of the coefficients to a
much higher precision than necessary.

3.2 The triaxiality acceleration

We first make a simple estimate of the order of magnitude of θ̈TRI(θ, t). Treating θ and t as independent
variables, it is clear from equation (N.10) that θ̈TIDE ∈ [−D,D] for all θ, t, where

D(e) = ζ
∑

q∈Q TRI

|G20q(e)| . (4)

We find D(0.2056) = 0.2096, D(0.3) = 0.3016 and D(0.4) = 0.4396 yr−2.
In figure 2 we give a plot of θ̈TIDE(θ0 + θ̇0t, t) for e = 0.2056, θ0 = 2.0, θ̇0 = 29.0, the latter two values being
(almost arbitrarily) chosen to approximate a solution starting from an angular velocity slightly greater than
n. Note that θ̈TIDE ∈ [−0.19, 0.19], which is consistent with the estimate, from equation (4), of [−0.21, 0.21]
when e = 0.2056.

3.3 The tidal acceleration

We now discuss the tidal acceleration θ̈TIDE(θ̇). Throughout this section, we take e = 0.2056. Figures 3–5
show the tidal acceleration, plotted vertically, versus the relative rate of rotation, θ̇/n.
This function is illustrated in Figure 3, which shows θ̈TIDE(θ̇), plotted over the entire range of interest,
θ̇/n ∈ [−1, 5]. The dominant features here are the ‘kinks’, which occur at θ̇/n = 1 + q/2 for q = −1, . . . , 7,
this being the range of the sum defining the tidal acceleration.
The five ‘kinks’ at which θ̈TIDE changes sign are those corresponding to q = −1, . . . 3, and, for the purpose of
comparison, these are plotted over the same narrow range of θ̇/n = 1 + q/2± 10−4, and on the same vertical
scale, ±7× 10−4, in figure 4.
The fact that θ̈TIDE is continuous, even at a kink, is implied in figure 5, in which θ̈TIDE has been plotted
against θ̇/n for θ̇/n ∈ [3/2− 4× 10−5, 3/2 + 4× 10−5]. However, the derivative n dθ̈TIDE/dθ̇ displays a cusp
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Figure 2: An illustrative plot of the triaxiality angular acceleration, θ̈TRI(θ̇) as a function of time, with
e = 0.2056, and θ(t) = 2 + 29t.

at the values of θ̇/n corresponding to a kink, as is apparent from the definition of Q2(ωlmpq) in equation (N.15

mod.), in particular from its dependence on χ = |ω220q| = |2θ̇ − (q + 2)n|. This is illustrated in figure 6.

4 A fast algorithm

We find several different solutions to the differential equation (3), which one is observed depending on the
initial conditions. As well as periodic solutions, some of the solutions we find appear, numerically at least, not
to be simply periodic — we shall have more to say about these solutions in [Bartuccelli et al. (in preparation)].
Here, we just point out that we distinguish the different captured solutions from each other solely by their

mean θ̇ values, 〈θ̇〉, defined by 〈θ̇〉 = limT→∞ T−1
∫ T

0 θ̇(t)dt; and that capture can take place in solutions for
which a term in the sum (N.10), the triaxiality torque, is approximately zero, i.e. for θ ≈ (q+2)nt/2, q ∈ Q TRI.
Hence, we only expect solutions for which 〈θ̇/n〉 ≈ −1,−1/2, 1/2, . . . , 7/2 and 4.
In order to compute probabilities of capture by the different solutions, with small confidence intervals, via
Monte Carlo simulation, many solutions to equation (3), starting from random initial conditions in the set
Q = [0, π] × [θ̇min, θ̇max], must be computed. Many are needed because, for a given confidence level, the
width of the confidence interval is proportional to I−1/2, where I is the number of solutions computed: more
simulations narrow the confidence interval, but rather slowly.
We take Q = [0, π] × [0, 5n] in what follows. The triaxiality acceleration depends on 2θ and so we need only
consider θ0 ∈ [0, π]; and the right-most kink is at θ̇ = 9n/2, so we choose the maximum value of θ̇0 to be
somewhat greater than this.
We now describe a fast algorithm for solving equation (3), which is based on the high-order Euler method
(HEM), described in detail in [Bartuccelli et al. (2015)]. This method has to be adapted for the NFME model
because of the discontinuities in the second derivative of θ̈TIDE(θ̇) — that is, at the centres of the kinks —
that occur at θ̇/n = 1/2, 1, 3/2, . . . , 9/2. The adaptation we use requires that the subset Q of the (θ, θ̇) phase
plane be split into strips, all with θ ∈ [0, π), but with a variety of ranges of θ̇. This splitting is needed in order
to meet the error criterion — see below. A strip can be of type H (HEM), when it is far enough removed from
the kinks that the HEM can be used; and type N (Numerical), surrounding a kink, where a suitable numerical
method has to be used. In a type N strip, there is a possibility that the ODE is stiff, and the numerical method
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Figure 3: The tidal angular acceleration, θ̈TIDE(θ̇), with e = 0.2056, as given by equation (2). ‘Kinks’ occur
at values θ̇/n = 1/2, 1, 3/2, 2, . . . , 9/2, although those at 4, 9/2 are too small to see on this scale. Note that
the angular acceleration does not change sign at a kink for θ̇/n = 3, 7/2, 4, 9/2.
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Figure 4: Magnified version of the ‘kinks’ corresponding to q = −1, 0, 1, 2, 3, as shown in figure 3. The width
of each plot is 2× 10−4 and the vertical range is ±7× 10−4 yr−2.
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Figure 5: Further magnified version of the ‘kink’ around θ̇/n = 3/2, suggesting that the derivative is finite for
all values of θ̇/n.
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Figure 6: The derivative of the tidal angular acceleration with respect to the relative rate of rotation, that is,
n dθ̈TIDE/dθ̇, showing the cusp at θ̇/n = 3/2.

chosen should take this into account.
The detail of this splitting is given in figure 7, in which θ̇/n is plotted horizontally, with type H regions being
shown as continuous lines, type N as dashed lines. The strips are grouped into ten bands, one band covering the
region between two kinks. For instance, Band 0 consists of four type H strips, centred on θ̇/n = 0.1, 0.275, 0.39
and 0.45 and with widths 0.2, 0.15, 0.08 and 0.04 respectively; and one type N strip, where θ̇/n ∈ [0.47, 0.5],
θ̇ = 0.5n being the position of the first kink. The reasoning behind the choice of these values is given in
sections 4.1 and 4.2. The expansion point θe for the series solution is always the centre of the strip, and is
shown by ‘x’ in figure 7.
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Figure 7: The different strips used for H (HEM, solid line) and N (numerical, dashed line) computation.
Numerical values of θ̇/n are shown. A ‘x’ shows the expansion point for a series solution. The width of a
region in terms of θ̇/n over which the series solution is valid, for all θ, to within the error bounds (see text) is
shown below the line. The strips are grouped into bands. In Bands 0 and 9 there are four H strips and one N
strip; in the remaining bands, there are five H, and two N strips.

4.1 Region H: HEM applies

The HEM, which is a fixed timestep implementation of the Frobenius method, can in principle be used to solve
equation (3) in regions of the phase plane, (θ, θ̇), where the functions θ̈TRI and θ̈TIDE are analytic. From its
definition, θ̈TRI(θ, t) is an entire function, so this is no bar to using the HEM. However, θ̈TIDE(θ̇) is C1 in θ̇,
with its second derivative being undefined at θ̇/n = 1/2, 1, 3/2, . . . , 9/2. Hence we approximate θ̈TIDE by its
Taylor series of degree DTID about a point θ̇ = θ̇e, bearing in mind that this will only be good for values of θ̇
far from the kinks. In the work reported here, our error criterion (see below) is satisfied with DTID = 25 for
all strips.
With these provisos, the HEM works well. We briefly review the method here; full details can be found
in [Bartuccelli et al. (2015)].

Let the state vector x(t) =
(

θ(t), θ̇(t)
)

and define ti = ih, i ∈ N0 where h > 0 is a timestep. The ODE allows

us to compute, recursively, derivatives of θ(t) of all orders, far from the kinks. Let the j-th time derivative of
θ(t) be written as θ(j)(t). We then write the degree-Ds series solution to equation (3) as

x(ti) = pi (x(ti−1)) = x(ti−1) +

Ds
∑

j=1

hj

j!
fj (x(ti−1), ti−1) +O

(

hDs+1
)

(5)

where Ds > 1 (Ds = 1 gives the Euler method), and fj(x, t) =
(

θ(j)(t), θ(j+1)(t)
)

. Note that f(x, t) depends
on t as well as x because the ODE is non-autonomous. For the same reason, p depends on i. To satisfy the
error criterion, the following values of Ds are used in the various bands:

Band 0 1 2 3 4 5 6 7 8 9
Ds 16 15 15 14 14 14 15 16 17 17

Equation (5) allows us to advance the solution by a time h. Our immediate objective, however, is to compute
the Poincaré map for the ODE in an efficient way. Let us denote the period in t of θ̈TRI as T0 = 2π/n (which is
one ‘Mercury year’), and put xk = x(kT0). Then the Poincaré map, P, is defined by xk+1 = P(xk). Iteration
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of P many times starting from a given initial condition x0 = (θ(0), θ̇(0)) enables us to generate a sequence of
‘snapshots’ of the state variables as the system evolves, from which we can deduce the attractor in which the
system is eventually captured. For details of capture detection, see below. Using a large number I of initial
conditions, one can then estimate the probability of capture in any of the possible steady-state solutions.
In order to satisfy the error criterion, timestep h needs to be sufficiently small. As with all the parameters
mentioned so far, there is a trade-off between speed and accuracy; a choice of h = T0/M with M = 24 is
a good compromise in practice. Finally, then, the map P can be built up from the functions pi by P(x) =
pM ◦ pM−1 ◦ . . . ◦ p1(x), and this is the HEM.
The expressions for pi are derived by computer algebra and are initially very large, but most of the terms
are negligible and hence can be pruned away. By ‘term’ we mean here a polynomial in θ̇ — these are then
multiplied by powers of sin 2θ, cos 2θ in order to make up pi. In practice, every term whose magnitude is
less than 10−16 at the largest and smallest values of θ̇ within a strip is deleted. The value of 10−16 is chosen
because the usual double precision arithmetic is carried out to around 16 significant figures. The resulting
expression is then converted to Horner form [Press et al. (1992)] for efficient evaluation. Typically, after
pruning has been carried out, the expressions for pi contain 20 – 35 terms and are of the form: θ-component
= θ + r3 + sr5 + cr′5 + scr4 + s2r2, θ̇-component = r′4 + sr6 + cr′6 + scr′′4 + s2r′′′4 + s2cr1 + s3r′1, where rk, r

′

k

etc. are polynomials in θ̇(ti−1) of degree k, and s = sin 2θ, c = cos 2θ.
We now describe the error criterion used. The final version of the code for computing the Poincaré map via the
HEM is compared to a high-accuracy, standard numerical computation of the same thing. The full expression
for θ̈TIDE is used in the accurate numerical computation, not its series approximation. The numerical algorithm
used is the standard Runge-Kutta method as implemented in the computer algebra software Maple, computing
to 25 significant figures and with absolute and relative error tolerances of 10−15. The numerical and HEM
computations of P(x) are then compared, for each of the type H strips, using 250 uniformly distributed random
values of x in each strip. The comparison gives the maximum value of the modulus of the difference between
each component, computed both ways, over the 250 random points. The maximum difference observed over
all strips is assumed to be representative of the overall maximum difference. Its values are about 3 × 10−14,
1.4× 10−13 in the θ- and θ̇-components respectively.

4.2 Region N: numerical method must be used

From figure 7, it can be seen that the HEM can be used for about 89% of θ̇ ∈ [0, 5n], but in the strips
surrounding the kinks, θ ∈ [0, π), θ̇/n ∈ [(q + 2)/2 − 0.03, (q + 2)/2 + 0.03], q ∈ Q TIDE, the type N strips, a
purely numerical method has to be used.
It is possible that the ODE may be stiff here, so we choose two numerical methods and compare
the results. The methods used are: (1) an explicit Runge-Kutta (RK) method due to Dormand and
Price, as described in [Hairer et al. (1993)], and (2) the Adams method/Backward Differentiation Formu-
lae (BDF) [Radhakrishnan and Hindmarsh (1993)], with the ability to switch automatically between them.
The Adams method is an explicit predictor-corrector method, which, along with RK, is suitable for non-stiff
problems, whereas BDF is suitable for stiff problems.
In practice, with the parameters in Table 1, BDF is rarely needed, so the comparison between (1)
and (2) above comes down to comparing the RK and Adams methods. The implementation of Adams
used [Radhakrishnan and Hindmarsh (1993)] is approximately 1.6 times slower than RK for this problem,
but the probabilities obtained from integration starting from the same 3200 random points in Q are in good
agreement — see Table 2 — so, for type N strips, we choose RK, for which we fix both the absolute and
relative error tolerances to be 2 × 10−14. This value is chosen to be comparable with the error entailed by
polynomial interpolation — see below.
The probabilities obtained are not identical, neither should we expect them to be. The long-term fate of a given
trajectory depends very sensitively on the details of its computation, implemented for very long integration
times. What is important in the end is the probabilities obtained, and Table 2 shows these to be robust against
the algorithm used to solve the ODE.
Computation time can be saved by efficient calculation of θ̈TRI and θ̈TIDE. The expression for θ̈TRI can be
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Runge-Kutta Adams

〈θ̇/n〉 Probability, % 95% c.i. 〈θ̇/n〉 Probability, % 95% c.i.
1/2 0.8125 0.3110 1/2 0.8750 0.3227
1 27.44 1.546 1 27.38 1.545
3/2 43.44 1.717 3/2 43.81 1.719
2 22.03 1.436 2 21.91 1.433
5/2 5.063 0.7596 5/2 5.094 0.7618
3 1.094 0.3604 3 0.750 0.2989
7/2 0.031 (0.0612) 7/2 0.094 (0.1060)
4 0.094 (0.1060) 4 0.094 (0.1060)

Table 2: Comparison of probability of capture by the eight attractors with 〈θ̇/n〉 = 1/2, 1, . . . , 4. These were
computed using the Runge-Kutta and the Adams method in N-type strips, with HEM being used elsewhere.
The same 3200 uniformly distributed random initial conditions were used in both cases. Confidence intervals
in brackets are unreliable since there are too few data points in the case of these attractors.

converted into a polynomial of degree 1 in cos 2θ and sin 2θ, and degree 8 in cosnt/2 and sinnt/2. In Horner
form, this polynomial can be evaluated efficiently, using 2 sin/cos evaluations, 16 addition and 36 multiplication
operations.
Evaluation of θ̈TIDE(θ̇) in the obvious way is computationally expensive, since it requires the calculation of
one fractional power per term in equation (N.11b) — nine in all. A more efficient way to evaluate it is:

Case 1: if θ̇ is far from a kink, then use a pre-computed Chebyshev polynomial fit [Press et al. (1992)] to
θ̈TIDE — the function is very smooth here;

Case 2: if θ̇ is close to a kink, compute the contribution to θ̈TIDE from that kink exactly, according to the
appropriate single term in the sum (N.11b), with the effect of the remaining kinks being replaced by a
Chebyshev polynomial fit.

Hence, at most one fractional power is computed per evaluation of θ̈TIDE. In practice, we use a polynomial
only (Case 1 above), of degree 25, unless 2θ̇/n is within ±0.08 of an integer, when Case 2 applies. In Case
2, we use a polynomial of degree 7 to fit the remaining terms. The resulting absolute error is no more than
4 × 10−14. For comparison, the ratio of the CPU time taken to evaluate θ̈TIDE directly, and via polynomial
fitting, is about 5.1.
A comparison of the timings in different circumstances is given in Table 3, for which 1000 random initial
conditions were used. The CPU time taken to iterate P 105 times starting from each of these was measured,
with any data in which the trajectory moved from a type H strip to one of type N, or vice versa, being rejected.

Method Strip Mean time for 105 iterations of P, CPU-sec

Runge-Kutta, slow θ̈TIDE N 61.1

Runge-Kutta, fast θ̈TIDE N 20.5

HEM H 0.313

Table 3: Timings for the computation of 105 iterations of the Poincaré map, P, in various circumstances.
These are: type H or type N strips, and, in type N strips, with or without the fast computation of θ̈TIDE

described in section 4.2. The mean was taken over 895/105 random initial conditions for type H/N strips
respectively.
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4.3 Capture test

We now describe the test used to detect capture of a solution. Figure 8 shows θ̇k = θ̇(kT0) plotted against k
for 0 ≤ k ≤ 7.8 × 106. In this case, the initial condition was x0 = (0, 49) and capture took place after about
7.7× 106 iterations of the Poincaré map, which corresponds to 7.7× 106T0 = 1.85× 106 yr.
There are several ways that capture could be detected. We choose to divide the θ̇k dataset into blocks of
length L and compute the least squares gradient of each block. As can be seen from figure 8, this gradient
will be negative pre-capture, and close to zero post-capture.
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Figure 8: An illustration of capture dynamics: θ̇k, with initial condition x0 = (0, 49) = (0, 1.878n), is plotted
against k, for 0 ≤ k ≤ 7.8 × 106. In this case, capture takes place in a solution with 〈θ̇/n〉 ≈ 3/2. Two
small regions are shown on a magnified scale. On the left, we see the pre-capture dynamics and on the right,
post-capture. The HEM was used for all computations outside the strip 1.47 ≤ θ̇/n ≤ 1.53, marked ‘Type N’.

In detail the test is as follows. Let ȳj be the mean value of θ̇k/n over the j-th block of length L, and let mj

be the least squares gradient of θ̇k plotted against k in block j. Capture is deemed to have taken place when

|2ȳj − [2ȳj]| < εi and |mj | < εm for K successive blocks.

Here, [x] is the nearest integer to x, and the factor of two occurs in the first expression because capture can
take place at integer or half-integer values of θ̇/n. In practice, we choose L = 10, 000, K = 8, εi = 10−3 and
εm = 3× 10−7. The speed of a probability computation depends on the choice of these parameters.
Figure 9 shows a typical plot of mj versus block number j, from j = 0 until capture, which takes place at
j = 770.
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Figure 9: An illustration of the capture test in practice. The least-squares gradient of θ̇k, mj , versus the block
number, j, for the trajectory in figure 8. Blocks are of length 10,000 iterations of the Poincaré map and if
one of the criteria for capture is that |mj | < 3 × 10−8 for eight successive blocks, then this happens in blocks
763–770 inclusive. Hence, capture in this case is detected after 7.7× 106 iterations of the Poincaré map.

5 An illustrative probability of capture computation

To illustrate how the foregoing works in practice, and to show some timings, we now give results of a calculation
of probability of capture for the parameters in Table 1.
As in [Bartuccelli et al. (2015)], we use the CPU-sec as a unit of time, which is defined in terms of the following
sum:

S(m) =

m
∑

i=1

(i+ 1)(i+ 3)

i(i+ 2)(i + 4)(i+ 6)
,

whose evaluation requires 5m multiplications and 6m − 1 additions. We define 1 CPU-sec to be the CPU
time taken to evaluate S(Nc), where Nc = 5.96 × 107, which is the CPU time taken to do this computation
on the computer used to do some of the calculations in this paper. The time taken can vary according to
circumstances, e.g. the loading, the type of processor and so on. Hence, care has to be taken in the codes to
scale the CPU-sec appropriately for the particular hardware used: the computation of S(Nc) is timed after
every successful capture, and the CPU-sec scaling factor is updated on each occasion.
One other point to note is that a computation of probability is trivial to parallelise. The initial conditions in Q
are generated by a pseudo-random number generator, and a different sequence of pseudo-random numbers can
be produced just by changing the seed. Hence, by running N copies of the program on N separate processors
with N different seeds, N times the number of initial conditions can be investigated at the same time.
The CPU time taken to integrate until capture depends strongly on the initial condition, and in particular,
the proportion of the integration that is carried out in type N strips (which is a slow process) as opposed to
type H strips (where it is fast). By considering 57,600 random initial conditions, we find the following:

Mean time to capture: 1156 CPU-sec, with standard deviation 1190 CPU-sec
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Maximum time to capture: 5161 CPU-sec; minimum time to capture: 1.188 CPU-sec.

Total iterations in type N strips: ∼ 1.6× 1011; total iterations in type H strips: ∼ 1.2× 1012.

From the above, we see that overall, about 1.4× 1012 iterations of the Poincaré map were needed to estimate
the probability of capture for 57,600 initial conditions, and that 12% of these were in type N strips, with the
remaining 88% being in type H strips. These values have a sensitive dependence on the capture parameters.
We can now estimate the factor by which our approach speeds up a typical probability of capture computation.
Let Tmix(n) be the CPU time taken to iterate the Poincaré map n times using HEM in type H strips and
the chosen numerical method in type N strips, and let Tnum(n) be the time taken when using the numerical
method everywhere. Then, using the data above and from Table 3, we estimate that

Tmix(n)

Tnum(n)
≈ n(0.12× 20.5 + 0.88× 0.313)10−5

20.5n× 10−5
≈ 2

15
.

Our approach therefore speeds up this computation by a factor of about 7.5.
A histogram of capture times is given in figure 10. Let τ (x0) be the number of CPU-sec required to iterate the
Poincaré map, starting from x0, until the capture criterion of section 4.3 is met. In order to produce Figure 10,
57,600 random values of x0 ∈ Q were generated and τ (x0) was computed for each. This figure is a histogram
of the proportions of the values of τ (x0) that lie in the ranges 0–200, 200–400, . . . , 4800–5000 CPU-sec.
Finally, we give an estimate of the probabilities themselves in Table 4. The 95%-confidence inter-
val [Walpole et al. (1998)] is defined such that the probability of capture in a given attractor A lies in the
interval [p̂ −∆p, p̂+∆p], with 95% confidence. Here, ∆p = 1.96

√

p̂(1 − p̂)/I, in which I = 5.76 × 104 is the
number of initial conditions and p̂ is the proportion of these initial conditions that end up in A. For these
values, in the worst case, which is p̂ = 1/2, ∆p ≈ 0.41%.
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Figure 10: Histogram showing the probability that the computation time for iteration to capture lies in various
ranges. The interpretation is that, for instance, a CPU time of between 0 and 200 CPU-sec is required to
establish the capture of about 16.3% of trajectories (leftmost bar). Four values of CPU-time > 5000 CPU-sec
were excluded from the histogram and so the dataset contains 57 596 points. The modal value of CPU-time
is in the range 200–400 CPU-sec.
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p/q Number Probability, p̂, % 95% c.i.
1/2 349 0.6059 0.063
2 16292 28.285 0.368
3/2 24344 42.264 0.403
4 13252 23.007 0.344
5/2 2775 4.8177 0.175
6 473 0.8212 0.074
7/2 89 0.1545 0.032
8 26 0.0451 0.017
9/2 0 0.0000 0.000

Table 4: Probability of capture by various attractors with 〈θ̇/n〉 = 1/2, 1, . . . , 4; as expected, 9/2 was never
observed. These were computed using the Runge-Kutta method [Hairer et al. (1993)] in N-type strips, with
HEM being used elsewhere. We used 57,600 uniformly distributed random initial conditions in Q = [0, π] ×
[0, 5n].

6 Conclusions

It was not the main purpose of this paper to give results of the computation of probabilities of capture
for various sets of parameters — rather, we wanted to show how this computation, in the case of constant
eccentricity e, can be accelerated. This requires us to solve the ODE (3), and bearing in mind that this is
periodic in time with period T0 = 2π/n, our objective is to compute the Poincaré map, which advances the
state variables x = (θ, θ̇) by a time T0, as fast as possible. This enables us to generate a sequence of values
xk, from which salient information about the dynamics can be deduced.
The dissipation term, θ̈TIDE(θ̇), which is a C1 function of the angular velocity θ̇, and additionally varies rapidly
in the ranges of θ̇ around the so-called ‘kinks’, complicates the computation, and requires the use of a standard
numerical ODE solver for some of the time. We point out ways in which these purely numerical computations
can be carried out efficiently, by streamlining the calculation of the triaxiality and tidal accelerations. However,
in about 88% of the phase plane the high-order Euler method [Bartuccelli et al. (2015)] can be used, and this
speeds up the computation significantly.
The present case should be contrasted with the constant time lag model, in which dissipation is just propor-
tional to θ̇ − ω with ω a constant. In the light of its simplicity, this has been used in many publications, for
instance, [Bartuccelli et al. (2015)] and references therein. In that case, only a single set of integrators pi,
defined in equation (5), was needed to build up the Poincaré map. In other words, there was only one strip,
which was the whole of Q, and the HEM could be used everywhere.
Compare that with the current case using the parameters in Table 1. Here, Q has to be divided into 48 strips
and an integrator set up for each. Setting up the codes for the HEM in each strip, which is done by computer
algebra, itself takes significant time, but the pay-off is an increase in speed by a factor of approximately 65 in
the strips where HEM can be used, compared to using a standard numerical method.
A probability of capture computation requires a capture detection algorithm, and one has been described. It
is based on the fact that after capture, the angular velocity has no underlying decay: a captured solution has
a close to constant mean value of θ̇k = θ̇(kT0) for all k greater than the value at which capture takes place.
Typically, the mean is taken over 104 successive k values.
A test run of our algorithm, in which 57,600 initial conditions were iterated until capture took place, reveals
that the overall speed of computation is faster by a factor of about 7.5 compared to using a standard numerical
algorithm alone.
An important question left unanswered in this paper is ‘What is the nature of the solutions in which cap-
ture takes place?’ The answer turns out to be more complicated than expected: periodic solutions with
mean θ̇/n ≈ −1,−1/2, 1/2, . . . , 4 have been computed (high-accuracy numerics are needed). There is also
numerical evidence for the existence of attracting solutions whose period is not a small integer multiple of T0.
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The dynamics of solutions to equation (3), both pre- and post-capture, will be subject of a future publica-
tion [Bartuccelli et al. (in preparation)].

References

[Bartuccelli et al. (in preparation)] M.V. Bartuccelli, J.H.B. Deane and G. Gentile, Dynamics of the spin orbit
equation of Makarov et al. with constant eccentricity, In preparation, 2016.

[Bartuccelli et al. (2015)] M.V. Bartuccelli, J.H.B. Deane and G. Gentile, The high-order Euler method and
the spin-orbit model: a fast algorithm for solving differential equations with small, smooth nonlin-
earity, Celestial Mechanics and Dynamical Astronomy, vol 121, Issue 3, March 2015, pp 233 – 260.
http://doi 10.1007/s10569-014-9599-7

[Celletti and Chierchia (2008)] A. Celletti, L. Chierchia, Measures of basins of attraction in spin-orbit dynam-
ics, Celestial Mechanics and Dynamical Astronomy, 101, no. 1-2, 159–170 (2008)

[Celletti and Chierchia (2009)] A. Celletti, L. Chierchia, Quasi-periodic attractors in celestial mechanics Arch.
Ration. Mech. Anal. 191, no. 2, 311–345 (2009)

[Correia and Laskar (2004)] A.C.M. Correia, J. Laskar, Mercury’s capture into the 3/2 spin-orbit resonance
as a result of its chaotic dynamics Nature 429, 848–850 (2004)

[Duriez (2007)] L. Duriez Cours de mécanique Céleste classique,
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