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Knowing,
my most esteemed friend Dionysius,

that you are anxious to learn
how to investigate problems in numbers,

I have tried [ . . . ] to set forth to you
the nature and power

subsisting in numbers.

Diophantus - Arithmetica





Abstract

Lang-Vojta conjecture is one of the most celebrated conjec-
tures in Diophantine Geometry. Stated independently by Paul
Vojta in [Voj1] and Serge Lang (see [Lan3]), the conjecture pre-
dicts degeneracy of S-integral points in algebraic varieties of
log-general type for a finite set of places S of a number field κ
containing the infinite ones, provided that the divisor “at in-
finity” is a normal crossing divisor. This deep conjecture and
his analogous formulations are among the main open prob-
lems in Number Theory, Complex Analysis and Arithmetic
Algebraic Geometry.

This thesis contains the work of the author during his Ph.D.
studies at the University of Udine under the supervision of
Prof. Pietro Corvaja (and, partially, during his visit to Brown
University under the supervision of Prof. Dan Abramovich),
and it is centered around the function field version of Lang-
Vojta conjecture for complements of curves in P2, with at most
normal crossing singularities. The main part contains the
proof of two cases of this conjecture, namely the non-split
case for complements of degree four and three components
divisors and the split case for very generic divisors of degree
four with simple normal crossing.

After a detailed review of the main conjecture, to which is
devoted the first part, in the second part we deal with an ex-
tension of previous results of Corvaja and Zannier [CZ5] for
complements of a conic and two lines to the so-called non-



split case. We focus on the situation of an affine threefold
fibered over a curve and we study sections of fibrations in wh-
ich every fiber is isomorphic to the complement of a conic and
two lines in P2. We describe completely the moduli of degree
four and three components divisors in the projective plane;
this permits us to link the problem to the study of solutions to
a certain equation with non constant coefficients in the func-
tion field of the base curve. Then we implement methods re-
lying on S-unit gcd for function fields and height considera-
tions already available for the split case and we adapt them
to our case obtaining algebraic hyperbolicity for sections of
these fibrations.

The third part is dedicated to the case in which the divisor at
infinity has less than three irreducible components. We adopt
a new strategy to tackle this problem based on ideas com-
ing from logarithmic geometry. We begin extending previous
result for the three component case in the language of loga-
rithmic stable maps. Using this extension we reformulate the
problem as vanishing of certain moduli space of minimal sta-
ble maps KΓ(P

2, D) in the sense of [AC]. Finally we use the
properness of the stackKΓ(P

2, D) of minimal logarithmic sta-
ble maps to the Deligne-Faltings pair (P2, D) in order to ob-
tain algebraic hyperbolicity for complements of very generic
quartics D deforming to a conic and two lines in P2. This pro-
vides first examples of Lang-Vojta conjecture for complement
of both irreducible quartics and two conics, although a very
generic hypothesis is needed.
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Introduction

Diophantine Geometry can be described as the study of in-
tegral or rational solutions to polynomial equations with in-
tegral or rational coefficients, the so-called Diophantine Equa-
tions, using geometric tools. In its simpler instance it asks for
a “geometric” solution to the following

Problem (see [Mor2]) Find reasonably simple necessary con-
ditions for the solvability of

f (x1, . . . , xn) = 0

for a polynomial f with coefficients in Q, with (x1, . . . , xn) in
either Zn or Qn.

The term “geometric” stands for depending on the geometric
properties of the complex algebraic variety defined by f , i.e.
the set of complex solutions to the previous equation. More
precisely and more generally, fixed a field κ (which usually is
either a number field, or a function field of an algebraic va-
riety), we can describe Diophantine Geometry as the study
of the set X(κ) for an algebraic variety X over κ. Rephrasing
Serge Lang, who coined the term for this discipline, one can
say that the main goal of Diophantine Geometry is to deter-
mine geometric properties of the quasi-projective variety X
that characterize the set of points X(κ), e.g. that imply that
X(κ) is either non-empty or finite or dense with respect to the
Zariski topology. Here geometric means properties that can be
checked on the algebraic closure of κ.

While the study of Diophantine Equations is one of the oldest
branches of mathematics which can be traced back to Babylo-
nians and Egyptians, Diophantine Geometry is a fairly recent
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subject whose name comes from the seminal first edition of
Lang’s book [Lan3]. From its birth numerous results on the
behavior of sets X(κ) have been achieved, but at the same
time, it seems that a large amount of open problems and con-
jectures are still out of reach.

One of the most intriguing and influential open problems in
this field is to determine whether there exist infinitely many
integral points on algebraic varieties defined over Q, or equiv-
alently infinitely many integral solutions to the system of
equations defining the variety. Since the Siegel Theorem, and
later Falting’s proof of Mordell Conjecture, this task has been
completed for the case of algebraic curves. In particular, it has
been shown that whenever an affine curve has genus greater
than zero it contains only finitely many integral points. For al-
gebraic surfaces the problem turns out to be much more sub-
tle and challenging and, although deep results have recently
been obtained, a complete solution seems to be, at present,
beyond hope. Nevertheless, a number of conjectures have
been stated and serve as both focal points as well as the direc-
tion towards which Diophantine Geometry research is mov-
ing. Among these conjectures, one of the most important, and
the one to which this Thesis is devoted, is the conjecture due
to Paul Vojta [Voj1] and Serge Lang [Lan3] which for number
fields (in the surface case) reads as follows:

Conjecture 1 (Lang-Vojta for number fields). Let X be a
smooth affine surface defined over a number field k. Let X̃ be a
smooth projective variety containing X as an open subset. Let D =
X̃ \ X be the divisor at infinity and K = KX̃ be a canonical divisor
of X̃. Suppose that D is a normal crossing divisor. Then if D + K is
big, for every ring of S-integersOS ⊂ k, the set of S-integral points
X(OS) is not Zariski-dense.

The history of this Conjecture can be traced back to the work
of Vojta in [Voj1], where he formulated several conjectures
on distribution of integral, S-integral, and algebraic points on
projective varieties which «seem to contain virtually all Dio-
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phantine statements that are currently proven or conjectured»
[HS]. Independently Lang proposed a series of conjectures on
the same themes conjecturing a unified description of the so-
called exceptional set on log-general varieties over number and
function fields and its analogous in Complex Analysis (see
[Lan1], [Lan2], [Lan3] and [Lan4]). These two profound vi-
sions of Number Theory (and Complex Analysis) meet to-
gether in the aforementioned Conjecture which we called, as
customary, with both names.

Conjecture 1 extends Bombieri-Lang Conjecture on rational
points on general type varieties and can be regarded as one
of the biggest open problems in Arithmetic Geometry. Unfor-
tunately only some special cases of the Conjecture are known,
and a complete solution at the present seems to be out of
reach. In particular, almost all the results follows from Falt-
ing’s Big Theorem, which proves a famous conjecture by Lang
on the non-density of rational points for irreducible subvari-
eties of abelian varieties which are not a translate of an abelian
subvariety.

A slightly easier problem to tackle is the one obtained by the
previous Conjecture by replacing the number field k with a
function field in one variable κ(C), i.e. the function field of
an algebraic curve C, and the set S by a finite set of points of
C. In this setting, one can try to use geometric tools not avail-
able in the number field case, like the existence of derivatives
and differential forms canonically defined on the curve C, to
obtain stronger and broader results. Moreover, the similar-
ity of this approach with problems related to the distribution
of entire curves in complex analytic manifolds allows one to
borrow ideas and techniques from this related field.

In the last ten years, following a new proof of Siegel’s The-
orem using Schmidt’s Subspace Theorem, Corvaja and Zan-
nier were able to prove several special cases of Lang-Vojta’s
Conjecture in the case in which the divisor at infinity has suf-
ficiently many irreducible components. Among these results,



viii Introduction

when the compactification of the affine surface X is the pro-
jective plane P2, they solve the Conjecture (the so-called split
case) provided that the divisor D has at least three compo-
nents. This seems to be the most general situation in wh-
ich their method can be applied for complements of normal
crossing divisors in P2. In particular this leaves open the
case of log-irregularity strictly lesser than two. Using a differ-
ent strategy, Xi Chen proved that the complement of a very
generic plane curve, with at most normal crossing singulari-
ties, of degree at least 5, verifies Conjecture 1. His result, mov-
ing from different motivations, related to the famous
Kobayashi Conjecture, is based on a very refined deformation
argument which reduces the general situation to the known
case for complements of hyperplanes in general position. Sim-
ilarly as before, it seems that his techniques cannot be brought
further to the complete proof of the Conjecture in the case
X̃ = P2.

The present Thesis focuses on two open problems related to
these results. The first one is a generalization of Corvaja and
Zannier’s result for complements of a conic and two lines in
general position in P2. In particular we considered Conjec-
ture 1 in the non-split case, i.e. when the conic and the lines
are not defined on the base field. This led to consider fibered
threefolds in which every fiber is isomorphic to the comple-
ment of a degree four divisor with three irreducible compo-
nents. In this situation we were able to prove Lang-Vojta Con-
jecture, and explicitly determine a bound for the degree of
affine curves in terms of their Euler Characteristic. Moreover
we calculate the dependency of this bound on the structure
of the threefold, based on a description of the moduli space
of the conic and two lines in P2.

The second problem we deal with in this Thesis is the com-
plete solution of Conjecture 1 (in the split case) for comple-
ments of plane curves in P2. Our approach unifies the afore-
mentioned methods, Corvaja-Zannier and Chen, obtaining
Lang-Vojta Conjecture for complements of very generic quar-
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tics in the projective plane, which in particular completes the
proof for affine varieties of log general type whose compact-
ification is P2, although with a very generic hypothesis wh-
ich is present neither in the original Conjecture, nor in Cor-
vaja and Zannier’s results. We used a deformation argument
which reduces the general case to an extension of Corvaja
and Zannier’s result in the three components case. However,
although the deformation argument is similar to the work
of Chen, our strategy is different, making use of Logarith-
mic Geometry, in particular the Theory of logarithmic stable
maps to Deligne-Faltings pairs, as developed by Chen and
Abramovich-Chen. It turns out that this approach led to a
simpler solution of the problem despite the fact that the refor-
mulation for log-maps is more technical and requires refined
tools.

I.1 What is in this Thesis

Since the problem we deal with lies in the intersection of
Number Theory and Algebraic Geometry, we tried to make
the exposition as self-contained as possible, assuming only
basic knowledge of both fields, at the level of [Hin2] and
[Har]. We hope in this way that both number theorists and
algebraic geometers, can follow the parts that are more arith-
metic in nature, as well as the ones that have more geometric
flavor. We sketch here, for the reader’s convenience, the plan
of the Thesis.

The presentation is divided in three parts which can, a pri-
ori, be read separately. The first part is devoted to a through-
out discussion of the origin and features of Lang-Vojta Con-
jecture. It contains, in particular, most of the background in
Arithmetic Geometry, needed to understand the subsequent
parts. At the same time it describes the motivations and the
history of the Conjecture together with all the results and the
ideas related to this fascinating subject. The second part is fo-
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cused on the non-split case of Conjecture 1 for complements
of degree four and three components divisors. Finally the
Third part concerns the general case of Geometric Lang-Vojta
Conjecture for complements of very generic plane curves of
degree four with at most normal crossing singularities. To-
gether with the main result it contains also an introduction to
Logarithmic Geometry and to the results that we use in our
proof.

We present here a more detailed description of the contents of
each chapter.

The first chapter deals with the number field case, moving
from the one dimensional classification of algebraic varieties
from a Diophantine point of view, and discussing the problem
for surfaces with an analysis of Bombieri-Lang Conjecture.
After this first part the chapter treats the extension due to
Vojta and his conjectures, with some height machinery back-
ground, together with the relationship between previous Con-
jecture and Vojta ones. The last section is devoted to a descrip-
tion of the new method developed by Corvaja and Zannier
from their new proof of Siegel’s Theorem and its applications
to the study of integral points on surfaces.

The second chapter is devoted to the function field case of
main Conjecture. Similarly to the first chapter it contains a
discussion of the one dimensional situation related to the fa-
mous Geometric Mordell Conjecture, which serves as an in-
troduction to function fields arithmetic and to the peculiar
feature of isotriviality. Then the chapter contains a reformu-
lation of Lang-Vojta Conjecture using the theory of integral
models of algebraic varieties, which gives a unified vision of
the two sides of the Conjecture. The last part of the chapter is
devoted to the notion of algebraic hyperbolicity and its rela-
tionship with the main problem of this Thesis.

The third chapter contains a detailed discussion of known re-
sults for complements of sufficiently reducible plane curves.
In particular it describes the cases of complements of four
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lines and of a conic and two lines. For the latter it includes
a sketch of the proof as well as a description of a Theorem on
Greatest Common Divisor for S-units that is used in our ex-
tension of Corvaja and Zannier’s result. It ends with an over-
view of the generalization of previous theorems to ramified
covers of G2

m obtained by the same authors.

The fourth chapter presents the details of our proof of the re-
sult for non-split complements of degree four and three com-
ponents divisors. It starts with a description of the setting, to-
gether with its similarities and differences with respect to the
split case. Then it introduces the study of the moduli space
for the divisors involved together with a suitable representa-
tion that is used in the proof. Finally a detailed proof with all
the computation ends the chapter as well as the second part.

The fifth chapter deals with a comprehensive discussion of
the methods present in literature for studying algebraic hy-
perbolicity of complements of plane curves in the algebraic
geometry setting. In particular it presents the ideas and a
sketch of the proof of Chen’s results enlightening its power
and its limitations.

The sixth chapter is an introduction to Logarithmic Geom-
etry. It contains most of the definitions and the results that
are needed to discuss the theory of logarithmic stable maps.
Although not complete, it hopes to give the reader enough
elements to enjoy the constructions as well as the strength of
the results. The first section contains the basic background
on logarithmic structures, logarithmic schemes and maps, to-
gether with their basic properties. The second section dis-
cusses the notion of logarithmic stable curves and its relation-
ship with the notion of usual stable curves. The last part des-
cribes in detail the theory of logarithmic stable maps, a gener-
alization of Kontsevich construction, focusing in particular on
Chen and Abramovich-Chen theory of log stable maps to DF
pairs, which is the one used in the proof of the main theorem
of the third part.
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The seventh and last chapter contains the proof of algebraic
hyperbolicity for complements of very generic quartics. The
first section is devoted to the proof of an extension of Corvaja
and Zannier result for log-stable maps. Then, using this the-
orem, a reformulation of the problem using the moduli space
of log-stable maps to DF pairs with suitable discrete data is
given. Finally, using the properness of this stack, a deforma-
tion argument is described, showing that the stack is invariant
under flat deformation of the quartic, and applying the afore-
mentioned moduli interpretation, obtaining the result from
the three components case.

I.2 What is not in this Thesis

We end this introduction with a discussion of what has been
left out of this Thesis.

The first thing that we should mention here, that should have
been reserved a place in our presentation, is the complex ana-
lytic analogous of Conjecture 1 and its related open problems,
such as the well-known Green-Griffiths Conjecture. Actually
the problem of degeneracy of integral curves in general type,
or log-general type, manifolds and its relationship with the
problem of distribution of rational, or integral, points is one
of the starting point of Vojta’s analysis. One could say that
the analogies between Nevanlinna Theory and value distribu-
tion Theory and Diophantine Approximation lies at the core
of Vojta’s Conjectures. Even deeper, Vojta built a dictionary
using which he was able to relate results in the complex an-
alytic side with results in the Diophantine side and the other
way round, like Cartan’s Theorem in Nevanlinna Theory and
Roth’s Theorem in Diophantine approximation. This allowed
him to set forth a series of striking conjectures which are only
briefly described in the first Chapter, and only from the Arith-
metic point of view. We refer to [Voj1] and [Voj4] for more
details.
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Similarly all the recent results on Hyperbolicity problems and
in particular on Kobayashi Conjecture are left out from our
dissertation. Since the work of Lang, a deep correlation be-
tween hyperbolicity in the sense of Kobayashi and distribu-
tion of rational and integral points on algebraic varieties has
been observed and studied. This link is even more strong
when one considers Diophantine problems over function
fields because in this case the focus on maps from smooth
projective curve into the variety has a lot of analogies with
the problem of describing holomorphic maps from the com-
plex numbers to the corresponding analytic manifold. This
similarity allows one to try to adapt strategies and ideas com-
ing from Complex Geometry in the function field case. There-
fore a description of powerful techniques, such as Jet spaces
and Jet differentials, and the results obtained with these tools
could have been included. We decided not to include also the
results about the distribution of rational curves in surfaces
and higher dimensional varieties that have in common sev-
eral aspects with the main problem of this Thesis. Among all
the works in this direction we cite [DSW], [SY], [Dem], [McQ],
[NWY], [Rou] and [DMR], which are the most related to the
contents of this Thesis.

Looking at the arithmetic side of the problem considered, we
decided to focus on characteristic 0 arguments, not mention-
ing the problems arising in characteristic p. One of the rea-
sons was that some of the results and the techniques cannot
simply be translated in this new setting. In particular some of
the Conjectures are simply false if merely stated in character-
istic p. As an example there are unirational surfaces of gen-
eral type in positive characteristic which provide counterex-
amples to Bombieri-Lang Conjecture (see [AV]). For similar
reasons, when considering the function field version of Con-
jecture 1 we almost always assume that the base field is alge-
braically closed, although very interesting problems emerge
in the case one drops this assumption.

Finally, with the aim of keeping the exposition as self-contained
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as possible, we tried to limit ourselves with the use of exter-
nal theorems without a brief discussion on their statements.
In the cases where this has been done, we cited references
where the reader can find detailed explanation of the results
used and of their proofs.



I
Lang-Vojta conjecture





1
Lang-Vojta for Number

Fields

Lang-Vojta Conjecture, named after Paul Vojta and Serge Lang,
in its usual formulation reads as follows:

Conjecture 2 (Lang-Vojta). Let X be a quasi projective vari-
ety that can be written as Y \ D for a (smooth) projective variety Y
and an effective divisor D with normal crossing singularities, such
that KY + D is big. Then any set of S-integral points on X is not
Zariski dense.

In this chapter we are going to review the history of this Con-
jecture, starting from his ancestor, namely the analogous re-
sults for algebraic curves, in particular Siegel’s Theorem on
integral points on affine curves and Mordell Conjecture, later
Faltings’ Theorem. Then we will move to the two dimen-
sional case, which is the one we are more interested in in this
thesis: in particular, in the second section, we are going to
review the famous Bombieri-Lang Conjecture as the first at-
tempt to extend Faltings’ Theorem to higher dimension, and
to describe how Lang-Vojta Conjecture extends and general-
izes it. Finally, in the last section we are going to describe new
techniques, originated by the new proof of Siegel’s Theorem
by Corvaja and Zannier in [CZ1], which helped to partially
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answer Lang-Vojta Conjecture in some remarkable cases.

1.1 Integral points on Curves

The geometric classification of algebraic curves has been one
of the greatest mathematical achievements of 19th century.
This classification can be summarized in the following way:
every complete complex curve is birational to a unique non-
singular projective curve. To every curve is associated a dis-
crete birational invariant, its genus. Finally, for a fixed ge-
nus g, isomorphism classes of projective non-singular curves
of genus g form a quasi-projective varietyMg of dimension
max{3g − 3, g}. What can be said from the arithmetic point
of view? Here the problem is evidently far from being as ac-
cessible as the geometric classification. Actually the problem
of describe and characterize the distribution of rational and
integral points, can be considered to be completed only after
Faltings proof of Mordell Conjecture and includes major the-
orems by, among others, Dirichlet, Mordell, Siegel, Weil and
Faltings. Moreover there are still open problems regarding
arithmetic features of algebraic curves.

The difference sketched between the geometric and arithmetic
description of curves becomes more serious for surfaces: here
a birational classification is available (although a complete de-
scription of moduli of general type surfaces is still lacking)
whereas an arithmetic description of quasi-projective surfaces
has barely begun and lies mainly in deep conjectures like
Lang-Vojta’s one.

In this section we are going to review a sort of “arithmetic
classification” of curves through the most important features
of Siegel and Faltings Theorems on the distribution of, respec-
tively, integral points on affine curves and rational points on
projective curves. Our main motivation, together with the
beauty of these results, is to present the basis upon which the
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higher dimensional analogous were formulated as well as to
show the interplay of different techniques which is a common
aspect of Diophantine Geometry.

1.1.1 Siegel’s Theorem

In [Sie] Siegel proved his celebrated Theorem on finiteness of
integral points on affine curves that reads as follows

Theorem 1.1.1 (Siegel 1929,[Sie]). Let C be an affine irre-
ducible curve defined over a number field K and embedded in an
affine space Am. Let C̃ be the completion of its normalization and
g = g(C̃) its (geometric) genus. Let OS denote the ring of S-
integers of K, for a finite set S of places of K containing the archime-
dean ones. Suppose that either g ≥ 1 or g = 0 and C̃ \ C contains
at least three points. Then C(OS) is a finite set in Am(OS).

Remark 1.1.2. Historically, Siegel’s original presentation of the
result was split in two parts: one dealing with the case of ge-
nus zero and three points at infinity and the remaining one
dealing with genus greater or equal than one. Moreover in
Siegel original formulation, the set S was the set containing
only the archimedean places of the number field K. The ex-
tension to number fields is due to Mahler in [Mah] for genus
1. The result has been finally extended to arbitrary finite set of
places by Lang in [Lan1] using an extension of Thue-Siegel-
Roth Theorem by Ridout in [Rid].

We introduce here the notion of Euler Characteristic of an
affine curve which will allow us to reformulate Theorem 1.1.1
in a convenient way that will be useful in the sequel.

Definition 1.1.3. Given an affine irreducible curve C, let C̃ be
the completion of its normalization and let S be the set of points
C̃ \ C. We define the Euler Characteristic of the curve C to be

χ(C) := χS(C̃) = 2g(C̃)− 2 + #S.

Remark 1.1.4. Classically the Euler-Poincaré Characteristic of
a complete smooth curve, viewed as a compact Riemann sur-
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face, is equal to 2− 2g. In particular what we have just de-
fined coincide with the opposite of the topological definition
plus the number of points at infinity. Reasons for our choice
of sign will be given in the subsequent discussion of the no-
tion of algebraic hyperbolicity in 2.2.2.

We can now rephrase Siegel’s Theorem 1.1.1 with the aid of
Euler Characteristic in the following way:

Theorem 1.1.5. Let C = C̃ \ T be an affine irreducible curve
defined over a number field K and embedded in an affine space Am.
LetOS = OSK denote the ring of S-integers of K, for a finite set S of
places of K containing the archimedean ones. If χ(C) = χT(C̃) > 0
then calC(OS) is a finite set in Am(OS).

Sketch of the proof. We will suppose that S is the set of the ar-
chimedean places of K; with a few modification the proof can
be adapted to treat the general case.

1. Suppose we are given an infinite sequence of S-integral
points (xi) in C(OS). There exists a convergent subse-
quence (with respect to an archimedean place) in C̃ with
limit α ∈ C̃. In particular, being C̃(OS) ⊂ C̃(Q), α is al-
gebraic.

2. If the genus is greater than zero we can embed C̃ inside
its jacobian Jac(C): this gives a sequence in the jacobian
(x′i) which is convergent, up to replacing the sequence
by a subsequence. By weak Mordell-Weil Theorem the
images of all the elements of a subsequence in the group
Jac(C)/mJac(C) coincide. Hence we can assume that
x′i = myi + z for some fixed rational point z ∈ Jac(C).

3. Define the map φ : Jac(C) → Jac(C) by φ(x) = mx + z
and put D = φ−1(C). The map is unramified and pull-
backs of integral points are integral points. Hence φ
gives us a sequence yi of integral points that converges
to some β in D, eventually after passing to a subse-
quence.
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4. Next compare the height function on the two curves de-
fined by mean of two pullbacks of the same very am-
ple divisor on the jacobian (see Definition 1.2.12 for de-
tails on Heights). Using functoriality and the properties
of Neron-Tate heights on abelian varieties (in particular
the quadratic behavior with respect to the isogenies on
the jacobian coming from multiplication maps) we find
that the height on C grows like (a constant times) the
height on D to the power of m2/2.

5. To conclude one applies Thue-Siegel-Roth in order to
have a lower bound for the height of the xi’s on one
hand and uses the above described behavior of heights
together with the locally étaleness of the multiplication
by m map, for m large enough, to derive a contradic-
tion. Roughly speaking the distance between points of
the sequences and their limit does not change thanks to
the (local) étalness of the map φ; however Roth’s The-
orem limits the velocity by which the sequence of the
heights h(xi) can converge while, on the other hand,
the same speed on the cover D can be made arbitrar-
ily big increasing m and this gives the contradiction to
the fact that infinitely many integral points can exists on
the curve C.

6. If the genus of the curve is zero, one is led to the case
of P1 minus, at least, three points. The conclusion in
this situation comes from an application of Roth’s The-
orem. Equivalently one can reduce this case to the pre-
vious one in the following way: call Y this affine curve
whose completion has genus 0 and which posses at least
three distinct points at infinity. It can be shown (see for
example Theorem 5.1, ch 5, in [FWG+]) that there ex-
ists a cover Z of degree 3 of Y totally ramified over the
three distinct points in the boundary of Y. Therefore, by
Riemann-Hurwitz, Z is a curve of genus 1. Moreover
one can show that integral points of Y lifts to integral
points of the cover Z. The conclusion then follows from
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the already proven result for curves of positive genus.

Remark 1.1.6. The above proof of Theorems 1.1.1 and 1.1.5
uses Thue-Siegel-Roth Theorem which was unavailable at the
time Siegel formulated its Theorem; the original proof uses a
weaker statement, namely the the Thue-Siegel Theorem.
Moreover the language of jacobians was in some sense hid-
den in Siegel’s work which relies on properties of theta char-
acteristics. A part from these differences both the original and
the modern proof follow the above described steps.

As can be seen by the previous sketch, a number of deep arith-
metic and geometric theories (Heights machinery, Mordell-
Weil and Thue-Siegel-Roth Theorems, the theory of Jacobians)
are used throughout the proof. This is going to be a fil rouge
crossing most of the parts of this Thesis. Another proof of
this Theorem by Corvaja and Zannier in [CZ1] will be given
in subsection 1.3.3 and will play a big role in the second part.

In the next subsection we are going to present Mordell Con-
jecture and Falting’s proof. This result, stating finiteness of
rational points in projective curves of genus greater than one,
implies and strengthen the cases of Siegel’s Theorem for those
curves. Nevertheless, a part from genus zero and genus one
cases, height bounds obtained for integral points may be of
different type with respect to the one given for rational points
coming from Faltings’ Theorem; hence Theorem 1.1.1 remains
of independent interest.

1.1.2 Mordell Conjecture

The history of Mordell Conjecture starts with the article
[Mor1] by Mordell. In this seminal paper, after proving finite
generation for the group of rational points in an elliptic curve
defined over Q, he states one of the most famous problems
in Arithmetic Geometry, which has been proved by Faltings
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only sixty years after the original formulation. The Conjec-
ture, now Faltings’ Theorem, reads as follows

Theorem 1.1.7 (Faltings [Fal1], Mordell Conjecture). Let
K be a number field and let C be a curve of genus greater than one
defined over K. Then C(K) is a finite set.

This statement was highly non-trivial and only some partic-
ular case were known at Mordell’s time. Many mathemati-
cians, although recognizing its power, were not convinced by
the conjectured result. André Weil commented

Nous sommes moins avancés à l’égard de la Con-
jecture de Mordell. Il s’agit là d’une question
qu’un arithmeticien ne peut guère manquer de
se poser; on n’aperçoit d’ailleurs aucun motif
sérieux de parier pour ou contre. [Wei]

We are less advanced in respect of the Mordell
Conjecture. This is a problem that every arith-
metician can hardly not ask himself; neverthe-
less we do see no serious reason to bet for or
against its truth.

In his general audience exposition of Mordell Conjecture and
Falting’s ideas in [Blo], Spencer Bloch wrote «Probably most
mathematicians would have agreed with Weil (certainly I
would have) until [...] a German mathematician, Gerd Falt-
ings, proved the Mordell Conjecture». This is even more re-
vealing taking into account the proof by Grauert [Gra] and
Manin [Man] (although with a gap pointed out and corrected
by Coleman [Col]) of the geometric case; see section 2.1 at
page 30 for further details on the function field case.

Nevertheless in 1983 Faltings presents a proof of Theorem
1.1.7 as a consequence of his proof of Tate Conjecture and Sha-
farevich Conjecture. His argument uses very refined and dif-
ficult tools like Arakelov Theory on moduli spaces, semistable
abelian schemes and p-divisible groups. Vojta in [Voj3] (and
previously for function fields in [Voj2]) gave another proof
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which uses ideas from classical Diophantine approximations
together with technical tools of intersection theory on arith-
metic threefolds developed by Gillet and Soulè. After this
new proof, Faltings in [Fal2] gave another simplification, elim-
inating the use of Riemann-Roch Theorem for arithmetic three-
folds: using his new ideas he was able to extend previous re-
sults and to prove a Conjecture of Lang. Another simplifica-
tion of both Vojta and Faltings’ proofs was given by Bombieri
in [Bom] combining idea from Mumford [Mum] together with
the ones in the aforementioned papers.

A full proof of Theorem 1.1.7 goes beyond the scope of this
chapter, we refer to the following books that contains detailed
and comprehensive discussion of the original proofs, together
with their subsequent simplifications: Bombieri and Gubler
[BG] and Hindry and Silverman [HS] discuss Bombieri’s ap-
proach to Theorem 1.1.7. For an exposition of the ideas of Falt-
ings’ original paper the main source is Faltings and Wüstholz
notes [FWG+]; another exhaustive treatment of the original
proof together with its link to Tate Conjecture and Shafare-
vich Conjecture can be found in Zarhin and Parshin article
[ZP](1).

The main importance of Faltings’ Theorem (together with
Siegel’s Theorem 1.1.1) for the purpose of this Thesis is the
following corollary which completely describes the distribu-
tion of integral and rational points on algebraic curves:

Theorem 1.1.8 (Arithmetic classification of curves). Let C
be a projective, geometrically irreducible and non-singular curve
defined over a number field K. Let OS be the ring of integers of K
for a finite set of places containing the archimedean ones. Then, at
most after a finite extension of K(2), the following holds:

(1)For bibliographic history of this article we refer to the summary in the
article’s arXiv page. We just note that the paper first appeared as an ap-
pendix to the Russian version of Lang’s book Fundamentals of Diophantine
Geometry.

(2)This assumption is made in order to give a unified treatment of the
case of genus zero and one. Indeed, at most after a finite extension, every
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Table 1.1: Arithmetic classification of curves

Genus Rational points Points at infinity Integral points
g = 0 Infinite set ≤ 2 infinite set
g = 0 Infinite set ≥ 3 finite set
g = 1 Fin. generated group = 0 infinite set
g = 1 Fin. generated group ≥ 1 finite set
g ≥ 2 Finite set Arbitrary finite set

Previous Theorem could also be restated using the Euler char-
acteristic as defined in 1.1.3 in the same way done for Siegel’s
Theorem in 1.1.5. The main point of the previous classifica-
tion is the fact that it exhibits a fundamental characteristic
of Diophantine Geometry, namely the fact that, at least in a
qualitative sense, Geometry determines Arithmetic. In particular
for curves the genus of the complex variety associated to the
arithmetic curve determines the behavior of the distribution
of rational points and, together with the number of points at
infinity, of integral points.

1.2 Bombieri-Lang and Lang-Vojta Conjec-
tures

In the previous section we have seen how Siegel’s Theorem
1.1.1 and Faltings’ Theorem 1.1.7 completely describe the dis-
tribution of both integral and rational points on algebraic
curves over number fields. In this section we will describe
how these theorems for curves can, conjecturally, be extended
to surfaces. The idea is that, once a suitable geometric prop-
erty that extends the role of the genus for curves is deter-
mined, analogous behavior of rational points could be estab-
lished. However, as the geometry of surfaces compared to the

algebraic curve possess a rational point.
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geometry of curves is richer and subtler, the arithmetic of dis-
tribution of points in dimension two is far from being easy;
hence an elegant and concise description as given by Theo-
rem 1.1.8 cannot be expected for arithmetic surfaces.

The correspondent statements for surfaces are contained in
the following two conjectures. The first one is due to Bombieri
and Lang: Bombieri addressed the problem of degeneracy of
rational points in varieties of general type in a lecture at the
University of Chicago in 1980, while Lang gave more general
conjectures centered on the relationship between the distri-
bution of rational points with hyperbolicity and Diophantine
approximation (see [Lan6] and [Lan2]). The conjecture reads
as follows:

Conjecture 3 ((Weak) Bombieri-Lang). Let X be a surface
of general type defined over a number field K. Then the set of K-
rational points of X is not Zariski dense.

While the former Conjecture can be seen as a two-dimensional
analogous of Faltings’ Theorem, Conjecture 2, which inspired
the title of this Thesis as well as most of its results, general-
ized and vastly extend Siegel’s Theorem on finiteness of in-
tegral points on curves with positive Euler characteristic. As
mentioned at the beginning of this chapter, this Conjecture is
a reformulation of the (stronger) original Conjecture by Vojta
that uses ideas of Lang and admits the following analogous
statement which emphasizes the link with the Bombieri-Lang
Conjecture:

Conjecture 4 (Lang-Vojta II). Let X be a quasi projective va-
riety of log-general type defined over a number field K and let OS
the ring of S-integers for a finite set of places of K containing the
archimedean ones. Then the set X(OS) is not Zariski dense.

In this section we are going to describe how these two state-
ments generalize the results of the previous section for curves,
and how the geometric properties involved generalize the
ones used in Siegel and Faltings Theorems. We will then de-
scribe in the detail the two conjectures and mention some of
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the known cases.

1.2.1 From Curves to Surfaces

From Theorem 1.1.7 one can see how the geometric proper-
ties encoded by the genus govern the arithmetic of the curve.
Seeking a generalization to higher dimensions, and in par-
ticular to surfaces, one is led to study which geometric fea-
tures of the underlying complex variety determine the dis-
tribution of rational points. The first attempt would be to
study whether rational points on higher dimensional vari-
eties are finite or not. However, parallel to this problem, one
can study a different characterization of the distribution of ra-
tional points: this follows from the fact that, up to a finite ex-
tension of the base field, each rational or elliptic curve (resp.
each affine curve with non positive Euler Characteristic) on
the variety will carry an infinite number of rational (resp. in-
tegral) points. Therefore it is natural to consider a weaker
property rather than finiteness for rational points. As a moti-
vation consider the following

Example 1.2.1 (Corvaja and Zannier, Turchet). Let X̃ be a
smooth cubic surface defined over a number field K and let
H1, H2 be two hyperplane sections such that H1 ∪ H2 consists
of 6 lines. Corvaja and Zannier in [CZ6] proved that the set of
S-integral points on X = X̃ \ (H1 + H2) is not Zariski dense.
Moreover one can prove (see [Tur]) that the only families con-
taining infinite integral points are the 21 remaining lines in X̃.

This example shows how in a complement of two completely
reducible hyperplane sections in a smooth cubic the S-integral
points are "almost finite" in the sense that, removing a finite
number of subvarieties (or a proper subvariety consisting of
the union of those), the S-integral points are finite in the sur-
face. In particular the closure of the set of integral points is
a proper subvariety of the affine surface. Therefore an ex-
tension to higher dimensions of finiteness results for curves
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should look for non-density rather than to finiteness.

As pointed out in the arithmetic classification for curves, we
should allow finitely extension of the number field of defini-
tion of the surface X. This led to the following definition:

Definition 1.2.2 (Potential Density). Given an algebraic va-
riety X defined over a number field K we say that the set of rational
points X(K) is potentially dense if there exists a finite extension
F of K such that the set of F-rational points is Zariski dense in X.

In order to extend Mordell and Faltings ideas to surfaces we
have to look for geometric properties of algebraic surfaces
who could imply that the set of rational points is not poten-
tially dense on the surface. Therefore we need geometric pro-
perties replacing, or better extending, the role played by the
genus in dimension 1. With this goal in mind we recall the
following

Definition 1.2.3 (Kodaira dimension). Let X be a smooth
projective algebraic variety and let KX be one if its canonical divisor.
For each m ≥ 1 such that the pluricanonical linear system |mKX|
is not empty, i.e. such that h0(X,O(mKX)) 6= 0, let

ΦmKX : X → PN

be the associated map. The Kodaira dimension of X is defined to
be the number

κ(X) =

{
−1 if h0(X,O(mKX)) = 0 ∀m
max dim ΦmKX (X) otherwise .

Remark 1.2.4. 1. Some authors define κ(X) = −∞ instead
of −1 in the case in which all the pluricanonical linear
systems are empty. However we prefer the previous no-
tation because is consistent with the analogous defini-
tion of κ as the transcendent degree of the pluricanonical
ring of X minus 1.

2. From the fact that birational morphisms between vari-
eties make their modules of differentials being isomor-
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phic follows that the Kodaira dimension of a smooth
projective variety is a birational invariant.

3. It follows immediately from the definition that, for an
algebraic variety X, −1 ≤ κ(X) ≤ dim(X).

We claim that the Kodaira dimension for curves gives an ana-
logue classification like the genus one. First of all it’s easy
to show that for curves κ = min{1, g− 1} by a case by case
analysis. Let C define a smooth projective curve.

• When the genus of C is zero the canonical divisor is
not effective because has degree deg KC = 2g− 2 < 0.
Hence κ(C) = −1 because all the pluricanonical linear
systems are empty.

• When the genus is one the canonical sheaf coincide with
the structure sheaf OC for which h0(C,OC) = 1 and
h1(C,OC) = 0. Therefore κ(C) = 0.

• When the genus is greater than one the canonical divi-
sor is ample and moreover for every m ≥ 3 the divi-
sor mK is very ample (see for example [HM]) and hence
κ(C) = dim C = 1.

Remark 1.2.5. It should be stressed that the classification of
curves by their Kodaira dimension reflects the complex ana-
lytic description of Riemann Surfaces in terms of curvature:
curves with negative Kodaira dimension, being of genus 0,
are Riemann Surfaces with positive curvature; elliptic curves,
i.e. curves with κ = 0 corresponds to flat Riemann Surfaces
and finally curves with positive Kodaira dimension corres-
ponds to negative curved Riemann Surfaces, in particular to
hyperbolic ones.

From the previous list follows an arithmetic classification of
curves based on their Kodaira dimension. In particular the
following corollary of Faltings’ Theorem 1.1.7 holds:

Corollary 1.2.6. Given a smooth projective curve C defined
over a number field K, the set of rational points C(K) is not po-
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tentially dense if and only if κ(C) = 1 = dim C.

Motivated also by the previous result we recall the follow-
ing terminology that extends the property of having genus
greater than one for curves.

Definition 1.2.7 (General type varieties). Let X be an alge-
braic variety. If κ(X) = dim X then X is said to be of general
type.

For curves it is easy to see that most algebraic curves are of
general type: in fact for almost all genus the curves are of
general type and moreover the dimension of the moduli space
for each genus is strictly increasing. Hence in dimension one
“almost all” curves are of general type.

1.2.2 Bombieri-Lang Conjecture

The idea behind Lang and Bombieri conjectures about distri-
bution of rational points on surfaces is that a rough analogous
of the behavior exhibited by algebraic curves could hold also
for surfaces. First of all we recall the Kodaira classification of
surfaces which reads as follows

Theorem 1.2.8 (Kodaira Classification of Surfaces). Let X
be an algebraic smooth surface and let κ = κ(X) its Kodaira dimen-
sion. Then the following classification holds:

• κ = −1: X is either a Rational or a Ruled surface.

• κ = 0: X belongs to one of the following four classes: Abelian,
hyperelliptic (or bi-elliptic), K3 or Enriques.

• κ = 1: X is an Elliptic Surface.

• κ = 2: by definition X is of General Type.

Recall that there are examples of elliptic surfaces of Kodaira
dimension strictly lesser than one: all Enriques surfaces and
Hyperelliptic surfaces are elliptic. However each surface with
κ = 1 is an elliptic surfaces. A finer classification together
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with a complete description of each family of surfaces not of
general type follows from the Enriques-Kodaira Classification
Theorem for surfaces (not necessarily algebraic).

We are interested in the behavior of the set of rational points
for each family of surfaces listed in Theorem 1.2.8. Let us look
more closer to each item appearing in the list:

• Let us consider the first case: each Rational or Ruled
surface defined over a number field K is covered by ra-
tional curves which, by Theorem 1.1.7 have infinitely
many rational points. Therefore for all the surfaces in
this class the set of K-rational points is potentially dense.

• The case of null Kodaira dimension is more involved: it
is known that rational points are potentially dense for
abelian varieties and for Enriques surfaces [BT1]. There
are several proved results of density of rational points
for some classes of K3 surfaces [BT3] and for Hyperel-
liptic surfaces [BT2]. Conjectures predicts that for each
of these classes the rational points are potentially Zariski
dense.

• For elliptic surfaces of Kodaira dimension one there is
a gap for an arithmetic classification of surfaces based
solely on Kodaira dimension. In fact one can easily con-
struct example of surfaces with κ = 1 that posses ei-
ther a potentially dense set of rational points or a non-
dense one. Consider two fibrations X → C defined over
a number field K having elliptic curves as fibers; sup-
pose that the genus of the base curve C is greater than
one: then from Faltings’ Theorem 1.1.7 X has non (po-
tentially) dense set of rational points. On the other hand
if C = P1 and there exists infinitely many sections over
(a finite extension of) K, K-rational points are potentially
dense in X. In both cases it may happen that X has Ko-
daira dimension equal to one.

• For surface of general type it is expected that the set of
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rational points is not potentially dense: this has been
conjectured independently by Bombieri and Lang (who
conjectured a more detailed description of the set of ra-
tional points and extensions also to higher dimensions).
In particular, from previous discussion on Kodaira di-
mension for curves, it follows that Bombieri-Lang Con-
jecture implies Mordell Conjecture because curves of ge-
nus at least two are of general type.

Evidences for Bombieri-Lang Conjecture comes from the fol-
lowing Conjecture due to Lang and proved by Faltings in
[Fal2] and [Fal3].

Theorem 1.2.9 (Lang Conjecture - Faltings’ Big Theorem).
Let A be an abelian variety over a number field K and let X be a ge-
ometrical irreducible closed subvariety of A which is not a translate
of an abelian subvariety over K. Then X ∩ A(K) is not Zariski
dense in X.

See [Hin1] for a detailed introduction and explanation of this
Conjecture. From the previous Theorem it follows a corollary
which gives several evidences to Bombieri-Lang;

Corollary 1.2.10. If X is a smooth projective variety of general
type defined over a number field contained in an abelian variety,
then the set of rational points of X is not Zariski dense.

Following Noguchi’s proof [Nog] in the function field case
for varieties whose cotangent bundle is ample (which implies
that the variety is of general type) and using Faltings’ Big
Theorem (cfr. Theorem 1.2.9), Moriwaki in [Mor3] obtained
another evidence for Bombieri-Lang Conjecture which reads
as follows:

Theorem 1.2.11 (Moriwaki). Let X be a projective variety
over a number field K. If the sheaf of differentials Ω1

X/K of X over K
is ample and generated by global sections, then the set of K-rational
points of X is finite.

Other evidences for Bombieri-Lang Conjecture comes from
related examples and conjectures for the distribution of ra-
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tional curves in general type surfaces, such as Bogomolov
Theorem on the finiteness of rational and elliptic curves on
general type surfaces with c2

1 > c2 [Bog].

1.2.3 Extensions and Lang-Vojta Conjecture

From the previous discussion we have seen that Conjecture 3
extends Faltings’ Theorem 1.1.7. It is natural to ask whether
a similar extension exists for Siegel’s Theorem 1.1.1. The an-
swer is positive and it is related to Vojta’s ”landmark Ph.D.
Thesis", which gave the basis for a systematic treatment of
analogies between Nevanlinna Theory and Diophantine Ge-
ometry over number fields. Based on this analogy Vojta for-
mulated a set of far-reaching conjectures. For a detailed de-
scription we refer to Vojta’s papers [Voj1] and [Voj4] as well
as chapters in the books [HS] and [BG].

We will now recall the basic definition needed to state the
main Conjecture whose specific reformulation will give Con-
jecture 4.

Definition 1.2.12 (Weil’s Height Machinery). Let X be a
smooth projective algebraic variety defined over a number field K.
There exists a (unique) map

hX,_ : Pic(X)→ { functions X(K)→ R}
well-defined up to bounded functions, i.e. mod O(1), whose image
hX,D for a class D ∈ Pic(X) is called a Weil height associated to
D. The map hX, satisfies:

(a) the map D 7→ hX,D is an homomorphism mod O(1);

(b) if X = Pn and H ∈ Pic(Pn) is the class of some hyperplane in
Pn, then hX,H is the usual logarithmic height in the projec-
tive space;

(c) - Functoriality - for each K-morphism f : X → Y of varieties
and for each D ∈ Pic(Y) the following holds:

hX, f ∗D = hY,D + O(1).
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By abuse of notation we will indicate for a divisor D ∈ Div(X),
the height corresponding to the class O(D) ∈ Pic(X), with
hX,D. The previous definition can be extended to non smooth
varieties (even non irreducible ones) and over any field with
a set of normalized absolute values which satisfy the product
formula, see [Lan6] for further details. From the previous def-
inition one can proof the following properties for the height
machinery:

Proposition 1.2.13 ([HS],[Lan6]). With the above notation,
the function hX, satisfies:

(d) Let D be an effective divisor in X then, up to bounded func-
tions, hX,D ≥ O(1);

(e) - Northcott’s Theorem Let A be an ample divisor in X with
associated height function hX,A then, for every constants C1,
C2 and every extension K′ of K with [K′ : K] ≤ C2, the
following set is finite

{P ∈ X(K′) : hX,A(P) ≤ C1}.

The second ingredient we need to introduce to formally state
Vojta Conjecture is the notion of local height. Morally we
want a function which measure the v-adic distance from a
point to a divisor D and such that a linear combination of
this functions when v runs over the set of places gives a Weil
height for the divisor D. This motivates the following

Definition 1.2.14 (Local Height). Let X be a smooth projec-
tive variety defined over a number field K. Then there exists a map

λ_ : Pic(X)→ { functions ä
v∈MK

X \ suppD(Kv)→ R}

defined up to MK-bounded function, i.e. up to constant maps Ov(1) :
MK → R that are not zero for finitely many v ∈ MK, such that:

(a) λ is additive up to MK bounded functions;
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(b) given a rational function f on X with associated divisor div( f ) =
D. Then

λD,v(P) = v( f (P))

up to Ov(1), for each v ∈ Mk where P ∈ U ⊂ X \ suppD(Kv)
with U affine and max|P|v = 0 for all but finitely many v;

(c) - Functoriality - for each K-morphism g : X → Y of varieties
and for each D ∈ Pic(Y) the following holds:

λg∗D,v = λD,v ◦ g + Ov(1);

(d) if D is an effective divisor then λD,v ≥ Ov(1);

(e) if hD is a Weyl height for D then

hD(P) = ∑
v∈MK

dvλD,v(P) + O(1)

for all P /∈ suppD, with dv = [Kv : Qv]/[K : Q].

For detailed construction and related properties of local
height we refer to [Lan6] and [Ser]. One of the intuition be-
hind the work of Vojta was the fact that local heights are arith-
metic counterparts of proximity functions in Nevanlinna The-
ory: to see this consider a metrized line bundle L with a sec-
tion s and metric |·|v: the function P 7→ log|s(P)|v is a local
height at v. Following Vojta [Voj1] one can introduce arith-
metic proximity and counting functions for algebraic varieties
over number fields in the same spirit.

Definition 1.2.15. Let S be a finite set of places of K, and let
X, D as before. Then the following functions are well defined:

mS,D(P) = ∑
v∈S

dvλD,v(P)

NS,D(P) = ∑
v/∈S

dvλD,v(P).

called the arithmetic proximity function and arithmetic count-
ing function respectively. By definition

hD(P) = NS,D(P) + mS,D(P).
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With this definitions we can now state the main Vojta Conjec-
ture which translates Griffiths’ conjectural Second Main
Theorem in Nevanlinna Theory.

Conjecture 5 (Vojta). Let X be a smooth irreducible projective
variety defined over a number field K and let S be a finite set of
places of K. Let D be a normal crossing divisor, A an ample divisor
and KX a canonical divisor on X. Then for every ε > 0 there exists
a proper closed subset Z such that, for all P ∈ X(K) \ Z,

mS,D(P) + hKX (P) ≤ εhA(P) + O(1). (1.1)

We end this section by two easy propositions which show
how the above stated conjectured implies Bombieri-Lang Con-
jecture and Lang-Vojta Conjecture. We recall that one of the
equivalent definition of bigness for divisor is the following: a
big divisor D has a positive multiple that can be written as the
sum of an ample divisor B and an effective divisor E. In the
following proofs we will always assume that this multiple is
the divisor itself for simplifying the notation: this can be done
without loss of generality.

Proposition 1.2.16. Vojta Conjecture 5 implies Bombieri-Lang
Conjecture 3.

Proof. If X is of general type then KX is big, i.e. there exists a
positive integer n such that nKX = B + E with B ample and E
effective, and we will assume n = 1. Now Conjecture 5 with
D = 0 and A = B gives

(1− ε)hB(P) + hE(P) ≤ O(1).

By Proposition 1.2.13 hE(P) ≥ 0 and hence, by Northcott’s
Theorem 1.2.13(e), the set X(K) is not Zariski-dense in X.

In order to prove that Vojta Conjecture is stronger than Lang-
Vojta Conjecture we need the following reformulation of the
property of being S-integral in terms of the functions defined
in 1.2.15: a point P is S-integral if NS,D(P) = O(1) and in par-
ticular mS,D(P) = hD(P) +O(1). We also recall the following:
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Definition 1.2.17. Let X be a smooth projective variety and
D a normal crossing divisor on X. X is said to be of logarithmic
general type, or log-general type, if KX + D is big for a canonical
divisor KX of X.

Using this characterization of bigness cited before we can prove
the following

Proposition 1.2.18. Vojta Conjecture 5 implies Lang-Vojta
Conjecture 4.

Proof. For a log-general-type variety (X, D) one has

KX + D = B + E,

for B ample and E effective. Hence Vojta Conjecture with A =
B gives for S-integral points

(1− ε)hB(P) + hE(P) ≤ O(1).

Thus, using Northcott’s Theorem, the set of S-integral points
of (X, D) is not Zariski dense.

1.3 New techniques from Schmidt’s Subspace

In this last section of the chapter we are going to describe
Schmidt’s Subspace Theorem which vastly generalized Roth’s
Theorem. The importance of Schmidt’s results in this context
relies in a new proof of Siegel’s Theorem 1.1.1 due to Corvaja
and Zannier in [CZ1] and its implication to the study or in-
tegral points on surfaces. At the same time we will see how
Schmidt’s Theorem implies a particular case of Vojta Conjec-
ture 5 for the complement in the projective space of a finite
union of hyperplanes in general position.
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1.3.1 Schmidt’s Subspace Theorem

Wolfgang Schmidt’s Theorem dealt with systems of inequali-
ties in linear forms over Q with respect to one place. Schlick-
ewei [Sch2] and Evertse [Eve] extended the results to arbi-
trary set of places on a number field with better estimates of
the quantities involved obtaining quantitative version of the
Theorem. A stronger formulation was given in [Voj1] by Vo-
jta. For our purposes we present the following version basi-
cally due to Schlickewei in [Sch1]:

Theorem 1.3.1 (Schmidt’s Subspace Theorem). Let K be a
number field, S a finite set of places, ε < 0. For every v ∈ S let
L0v, . . . , Lmvv be independent linear forms (in general position) in
X1, . . . , Xn with coefficients in (an algebraic extension of) K. Then
the set of projective solutions x ∈ Pn

K(K) of

∏
v∈S

mv

∏
i=0

|Liv(x)|v
|x|v

< H(x)−n−1−ε

is contained in the union T1 ∪ · · · ∪ Th for finitely many hyper-
planes T1, . . . , Th in Pn

K. Here H(·) is the multiplicative projective
height H(x1 : · · · : xd) = ∏v max(|x1|v, . . . , |xd|v).
Remark 1.3.2. It can easily be seen that Theorem 1.3.1 extends
Roth’s Theorem: it is sufficient to consider the case for the
infinite place ∞ of Q in which m∞ = n = 2, L1(x, y) = x− αy,
and L2(x, y) = y.

Theorem 1.3.1 has several application in Diophantine approx-
imation of algebraic numbers which cannot fit in this short
analysis of its statement; we refer the reader to detailed de-
scription in [BG] and [Bil].

1.3.2 Lang-Vojta for many components

Schmidt’s subspace Theorem can be used to prove Vojta Con-
jecture 5 for the complement of hyperplanes in general posi-
tion in the projective space.
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Theorem 1.3.3. Conjecture 5 holds in Pn for D equal to the
sum H1 + · · · + Hm where Hi is an hyperplane and {Hi} are in
general position.

Proof. Without loss of generality we can assume that each hy-
perplane is defined over the number field K, at most enlarging
K and considering a base change. Now the local height for Pn

with respect to the hyperplane Li is

− log
|Li(x)|v
|x|v

,

where |x|v := maxj|xj|v. Therefore the proximity function for
D can be written as

mS,D(x) = −∑
v∈S

∑
i

log
( |Li(x)|v
|x|v

)
+ O(1).

On the other hand KPn = OPn(−n− 1) and hence

hKPn = −(n + 1)h + O(1).

Vojta Conjecture then has the following form:

−∑
v∈S

∑
i

log
( |Li(x)|v
|x|v

)
− (n + 1)h(x) ≤ εh(x) + O(1),

which is equivalent to (the logarithmic version of) Schmidt’s
Subspace Theorem.

In particular, as we are mostly interested in application to two
dimensional varieties, an easy corollary is the following:

Corollary 1.3.4. Given 4 lines D1, . . . , D4 in P2
K defined over

a number field K and S a finite set of places containing the ar-
chimedean ones, the set of S-integral points on the complement of
D1 + · · ·+ D4 is not Zariski dense.

Notice that the divisor formed by four lines in general posi-
tion, makes the complement P2 \ D where D = D1 + . . . D4
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a variety of log-general type, because KP2 + D ∼ OP2(1) is
an ample divisor. In particular Lang-Vojta Conjecture 4 holds
for the complement of at least n + 2 hyperplanes in general
position in Pn.

1.3.3 A new proof of Siegel’s Theorem

In [CZ1] Corvaja and Zannier gave another proof of Theo-
rem 1.1.1 avoiding the embedding in the jacobian and replac-
ing the use of Roth’s Theorem in the original proof with the
stronger Subspace Theorem (cfr. Theorem 1.3.1). The im-
portance of this new reformulation, aside from simplifying
Siegel’s argument, relies on extension to higher dimension
which will be crucial in next parts of this Thesis.

Let us briefly summarize the ideas behind Corvaja and Zan-
nier work. The statement we are going to recall is slightly
weaker than Theorem 1.1.1 nevertheless a covering argument
gives the full conclusion of Siegel’s Theorem as a corollary of
the following

Theorem 1.3.5 (Siegel, Corvaja and Zannier). Let C̃ be an
irreducible projective smooth curve defined over a number field K
and let C be a non-empty affine subset of C̃ embedded in an affine
space Am. Assume that #(C̃ \ C) ≥ 3, then for a finite set of places
S containing the infinite ones, the set C(OS) is finite.

We briefly sketch the proof of this Theorem in order to de-
scribe the main ideas.

Sketch of the proof. Let D be the divisor in C̃ whose irreducible
components are the points at infinity C̃ \ C and suppose that
D is supported on r points. For n� 0 one has

h0(C̃, nD) = nr + O(1) =: l.

Let φ1, . . . , φl be a basis for O(D): we can assume that for
each S-integral point P, φj(P) ∈ OS. This follows from the
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fact that, up to multiplication by a non-zero constant, each φj
is integral overOS[x1, . . . , xn], where x1, . . . , xn are coordinate
functions on C. Assume now that there exist infinitely many
distinct integral points {Pi}. Up to passing to a subsequence,
we may assume that for each v ∈ S, the Pi converge v-adically
to a point Qv ∈ C̃(Kv).

Estimate for |φj(Pi)| are the following:

‖Φ(Pi)‖ �
{
|tv(Pi)|−n

v , if Qv ∈ C̃ \ C
1, otherwise

where Φ = (φ1, . . . , φl) and tv is the local parameter at Qv.
Taking into account the fact that φj(Pi) are S-integers, and
putting S′ = {v ∈ MK : Qv ∈ C̃ \ C} one obtains that

H(Φ(Pi)) = ∏
v∈S
‖Φ(Pi)‖ � ∏

V∈S′
|tv(Pi)|−n

v .

The idea is now to consider elements z of O(nD) with spe-
cified vanishing order at Qv: for this functions |z(Pi)|v be-
comes “small” as Pi approaches Qv. Now the vector space
of z ∈ O(nD) with prescribed order k of zero at Qv can be
choose to have positive dimension for specific values of k. Ev-
ery z can moreover be written as a linear form in terms of the
φi. Choosing appropriately vector spaces varying k gives rise
to linear independent linear forms in the φi which verify an
equations as in Schmidt’s Subspace Theorem. Then the affine
version of Theorem 1.3.1 can be applied and one finds out that
only finitely many among the Pi are distinct which contradicts
the original assumption.

This new proof of Siegel’s Theorem has the advantage to be
suitable for higher dimensional extension. In particular the
same authors obtained a number of strong results on degen-
eracy of integral points on surfaces by means of this new strat-
egy. Among these results we cite the following which extends
Theorem 1.3.3 to more general situations.
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Theorem 1.3.6 ([CZ4]). Let X be a geometrically irreducible
nonsingular projective surface defined over a number field K and let
D1, . . . , D4 be irreducible effective divisors such that

1. No three of them shares a common point;

2. For all i 6= j, suppDi ∩ suppDj 6= ∅;

3. For all i 6= j, Di ∼num
mDj for a certain m = mi,j ∈ Z.

Then no set of S-integral points in X \ D is Zariski dense.

Remark 1.3.7. • Clearly for X = P2 all the hypotheses of
the Theorem are verified for the divisor D consisting of
four lines in general position and hence the Theorem
implies Corollary 1.3.4. In particular each Di = Li is
effective (even ample in this case), the general position
hypothesis implies condition 1 and 2, while condition
3 follows from the fact that, being PicP2 of rank 1, all
classes of lines are linearly equivalent.

• The proof of the previous Theorem relies on a general-
ization of the ideas of Theorem 1.3.5 where a suitable
choice of a linear system of multiples of the irreducible
components Di replaces the linear spaces of rational
functions with prescribed order of zeros at limit points.

A more general theorem can be found in [CZ2] and, with
some modification and extension, in [CZ4]. It also worth men-
tioning a Corollary obtained by Levin in [Lev] where he was
able to drop the third hypothesis on the Di provided that Di
is ample for every i.



2
Function Fields

Function fields in one variable and Number fields share sev-
eral properties. This deep analogy was observed from the
second half of the 19th century; one of the first systematic
treatment can be found in the famous paper by Dedekind and
Weber [DW]. Further descriptions, due to Kronecker, Weil
and van der Waerden, settled this profound connection wh-
ich finally became formally completed with the scheme the-
ory developed by Grothendieck. In this chapter we are going
to discuss how this analogy can be carried over Diophantine
problems. In the first section we describe the analogous of
Mordell Conjecture over function fields, which later became
Manin’s (although with a gap) and, independently, Grauert’s
Theorem in [Man] and [Gra] respectively. This serves both
as an introduction to arithmetic over function field and as a
starting point for the generalization to higher dimension that
led to the formulation of Lang-Vojta Conjecture over function
fields. After recalling the notion of model which permits to
give a unified definition for rational and integral points for
varieties defined both over number fields and over function
fields, in the last section we formulate Lang-Vojta Conjecture
for function fields, both in the split and the non split case, and
we connect it with the notion of algebraic hyperbolicity.



30 2. Function Fields

2.1 Geometric Mordell

In [Lan1] Serge Lang stated the following conjecture, which
has become known as Geometric Mordell Conjecture over C:

Conjecture 6 (Geometric Mordell). Let C be a curve of genus
greater than 1 defined over a (complex) function field K of an alge-
braic regular curve B, viewed as fibered surface π : C → B. If the
generic fiber Ct has infinitely many rational points in K then there
exists a covering B′ → B such that the base change C ×K K′, where
K′ is the function field of B′, is isomorphic over K′ to C0 ×C K′ for
a curve C0 defined over C. Moreover all but a finite number of these
sections arise from constant points of the fixed curve.

This Conjecture is obtained from Mordell Conjecture 1.1.7 re-
placing the number field with the a function field (in one vari-
able). However a bare translation could not work as we are
going to see in subsection2.1.2 and the isotriviality question
should be addressed. In order to properly describe the fea-
tures of the previous Conjecture as well as the ideas behind
its proof by Grauert [Gra] we need first a precise extension of
arithmetic notions over number fields into the framework of
function field arithmetic.

2.1.1 Function fields and Number fields

As pointed out in the preface to this chapter function fields in
one variable behave very similarly to number fields. We start
this analogy with the following

Definition 2.1.1 (Function Field). A Function Field K over
an algebraically closed field k is a finitely generated field extension of
finite transcendence degree over k. A function field in one variable,
or equivalently a function field of an algebraic curve, is a function
field with transcendence degree equal to one, i.e. a field K/k for
which it exists an element x, transcendental over k, such that K is a
finite extension of k(x).
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Remark 2.1.2. With the language of schemes the function field
of a curve X, or more general of every integral scheme over
an algebraic closed field, can be recovered form the structure
sheaf OX in the following way: given any affine open sub-
set of X the function field of X is the fraction field of OX(V).
Moreover, if η is the (unique) generic point of X, the function
field of X is also isomorphic to the stalk OX,η .

The analogy between number fields and function fields of
curves, also known as algebraic function fields in one vari-
able, comes from the fact that one-dimensional affine integral
regular schemes are either smooth affine curves over a field
k or open subset of the spectrum of the ring of integers of
a number field. Formally, given a number field k with ring
of integers O the scheme SpecO is one dimensional affine
and integral. From this analogy, that was already present be-
fore the introduction of Grothendieck schemes’ theory, sev-
eral classical properties of number fields find an analogue in
the theory of function field. In particular the theory of the
heights can be defined over function fields.

Definition 2.1.3. Given a function field K in one variable of a
non singular curve C, each (geometric) point P ∈ C determines a
non trivial absolute value by

| f |P := e−ordP( f ).

Moreover if Q 6= P then the absolute values |·|Q and |·|P are not
equivalent.

Remark 2.1.4. • The definition could have been given
more generally for function fields of algebraic varieties
regular in codimension one (or rather for regular mo-
dels of higher dimensional function fields), replacing
the point P with prime divisors. Extensions exist also
for function fields over non-algebraically closed fields
in which one should replace points with orbits under
the absolute Galois group.

• From the fact that any rational function f on a projec-
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tive curve has an associated divisor of degree zero, it
follows that the set of absolute values satisfy the prod-
uct formula.

Given the set of absolute values MK for a function field in
one variable K, normalized in such a way that they satisfy the
product formula, heights can be defined for K in the following
way:

Definition 2.1.5. Let K = K(C) be as before. For any f ∈ K
the height of f is

h( f ) = − ∑
P∈C

min{0, ordP( f )} = ∑
P∈C

max{0, ordP( f )}.

In the same way for a point g ∈ Pn(K), g = ( f0 : · · · : fn), its
height is defined as

h(g) = − ∑
P∈C

min
i
{ordP( fi)}.

From the definition it follows that a rational function on a reg-
ular curve has no poles if and only if its height is zero if and
only if it is constant on the curve.

We end this subsection with a table illustrating the interplay
and the similarity between number fields and function fields.
We stress in particular how each geometric object in the right
column, in particular dominant maps and pullbacks, are anal-
ogous of purely arithmetic notions like extensions of fields
and extensions of ideals. This analogy can be brought further
using Arakelov Theory and extending the notion of divisors
to number fields by suitably compactifying the affine curve
SpecOS; in this framework an intersection theory can be de-
fined for such compactified divisors sharing many analogous
properties of intersection theory in the geometric side. We
refer to [Lan5] for further details on this subject.
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Table 2.1: Number Fields and Function Fields analogy

Number Field Function Field
Z k[x]
Q k(x)
Qp k((x))

K finite extension of Q K function field of C
place geometric point

finite set of places finite set of points
ring of S-integers ring of regular functions

SpecOK,S Affine curve C \ S
product formula deg principal divisor = 0

extension of number fields dominant maps
extension of ideals pullback of divisors

2.1.2 Mordell Conjecture for function fields

Given the fact that many similarity between number and func-
tion fields exist, it is natural to ask if theorems and conjectures
about arithmetic (in a broader sense) still hold when replac-
ing the occurrences of "number field" with "function field in
one variable" with proper modification according to Table 2.1.
Thus it seems reasonable to ask this question for Mordell Con-
jecture, as done by Lang. However, as the following example
shows, we cannot expect Faltings’ Theorem 1.1.7 to hold with-
out a careful analysis of the new situation.

Example 2.1.6. Let C be a curve of genus greater than one de-
fined over C and consider the trivial family C ×P1 → P1. The
family can be viewed as the curve C (trivially) defined over
the function field K(t) of P1. All the fibers of the family, being
isomorphic to C have genus greater than one. Now Mordell
Conjecture over function fields, without any other restriction,
should imply that the set of C(t)-rational points of C, i.e. sec-
tion P1 → C × P1, are finite. However this is easily seen to
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be false by considering constant sections P1 → {P} ×P1 for
each point P ∈ C. In particular the general type curve C de-
fined over C(t) has infinitely many C(t)-rational points.

From the previous example one could guess that the problem
relied on the fact that the family was a product and the curve
C was actually defined over the base field C rather than on
the function field C(t), i.e. the family was trivial. However,
as the following example shows, things can go wrong even
for non trivial families.

Example 2.1.7 (Gasbarri [Gas]). Consider the curve C := (x +
ty)4 + y4 defined over C(t). It has an associated fibration
C → P1 whose generic fiber Ct0 = (x + t0y)4 + y4 is a smooth
projective curve of genus 3. Again if we consider the same
statement of 1.1.7 only replacing the number field with the
function field C(t) we would expect that the number of C(t)-
rational points of C to be finite. However we claim that
C(C(t)) is infinite; to see this consider the equation α4 + β4 =
1 over C2: it has infinitely many solutions. Each solution
gives a C-point of Ct0 , namely (α− t0β, β) proving the claim.
Moreover the family is not trivial in the sense of the previous
example, i.e. C is not defined over C. Notice however that
each fiber of the family is isomorphic to the curve x4 + y4 = 1
via x + ty 7→ x and y 7→ y.

Motivated by the previous examples we give the following:

Definition 2.1.8. Given a family of irreducible, smooth projec-
tive curves C → B over a smooth base B, we say that the family
is isotrivial if all the fibers Cb are isomorphic to a fixed curve C0.
With abuse of notation we will say that a curve C defined over a
function field K is isotrivial if the corresponding fibration C → B
is isotrivial, where B is a curve with function field K.

Isotriviality extends the notion of (birational) triviality for
family of curves, i.e. a product of curves fibered over one
of the factors is immediately isotrivial. At the same time this
notion encompass many other families that are not products,
like the one defined in the previous example. However, after
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a cover of the base of the family, each isotrivial family be-
comes trivial; in particular the following easy lemma holds:

Lemma 2.1.9. Given a isotrivial family C → B of smooth pro-
jective irreducible curves, there exists a cover B′ → B such that
the base changed family C ×B B′ → B′ with fibration given by sec-
ond projection, is a trivial family, i.e. is isomorphic to a product
C ×C B0.

The Lemma implies that rational points for curves defined
over function fields will always be not finite for isotrivial
curves, at most after a base change. The analogous of Mordell
Conjecture for function fields thus asks whether this holds
only for this class of curves. We can then restate Conjecture 6
in the following way:

Conjecture 7. Let C be a smooth projective curve defined over
a function field K of genus greater than 1. If C(K) is infinite then C
is isotrivial.

The Conjecture has been proved in the sixties by Manin [Man]
(although with a gap fixed by Coleman [Col]) using analytic
arguments and later by Grauert [Gra] using algebraic meth-
ods. Samuel in [Sam1] gave a proof in characteristic p using
ideas of Grauert. A detailed explanation of Grauert methods
can be found in Samuel’s survey [Sam2]. In Mazur’s detailed
discussion of Faltings’ proof of Mordell Conjecture [Maz] he
stress the role of Arakelov [Ara] and Zahrin [Zar] results wh-
ich imply new proofs of Geometric Mordell, i.e. Mordell Con-
jecture over function fields, using ideas of Parshin: this gives,
if necessary, even more importance to the geometric case.

One of the ideas of Grauert’s proof which is central in some
of the higher dimensional extensions is the following: sup-
pose C is a curve defined over a function field K of a curve
B, corresponding to a fibration π : X → B. Then one can
prove that almost all sections of the fibration, which corre-
spond to rational points, verify a first order differential equa-
tion, i.e. almost all sections are tangent to a given horizontal
vector field. Formally each section σ : B → X can be lifted to
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the projective bundle B → P(Ω1
X) = Proj(Sym(Ω1

X)) via the
surjective map σ∗Ω1

X → Ω1
B . Grauert proves (in a different

language) that there exists a section φ of a suitable line bun-
dle over P(Ω1) whose zero section contains all but finitely
many images of sections. He then concludes that if infinitely
many sections exist, given the fact that they satisfy the dif-
ferential equation given by φ = 0, a splitting is provided for
the relative tangent sequence which implies that the family is
isotrivial (via the vanishing of the Kodaira-Spencer class).

In particular Grauert’s construction gives first insights for the
theory of Jet spaces which plays a role in some degeneracy
result for complex analytic analogues. In this direction re-
cent analogue of Conjecture 7 in higher dimension have been
proved by Mourougane [Mou] for very general hypersurfaces
in the projective space of high enough degree using proper
extension of the ideas briefly described above.

2.2 Geometric Lang-Vojta

The previous discussion about similarity between number
fields and function fields can be brought further encompass-
ing the notion of integral points. Moreover, another formu-
lation of Vojta-Lang Conjecture can be given from a scheme-
theoretic point of view via the notion of model. In particular,
using insights coming from Conjecture 6 we can restate Lang-
Vojta Conjecture for number field case and its natural exten-
sions to function fields in a unified way as follows.

2.2.1 Integral models and Lang-Vojta Conjecture

Let K be a number field, let OK denote the ring of integers of
K and let OS denote the ring of S-integers for a finite set of
places S containing the infinite ones. We give the following
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Definition 2.2.1. Let X be a smooth projective variety defined
over the number field K. A (integral) model for X is a projective
variety X together with a flat morphism X → SpecOK such that

X ' Spec K×SpecOK X .

Informally we can think X as a fibration over SpecOK whose cen-
tral fiber over Spec K is (isomorphic to) X.

The definition of model can be generalized to deal with affine
varieties in a standard way. Moreover, if K is the function field
of a smooth integral projective curve C, one can define a model
for the variety X over K = k(C) replacing SpecOK with C. In
this way one can also see better the fibration interpretation
given before.

We are interested in describing rational and integral points for
varieties defined either over number fields or function fields.
For rational points, i.e. points of X(K), the following fact
holds: let X be as before and fix an integral model X → B
with B = SpecOK for number fields, and B = C for function
fields, then

Rational Points X(K)
correspond bijectively

to
sections π : B→ X

A similar description holds for integral points. Let X̃ be a
smooth projective variety and D ∈ Div(X̃ ) a divisor with
normal crossing singularities both defined over the number
field K; choose a model X̃ ,D for X̃ and D over OS: in the
same way that rational points correspond to sections

πx : Spec (OS)→ X ,

S-integral points (or rather D, S-integral points) correspond to
sections such that πx does not intersect D over points
v ∈ Spec (OS) \ S, or equivalently such that π∗D is supported
over S. As before one can replace the number field K with
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a function field of a smooth integral projective curve C and
Spec (OS) with C \ S for a finite set of points in C. Thus we
can reformulate this, denoting by B either Spec (OS) or C \ S,
saying that

(S,D)-integral points
corresponds bijectively to

sections π : B→ X such that
supp(π∗D) ⊂ S.

Note that when the field K is replaced by a function field of
a curve K = k(C̃) (assume that the characteristic of the base
field k is zero, although this is not necessary for the statement
of the Conjecture) a structure projection π : X̃ → C̃ is natu-
rally given by the model, where the generic fiber Xt will be
isomorphic to X = X̃ \ D. Nevertheless, as in Section 2.1,
a distinction should be made in order to deal with trivial or
isotrivial families. We gave the following definition for the
two dimensional case:

Definition 2.2.2. Let X be an affine surface embedded in an
algebraic projective smooth variety X̃ as X ∼= X̃ \ D for a normal
crossing divisor D, where X, X̃ and D are defined over a function
field K = k(C̃) corresponding to an affine fibration X → C. The
fibration X → C is called split if X ∼= Xk⊗kC over k, i.e. the
fibration is trivial. In particular we call X split if the affine variety
X is defined over k.

Remark 2.2.3. One may argue that the previous definition de-
fines birational trivial affine fibration which is certainly true
but we will see that a major role will be played by these fi-
brations in the sequel. In particular in the next section we are
going to define a different version of Conjecture 2 for function
fields in which the main property will be independent by base
change of the original variety. In particular this would imply
that each isotrivial variety could be consider as birationally
trivial and hence “split".

For a good introduction to the theory of models over function



2.2. Geometric Lang-Vojta 39

fields and isotriviality problem see [Gas] sections 1 to 3.

The original formulation of Conjecture 2 for function fields
reads as follows:

Conjecture 8. Let X be an affine algebraic surface defined over
a function field K = k(C̃) for a smooth projective curve C̃ and such
that the generic point Xt is of log-general type. If there exist sections
of the structure projection π : X → C̃ of arbitrarily large height
and such that the union of their images is dense then X is isotrivial.

Notice the strong analogy with the previous statement and
Conjecture 7: in particular the case in which the X has di-
mension one, the divisor is empty, i.e. X is of general type
or equivalently of genus greater than one, is precisely Geo-
metric Mordell. Therefore some evidences for Conjecture 8
comes for the proofs of Geometric Mordell as discussed in
subsection 2.1.2. Moreover, by the previous unified descrip-
tion of rational and integral points over both number fields
and function fields, one can see how morphisms C̃ → X will
play an important role in the treatment of the previous Con-
jecture.

2.2.2 Algebraic Hyperbolicity

Conjecture 8 will not be the focus of the following parts of this
Thesis but rather another related formulation slightly weaker
that comes from the following observation made in the holo-
morphic curves setting. Recall that a complex compact mani-
fold is said to be (Brody) hyperbolic if every holomorphic map
from C to the manifold is constant; in the compact case Brody
hyperbolicity is equivalent to Kobayashi hyperbolicity, equiv-
alence following from Brody’s Lemma (see for details [Bro]).
In particular, for algebraic manifolds, hyperbolicity would
imply that all holomorphic maps from abelian varieties must
be constant. Kobayashi [Kob] and Lang [Lan4] made conjec-
tures about the relationship between hyperbolicity and alge-
braic properties of the manifolds and whether such properties
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would imply, or being equivalent to, hyperbolicity. One con-
sequence of hyperbolicity for compact manifolds is the fol-
lowing:

Theorem 2.2.4 (Demailly [Dem]). Let X be a projective com-
plex variety immersed in some projective space for a choice of a very
ample line bundle. Then if the associated manifold is hyperbolic the
following holds: there exists a constant A > 0 such that each irre-
ducible curve C ⊂ X satisfies

deg C ≤ A(2g(C̃)− 2) = Aχ(C̃),

where C̃ is the normalization of C.

Following this Theorem, Demailly introduced the following
notion which will be one of the focuses of this Thesis:

Definition 2.2.5. A smooth projective variety X is algebrai-
cally hyperbolic if there exists a constant A such that for each
irreducible curve C ⊂ X the following holds:

deg C ≤ Aχ(C̃).

Using strong analogies between hyperbolicity and degener-
acy of rational points Lang conjectured that a general type
variety should be hyperbolic and in particular algebraically
hyperbolic. This has been extended to the relative case giving
the following

Conjecture 9. Given an affine variety X embedded as X̃ \ D
for a smooth projective variety X̃ and a normal crossing divisor D,
if X is of log-general type then there exists a proper subvariety Exc
(called the exceptional set) such that there exists a bound for the
degree of images of non-constant morphisms C → X from affine
curves whose image is not entire contained in Exc, in terms of the
Euler Characteristic of C.

Euler Characteristic for affine abstract curves was defined in
1.1.3 at page 5. We stress that Conjecture 9 is a special case
of Conjecture 8 because maps C → X from an affine curve
with normalization C̃ \ S correspond to (S, D)-integral points
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for X as defined over the function field of the curve C. Now
a bound for the degree of their images gives an height bound
for such integral points and therefore implies that they can-
not be Zariski dense in X unless X is not isotrivial. Finally we
can now state the conjecture we are going to devote most of
this Thesis, namely a weaker version of Conjecture 9: the con-
jecture deals with logarithmic general type affine varieties in
which there could exists curves with negative Euler charac-
teristic. This implies that in general such varieties will not be
algebraically hyperbolic. Nevertheless a slight modification
of the bound of Theorem 2.2.4 it is expected to hold.

Conjecture 10. Given X, X̃, D as before, if X is of log general
type then there exists a constant A such that for each affine curve C
with normalization C̃ \ S for a smooth projective curve C̃, a finite set
of points S ⊂ C̃ and for all non-constant morphisms ϕ : C → X,
the following holds:

deg ϕ(C̃) ≤ A max{1, χS(C)}.

Conjecture 10 is slightly weaker than Conjecture 9 because it
allows maps from curves of non-negative Euler Characteris-
tic to X. However, if images of curves with negative Euler
characteristic are all contained in a proper subvariety of X,
e.g. there exist only finitely many images of such curves in X,
this implies the conclusion of Conjecture 9. For the property
described in the previous Conjecture, being a weaker version
of algebraic hyperbolicity, one can give the following

Definition 2.2.6 (Weak Algebraic Hyberbolicity). An affine
variety X embedded as X̃ \ D in a smooth projective variety X̃, for
a normal crossing divisor D ∈ PicX̃, is called weakly algebrai-
cally hyperbolic if there exists a constant A such that for each
irreducible affine curve C ⊂ X the following holds

deg C̃ ≤ A max{1, χ(C)}.

From now on, when we refer to algebraic hyperbolicity we
will always considering weak algebraic hyperbolicity. When
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we will need to refer to the usual algebraic hyperbolicity we
will explicitly stress the difference, or we will call it strong
algebraic hyperbolicity.

Remark 2.2.7. Algebraic Hyperbolicity in its weaker form
seems to be the natural generalization of the projective case
to the affine case. If one considers the simplest case of com-
plements of a normal crossing divisor D in P2 one sees that
the smallest degree D can have in order for P2 \D to be of log-
general type is 4. However, each quartic possess 28 bi-tangent
lines (Plücker Theorem) and to each of these lines one can de-
fine a map

Gm → P2 \ D

given by the restriction of the map P1 → P2 whose image is
a bi-tangent. Hence P2 \ D always admits maps from affine
curves with non positive Euler Characteristic and hence is
not strongly algebraically hyperbolic while it is expected to
be weakly algebraically hyperbolic. Nevertheless if these 28
maps, together with the 24 associated to the tangents to the
flexes, are the only Gm immersion in P2 \ D this would not
violate Conjecture 9.



II
Three components case





3
Known results

Before moving to our first original result of this Thesis we
are going to review in detail what is known about Lang-Vojta
Conjecture for function field when the compactification of the
affine variety is the projective plane P2. First of all we are
going to describe the classical techniques available when the
divisor at infinity has several irreducible components focus-
ing in particular on the case of the complement of four lines.
This presentation will allow us to see how the ideas of Cor-
vaja and Zannier supersede the previous approach leading to
the solution for complements of a conic and two lines. We
will describe their approach and the greatest common divisor
formulation which will be essential in the next chapter. Fi-
nally we will briefly describe the ideas of the same authors
for a generalization to other type of surface which implies the
results for P2.

3.1 Large number of components

From now on X will denote the variety P2
κ \ D for an alge-

braic closed field κ of characteristic zero and a reduced nor-
mal crossing divisor D ∈ Div(P2). From the description given
in the preceding part X is of log-general type if and only if
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deg D ≥ 4. Hence the split case of Lang-Vojta Conjecture for
function fields (cfr. Conjecture 10) reads as follows:

Conjecture 11. Let D be a reduced projective plane curve with
normal crossing singularities and let C̃ be a smooth projective curve.
Let S be a finite set of points on C̃ and C = C̃ \ S the corresponding
affine curve. If D has degree greater than 3 then there exists a bound
for the images of non-constant morphisms φ : C → P2 \D in terms
of the Euler characteristic of C.

The normal crossing hypothesis here, as in all the versions of
Lang-Vojta Conjecture stated before, is essential: we will see
in section 3.2 an explicit example due to Corvaja and Zannier
of a divisor of degree four without normal crossing singular-
ities where the conclusion of Conjecture 11 does not hold.

It turned out that the problem becomes more difficult the less
the irreducible components of the divisor D are; as an ex-
ample, no case of Conjecture 11 is known for a specific irre-
ducible quartic (see the last part of the Thesis for results into
this direction). In this section we are going to review the proof
of the Lang-Vojta Conjecture for complements of a completely
reducible quartic. This will serve as an example for Corvaja
and Zannier generalization to the three component case wh-
ich will be the basis of our results presented in the next chap-
ter.

Notations. We introduced a useful notation which we are
going to use throughout this and the following chapter. For a
smooth projective curve C̃ and a finite set of points S, in anal-
ogy with the number field case, we call S-integers the elements
of the ring of regular function in the affine curve C = C̃ \ S,
i.e. elements of κ[C]. This functions will have all their poles
contained in set S and their ring will be denote by OS. In
the same spirit, invertible elements of the ring of S-integers
will be called S-units: these are functions with zeros and poles
contained in the set S. The group of S-units will be denoted
by O∗S.
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3.1.1 The four line case

In this subsection we are going to deal with the case in which
D has degree four and four irreducible components, i.e. D
consists of four lines in general position. We have already
seen a proof for number fields of degeneracy of S-integral
points, see Corollary 1.3.4 at page 25. The same argument
for function fields, mutatis mutandis, would give the corre-
sponding result. However we will see how this results fol-
lows from an extension of Mason’s ABC Theorem for poly-
nomials obtained by Brownawell and Masser [BM] and, inde-
pendently by Voloch [Vol]. The theorem we will prove is the
following:

Theorem 3.1.1. Let D be the divisor of P2 consisting of four
lines in general position. Then for every smooth projective curve C̃
and a finite set of points S ⊂ C̃ there exists a bound for the image
of non-constant morphisms ϕ : C → P2 \ D in terms of the Euler
characteristic of C, where C = C̃ \ S.

Proof. Given coordinates [x0 : x1 : x2] for P2, without loss of
generality we can assume that the equations of the four lines
are

D1 : x0 = 0 D2 : x1 = 0
D3 : x2 = 0 D3 : x1 + x2 = x0.

Now morphisms C → P2 \ D corresponds to morphisms

C → A2 \ (L1 + L2 + L3),

where the affine lines have equations

L1 : x = 0 L2 : y = 0 L3 : x + y = 1,

Here the affine plane A2 is viewed as P2 \ D1. Hence the
morphism ϕ : C → A2 \ L, where L = L1 + L2 + L3, is given
by P 7→ ( f (P), g(P)) for a couple of regular functions on the
affine curve C, since ϕ avoids the line D1. The fact that it
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avoids L1 and L2 implies that f and g are invertible elements
of κ[C], i.e. are S-units. In the same way the function 1− f − g
is an S-unit as well. Moreover the three S-units satisfy the
equation

f + g + (1− f − g) = 1.

Thus the problem is equivalent to studying solutions in S-
units to the in-homogeneous equation

u1 + u2 + u3 = 1

and the result follows from the generalized S-unit Theorem of
Brownawell-Masser in [BM] (or equivalently using Voloch’s
result in [Vol]. Moreover, differently from the number field
case, for function fields there exists explicit bounds with ef-
fective constant for the height that, in this case, provided that
no subsum of f + g + (1− f − g) vanishes, reads as follows:

h( f , g, 1− f − g) ≤ 3 max{0, 2g− 2 + #S}.

From the previous Theorem one can see how the geometric
property of boundness of the degree for affine curves in the
affine surface P2 \ D has been translated into an arithmetic
property of a set of S-units. In particular methods dealing
with solutions of S-unit equations can be applied to recover
results related to the geometry of morphisms C → P2 \ D.
This will be a general principle in the subsequent generaliza-
tion of Theorem 3.1.1 to the case of fewer components for the
divisor D.

3.2 The split case

Before moving to the case of three components we want to an-
alyze the peculiar attributes of the previous Theorem related
to the general Conjecture 11 focusing on the field of defini-
tion of the algebraic varieties involved. In Theorem 3.1.1 the
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divisor D has been chosen in a way such that the correspond-
ing S-unit equation coming from its irreducible components
had a specific shape. This has been possible due to the fact
that a degree four and four component divisor has no mod-
uli, i.e. there exists a unique isomorphism class. This implies
the following corollary of Theorem 3.1.1:

Corollary 3.2.1. Let C̃, S, C, D as before. For every fibered
threefold X → C such that each fiber is isomorphic to P2 \ D there
exists a bound for the degree of sections C → X in terms of χS(C).

Proof. By the above discussion each fiber is isomorphic and
hence the fibration X → C is isotrivial (independently of the
base C). In particular by Lemma 2.1.9 at page 35 there exists
a (finite) cover D → C such that the base changed fibration
XD := X ×C D is trivial. Then each section of the trivial fi-
bration give rise to a map D → P2 \ D for which a bound
of the degree is given by Theorem 3.1.1. The conclusion fol-
lows from the observation that height of k(D)-points is pro-
portional to the height of corresponding k(C)-points via the
degree of the extension [k(D) : k(C)] and hence the corre-
sponding degree for images of sections satisfies a similar re-
lationship.

The difference between the settings of Corollary 3.2.1 and The-
orem 3.1.1 is that for the former, the divisor D is assumed to
be defined over the function field k(C) whereas for the latter
D is defined over the base field C. Being D a divisor with-
out moduli, at most after a cover D → C the two situations
coincide. This will not be true in general for log-general type
surfaces defined over function fields. However we can explic-
itly state a characterization of the so called split case.

Definition 3.2.2. Given a fibered threefold X → C where
C = C̃ \ S and the fiber XP ' X̃ \ D as before, with X̃ a non-
singular projective surface and D a divisor with normal crossing
singularities, we say that X is split if the field of definition of D
is C. This corresponds to fibration X → C where the fibers are
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all isomorphic, or equivalently, there exists a base change given by
a covering D → C such that the fibration is trivial, i.e. that the
family is isotrivial. Similarly the non-split situation corresponds
to a non isotrivial fibration or equivalently to the fact the field of
definition of D is not the base field.

As Corollary 3.2.1 showed, if the divisor D has no moduli,
i.e. there exists only one isomorphism class for D, the split
case and the non-split case coincide. That will not be the case
in general; in particular Conjecture 11 addresses the split case
while a non-split case should deal with sections of non isotriv-
ial fibration over a curve.

3.2.1 The conic and the two lines

Consider now the problem in which D is a union of a conic
D1 and two lines D2, D3: the normal crossing condition on D
is equivalent to the fact that both lines are not tangent to D1
and the points of intersection D1 ∩ D2, D1 ∩ D3 and D2 ∩ D3
are distinct. For such divisors Conjecture 11 predicts a bound
for images of maps C → X = P2 \D in terms of χS(C). Notice
that in this case D has moduli and hence the split case deals
with a different situation than the non-split one.

In [CZ5] Corvaja and Zannier solved this case of Conjecture
11 proving the following

Theorem 3.2.3 (Corvaja, Zannier). Let C̃ be a smooth com-
plete projective curve, S ⊂ C̃ a finite set of points and D ⊂ P2

a degree four divisor consisting of a conic and two lines in general
position. Let f : C̃ → P2 be a non-constant morphism such that
f−1(D) ⊂ S. Then the degree of the curve f (C̃) verifies

deg( f (C̃)) ≤ 215 · 35 ·max{1, χ(C̃ \ S)}. (3.1)

Remark 3.2.4. 1. Morphisms f : C̃ → P2 such that f−1(D)
is contained in S corresponds bijectively to morphisms
C → P2 \ D. In particular the Theorem implies Conjec-
ture 11 for such divisors D.
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2. As mentioned at the beginning of this Chapter the nor-
mal crossing hypothesis is essential. In particular the
same authors proved that in the complement of a conic
and two lines, where the lines intersect in a point of the
conic, there exists curves with vanishing Euler Charac-
teristic and arbitrary large degree (this is Proposition 4.3
of [CZ5]). The proof is effective showing an explicit ex-
ample of curves Gm → P2 \ D of degree n for every n.

Here is an outline of the strategy used in the proof:

Sketch of the proof. Giving a map f : C̃ → P2 such that f−1(D)
is contained in S is equivalent to giving a map f : C → A2

where A2 is viewed as P2 \ D3. Such a map is of the form
P 7→ (x(P), y(P)) for a choice of coordinates on A2 such that
the affine equations for D1 and D2 are

D1 : y2 = x2 + λx + 1 D2 : x = 0,

for a constant λ (hence D3 is the line at infinity with respect
to this choice of coordinates). In the same way done for 3.1.1
the rational function x, y give rise to the following S-units:

u1 := x u2 := y2 − x2 − λx− 1.

Similarly y ∈ OS being regular on the affine curve C. More-
over the two S-units and the S-integer verify the following
equation

y2 = u2
1 + λu1 + u2 + 1.

The proof then proceeds by proving that each solution to the
previous equation has bounded height which gives the de-
sired result by the fact that, for the map f (P) = (x(P), y(P)),
one has

deg f (C) ≤ HC̃(x) + HC̃(y).

Height boundness is proven by differentiate the equation by a
specific differential form without multiple poles and observ-
ing that the derived equation has many zeros in common with
the original one. The problem can be translated in a GCD
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problem for (u− 1, v− 1) for S-units u, v and then a Theorem
by the same authors gives the full conclusion.

We state here the detailed version of the lemma on the exis-
tence of a “proper derivation” on the curve C because we are
going to need it in the next chapter.

Lemma 3.2.5 (Corvaja,Zannier [CZ5]). For every smooth pro-
jective curve C̃ of genus g(C̃) and every finite set of points S ⊂ C̃,
there exists a differential form ω ∈ C̃ and a finite set T ⊂ C̃ of
cardinality ]T = max{0, 2g(C̃)− 2} such that for every u ∈ O∗S
there exists an (S∪ T)-integer θu ∈ OS∪T having only simple poles
such that

d(u)
u

= θu ·ω HC̃(θu) ≤ χS(C̃). (3.2)

Moreover if a ∈ OS then there exists an a′ ∈ OS∪T such that

d(a) = a′ ·ω HC̃(a′) ≤ HC̃(a) + χS(C̃).

Sketch of the proof. If g = g(C̃) > 0 then there exists a regular
ω̃ ∈ Ω = Ω1(C̃) and hence one can define a 1-form ω with
2g − 2 distinct simple zeros. Now for each S-unit u, the ra-
tional function θ = θu satisfying 3.2 has poles either in the
zeros of ω or in S. Defining T as the set of zeros of ω makes θ
a S ∪ T-unit which obviously verifies

HC̃(θu) ≤ χS(C̃).

If g = 0, given the fact that ]S ≥ 2, there exists a differential
form ω without zeros and with two distinct poles at two S-
points. Now by the same argument as before the set of poles
pf θ is at most ]S − 2 as wanted. The result for S-integers
follows the same ideas.

Example 3.2.6. As an example of application of the previous
Lemma consider the simpler equation

y2 = u1 + u2 + 1,
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with, as before, u1, u2 ∈ O∗S and y ∈ OS. Deriving with re-
spect to the differential form given by Lemma 3.2.5 gives

2yy′ = u′1 + u′2 =
u′1
u1

u1 +
u′2
u2

u2.

With some manipulation one gets the following two equali-
ties:

u′1
u1

y2 − 2yy′ = −u′1
u1

(w2 − 1)

u′2
u2

y2 − 2yy′ = −u′2
u2

(w1 − 1),

where

w1 := u1

(u′1
u1
− u1

u′1
− 1
)

w2 := u2

(u′2
u2
− u′1

u1

)u1

u′1
− 1.

Hence by the fact that y divides both − u′1
u1
(w2 − 1) and

− u′2
u2
(w2− 1) we are led to consider the greatest common divi-

sor between (w1 − 1) and (w2 − 1). Lemma 3.2.5 implies that
the height of the functions w1 and w2 are bounded in terms of
S, T and g but not in terms of u1 and u2, a feature which will
be critical in the subsequent applications.

3.2.2 Greatest Common Divisor estimates

From the sketch of the proof for Theorem 3.2.3 and the last ex-
ample, one can see how algebraic hyperbolicity for P2 \D can
be translated intro a problem related to divisibility inside the
ring of S-units. In this direction the main theorem by Corvaja
and Zannier reads as follows

Theorem 3.2.7 (Corvaja, Zannier [CZ5]). Let a, b ∈ O∗S be
multiplicatively independent non-constant S-units, and let α, β be
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positive integers. Then one of the following condition holds:

• H(a) ≤ α[k(C̃ : k(a, b)] and H(b) ≤ β[k(C̃ : k(a, b)]

• ∑
v/∈S

min{v(1− a), v(1− b)} ≤ (α + 2β)H(b) + βH(a)
αβ + α + β

+
αβ + α + β− 1

2
χS(C̃).

Remark 3.2.8. Theorem 3.2.7 can be seen as a result on the
greatest common divisor between 1− a and 1− b, or better a
S-gcd, namely the number of common zeros of the two ra-
tional functions outside the set S. In particular an explicit
choice for the constants α, β can give an upper bound which
depends only on the height of the S-units as well as on the
Euler Characteristic of the underline curve C̃.

Theorem 3.2.9 (Corvaja and Zannier). Let a, b ∈ O∗S not
both constant, and let H := max{H(a), H(b)}. Then

(i) If a, b are multiplicatively independent, we have

∑
v/∈S

min{v(1− a), v(1− b)} ≤ 3 3
√

2(H(a)H(b)χ(C)) 1
3

≤ 3 3
√

2(H2χ(C)) 1
3 . (3.3)

(ii) If a, b are multiplicatively dependent, let ar = µbs be a gener-
ating relation. Then either µ 6= 1 and

∑
v/∈S

min{v(1− a), v(1− b)} = 0,

or µ = 1 and

∑
v/∈S

min{v(1− a), v(1− b)} ≤ min
{

H(a)
|s| ,

H(b)
|r|

}
≤ H

max{|r|, |s|} . (3.4)
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Recall that a generating relation for two multiplicative depen-
dent elements is a relation ar = λbs such that the pair (r, s)
generates the lattice of all the pairs (ρ, σ) such that aρ = λbσ.
This result is the function field analogue of a theorem by the
same authors obtained in the arithmetic case (see [CZ5]).

We end this section mentioning a link between these results
and Lang-Vojta Conjecture: as pointed out by Silverman in
[Sil] this link is profound and goes beyond the applications
to function fields arithmetic. For this let us briefly recall the
definition of generalized (logarithmic) greatest common divisor in
a number field:

Definition 3.2.10 (Silverman [Sil], Corvaja and Zannier
[CZ3]). Given a, b in a number field k, the greatest common di-
visor of a, b is defined to be

hgcd(a, b) = ∑ min{max{0, v(a)}, max{0, v(b)}},

where the sum runs over all the places of k. An S-gcd will be defined
in the same way by summing over all the places outside the finite
set S.

Silverman noticed that the former is actually a Weil Height
in the blow-up of P1 × P1 over (0, 0) with respect to the ex-
ceptional divisor. From this observation one can prove that
Vojta Conjecture 5 for such a blow-up (with respect to a suit-
able ample divisor and with some natural hypotheses) im-
plies an upper bound for the greatest common divisor of a
couple of algebraic points (this is Theorem 6 of [Sil]). There-
fore, in some sense, a gcd argument applied to Lang-Vojta
Conjecture is very natural.

3.3 Extension to ramified covers of G2
m

The fundamental characteristic of divisors D in Theorem 3.2.3
was the presence of three irreducible components: in particu-
lar the three components implies the existence of S-units and
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an S-integer satisfying an equation whose solutions (and their
heights) lie at the core of Corvaja and Zannier methods. Thus
it seems natural to ask if similar results could be obtained
for complements of three component divisors in more gen-
eral surfaces other than P2. It turns out that is true and is
the content of a recent generalization of Theorem 3.2.3 by the
same authors obtained in [CZ7] which we are going to recall
because of its implications with the results of the next chapter.

The starting point is the following easy observation:

Remark 3.3.1. Let D = D1 + D2 + D3 be the divisor in P2

formed by a conic and two lines in general position. Let fi = 0
be the equation of the i-th irreducible component assuming
deg D1 = 2. Then the following map P2 \ D → G2

m to the
bi-dimensional torus is dominant:

P 7→
( f1

f 2
3
(P),

f2

f3
(P)
)

.

It turns out that the map defined above is the only feature
required for algebraic hyperbolicity of some log-general type
surface.

Theorem 3.3.2 (Corvaja and Zannier [CZ7]). Let X be a
smooth affine surface with a finite map π : X → G2

m such that
the closure of the image of the ramification divisor Z does not pass
through the singular points of the boundary of G2

m. If X is of log-
general type then there exists a constant γ = γ(X, π) such that
each affine curve C ⊂ X verifies:

deg C ≤ γ ·max{1, χC}.

From the previous Theorem and the remark follows a result
for complements of P2 that generalizes Theorem 3.2.3 encom-
passing more general cases. The result reads as follows

Theorem 3.3.3 (Corvaja and Zannier). Let D a plane curve
with normal crossing singularities of degree at least four and at
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least three irreducible components. Then there exists a constant
δ = δ(D) such that each affine curve C in P2 \ D verifies

deg C ≤ δ max{1, χC}.

Clearly this result implies Theorem 3.2.3 and Theorem 3.1.1
although with possibly different constants involved.

3.3.1 Extra divisor from ramification

The proof of Theorem 3.3.2 and hence of Theorem 3.3.3 relies
on an estimate of the contribution of the ramification divisor
to the degree of the affine curves in the surfaces. The ideas
behind the proof are the following:

1. The starting point is that for each map C → X the contri-
bution of the ramification divisor to its degree is small.
More precisely let ϕ : C → X be a non-constant map
from an affine curve C to the affine surface X, such that
its image is not contained in the ramification divisor
Z ⊂ X of the finite map π : X → G2

m. Then for ev-
ery ε > 0 there exists a constant Γ (which depends on
X, π and the Euler characteristic of C) such that for ev-
ery such ϕ either the height H = H(ϕ) of ϕ verifies
H ≤ C or the pullback divisor ϕ∗(Z) is such that

deg ϕ∗(Z) ≤ εH.

The bound follows from a height bound for zeros of
polynomials without repeated factors obtained in [CZ5].

2. From the fact that the affine surface X is of log-general
type one can prove that the ramification divisor is big,
being linearly equivalent to KX̃ + π∗(E) where E is the
divisor P2 \ G2

m, whose bigness is equivalent to X be
a surface of log-general type. Here π denotes also the
“completed” map π : X̃ → P2 and E is viewed as a
divisor on P2.
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Being big, Z is in the closure of the effective cone of X
and hence it’s intersection with every curve C̃ in X is
bounded below by a constant times the degree of C̃ (a
part from a finite set of curves).

3. Now the intersection of the image ϕ(C̃) with the (com-
pletion of) the ramification divisor Z̃ is bounded from
below by the previous argument and at the same time
its affine part is bounded from above. This implies that
the most part of the intersection should be concentrated
on the points at infinity, i.e. on S. This can be refor-
mulated in terms of height bounds for S-units solutions
to a sum of monomials with non zero constant term and
therefore follows under the cases of Brownawell-Masser
generalized S-units Theorem. In particular this implies
that either the S-units, and hence ϕ(C), have bounded
height or they verify a dependence relation which gives,
again, a bound for the degree of the immersed curve.

The previous sketch of the proof shows that the result has
been reduced to an application to Brownawell-Masser The-
orem as in the four line case: in particular the ramification
divisor Z plays the role of the missing fourth component of
D that appears in Theorem 3.1.1. It is expected that similar
results holds in the non-split situation using ideas similar to
the one exposed in the next chapter.



4
The non-split case

4.1 Statement of the problem

The main goal of this chapter is to generalize the situation of
chapter 3 to the so-called non-split case, i.e. the case of Lang-
Vojta Conjecture for the complement of a conic and two lines
in P2, where now the divisor is defined over the function field
of a curve rather than on C. As in the constant case we are
going to reduce the problem to solve an equation and bound
the height of its solutions with Corvaja and Zannier method.
In our case the equation that describes this setting reads as
follows:

y2 = u2
1 + λ(P)u1 + u2 + 1. (4.1)

Here again y is a S-integer and u1, u2 are S-units. We note that
this equation is precisely the same considered in [CZ5] where
the polynomial in the right-hand side has now non constant
coefficients. Geometrically this corresponds to the data of an
(affine) threefold X fibered over the curve C where each fiber
is isomorphic to P2 \D and D is a divisor consisting of a conic
and two lines. Each solution of the equation (4.1) gives a sec-
tion of the fibration X → C.
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The situation considered in this chapter is made explicit in the
following diagram:

X

π
��
C λ //

σ

AA

P1

(4.2)

Here the parameter λ(P) is a rational function of the cross-
ratio of the four singular points on the conic of the divisor
on the fiber over P and σ is a section of the projection π (see
4.3 for a detailed description of the geometric setting). We
observe that this is the natural generalization of the settings
considered in chapter 3: morphisms from the affine curve
C = C̃ \ S to P2 \ D can be seen as sections of the trivial
(P2 \ D)-bundle over the curve C. In the case considered in
this chapter the trivial bundle is replaced by a fibration in
which the divisor at infinity is moving. Moreover, general-
izing the constant case, the three irreducible components of
the divisor D = DP are not supposed to be in general posi-
tion for every P ∈ C̃ (although we need some restrictions on
the “degeneracy” of the divisor).

The main result of this chapter is the following

Theorem 4.1.1. Let C̃, S, X as above. Let σ : C → X be a non
constant section for the fibration π : X → C where each fiber is
isomorphic to P2 \ D. Then, in a suitable projective embedding of
the variety X, if the fibration is not birationally trivial the degree of
the curve σ(C̃) verifies

deg(σ(C̃)) ≤ 213 ·
(
58 · χS(C̃) + 28HC̃(λ)

)
+ 8HC̃(λ).

Example 4.1.2. Consider a plane smooth curve C in P2
C. For

each point P ∈ C let tP denote the tangent line to C at P. This
defines a fibration over C in the following way: over a point
P ∈ C letXP be the complement in P2 of the divisor formed by
a fixed quadric D1, the line at infinity D∞ (assuming a choice
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of coordinate has been made) and the line D3,P = tP. A pic-
ture of this situation can be seen in Figure 4.1.

Figure 4.1: Fibered threefold

P1

P2

P3

Π
-1HP1L Π

-1HP2L Π
-1HP3L

D1

D¥

D3, P1

D1

D¥

D3, P2

D1

D¥

D3, P3

X

Π

C

The threefold
X =

⋃
P∈C
XP → C

can be seen as a surface defined over the function field of the
completion of the normalization C̃ of C where a point of the
surface P ∈ X (k(C̃)) corresponds to a section σP : C̃ → X̃
such that σ−1

P (D) ⊂ C̃ \ C. In particular in the case in which
the divisor

D =
⋃

P∈C
D1 + D∞ + D3,P

has normal crossing, being deg D = 4, each fiber is of log-
general type and hence Theorem 4.1.1 can be applied giving
a bound for the degree of images σP(C̃) as expected by Con-
jecture 10.
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4.2 Moduli of three components divisors

In this section we will analyze configurations of a conic and
two lines in P2. Our aim is to prove that a moduli space for
equivalence classes of these divisors is of dimension one.

P1

P2 P3

P4

D1
D2 D3

Figure 4.2: Configuration of a conic and two lines in general
position

For this let D be the sum of a conic D1 and D2, D3 distinct lines
in P2 defined over κ. This divisor has four singular points,
the four points of intersection between D1 and D2 + D3; these
points are distinct in the case when D1, D2, D3 are in general
position, i.e. D has normal crossing singularities. We want to
characterize completely isomorphism classes of such divisors.

First we observe that, applying birational automorphisms of
P2 each class possesses a representative with a fixed conic D1
as component of degree two. Hence the problem can be re-
duced to study isomorphism classes of couple of lines not
tangent to D1 whose intersection is not on the conic. One
of such divisor is visible in figure 4.2. Secondly one can no-
tice that the problem is equivalent to the study of fourples
of points on P1, via the isomorphism between the conic and
P1, that give rise to isomorphic divisors (here we take the
line D2 as the one passing through the first two points, and
the line D3 passing through the last two points). In other
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words a moduli space for our problem will be represented
by a scheme with a map from M0,4

∼= Gm \ {1}, where the
last isomorphism is given by the cross-ratio. However, al-
though the cross-ratio of the four points gives information
about the divisor it does not characterize completely an iso-
morphism class. As an example consider the following two
fourples (P1, P2, P3, P4) (P2, P1, P3, P4): clearly they define the
same divisor but the two cross-ratios are inverse of each other.
Hence configurations of four points with the same cross-ratio
give rise to isomorphic divisors, but the converse is not true
as shown by the preceding example. However the following
basic lemma holds:

Lemma 4.2.1. Given two fourples P = (P1, . . . , P4) and
Q = (Q1, . . . , Q4) of points in P1. At most after applying the
map mapping the first two points of each four-ple to 0, ∞ and ap-
plying the basic theory of cross-ratio, we can assume P3 = Q3 and
P4 = Q4. If neither the two fourples have the same cross-ratio nor
Q is obtained by P by permuting the points, then the configuration
of divisors defined by P and Q are not isomorphic.

Hence we are reduced to calculate which permutations of four
points give rise to isomorphic configurations of divisors. We
can then consider the action of the permutations’ group S4 on
an ordered set of four points in the projective line, i.e. an el-
ement of (P1)4; an easy case by case analysis shows that the
subgroup of S4 that leaves the divisor unchanged is
G = 〈(12), (13)(24), (14)(23)〉. Hence, by classic properties of
the cross-ratio, the only generator of G that changes the cross-
ratio and under which the divisor configuration is invariant
is (12). Thus in order to completely describe isomorphism
classes of degree four and three components divisors in P2 it
is sufficient to define a map

λ′ :

{
degree four and three

components divisor in P2

}
−→ P1

constant on isomorphic divisors. By the description given
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above we obtain a natural 2:1 map, from the moduli space
M0,4 to the moduli space of degree four and three compo-
nents divisors: this map simply associates to each fourple the
two lines passing to the four points. With abuse of notation
we indicate as λ′ the composition

λ′ :M0,4 →
{

degree four and three
components divisor in P2

}
→ P1,

which is defined as

λ′(P1, P2, P3, P4) =
β (P1, P2, P3, P4)

2 + 1
β (P1, P2, P3, P4)

− 2

=

(
β(P1, P2, P3, P4)− 1

)2

β(P1, P2, P3, P4)
, (4.3)

where β is the cross-ratio. From this definition λ′ is a mor-
phism from the (ordered) quadruple of points in the conic
D1 which associates to every configuration of the divisor D
a point of P1. However λ′ is a function of the cross-ratio of
the quadruple P1, . . . , P4 and so it is defined only when there
are at least three distinct points. In our situation, requiring
that over the affine curve C the fiber is P2 \ D and D has four
singular distinct points is equivalent to require that the set S
contains all the poles and zeros of β and hence all the poles
of λ′: this implies that some cases of non general position are
allowed but only over points in S. We will moreover enlarge
S such that it contains all the zeros of λ′: this assumptions is
made in order to include the case of cross-ratio 2 (given by
the factor -2 in the preceding formula) where the quartic has
a non-normal crossing singularity, and also to apply Theo-
rem 4.4.6 and has the advantage that there will be no need of
distinguish between the case of negative and positive Euler
characteristic. At the same time, this is not a strong restric-
tion because λ′ will be a datum of the variety we want to deal
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with and hence it does not depend on the method used for
the proof.

With abuse of notation we will sometimes indicate the value
λ′(P1, . . . , P4) as λ′(D) where the configuration of D is de-
fined by the points P1, . . . , P4 on the conic D1.

4.3 Affine threefolds

We are interested in a specific class of affine threefolds fibered
over affine curves which generalizes the trivial P2 \D-bundle
considered in the split case. More in detail we consider the
following class of affine threefolds:

(?) X is an affine threefold fibered over the affine
curve C such that the completion of the fibration is
the trivial P2-bundle over C̃. Every fiber π−1(P)
for a point P ∈ C̃ is of the form P2 \ DP where
DP is a divisor of P2 of degree four formed by an
irreducible conic and two lines such that there are
at least three distinct singular points. If the point
P is in C then the function λ′ is regular on DP.

(see the diagram 4.2) . As an example of this situation one can
consider the bundle π : X → C where C̃ is a plane rational
curve and the divisor DP is formed by the conic x2 + y2 = 1,
the line at infinity (in affine coordinates) and the line tP, i.e.
the tangent line to the curve at the point P. In this example S
will contain every point P ∈ C̃ such that DP is a pole for λ′.

It follows from the definition of the class (?) that giving such
a threefold is equivalent to giving a rational function

λ : C̃ 99K P1,

which associates to a point P ∈ C a point of P1 viewed as the
value of the function λ′(DP), i.e. λ(P) specifies the isomor-
phism class of the divisor DP in the fiber over P. More in de-
tail the affine threefold will be determined by the properties
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of the divisor D = ∪DP which can be described as follows:
we can naturally embed X inside X̃ := C̃ ×P2 and denote by
p1 : X̃ → C̃ and p2 : X̃ → P2 the two projections. Then the
fibration X → C is uniquely determined by a line bundle µ ∈
Pic(C̃) and the choice of a divisor D ∈ |p∗1(µ)⊗ p∗2(OP2(4))|,
see diagram below.

p∗1(µ)⊗ p∗2(OP2(4))

��
X

π
��

� � // C̃ ×P2

p1
��

p2 // P2

C

σ

AA

� � // C̃

(4.4)

However not every divisor in the linear system gives rise to
a fibration satisfying condition (?): we impose the condition
that D|π−1(P) has three components. This in particular implies
that on every fiber the divisor is determined by the value of
a function of the map λ′ defined above, i.e. over every point
P ∈ C the fiber is uniquely specified by the value of λ′ on the
singular points of DP, which we assume to be at least three,
and such that the cross-ratio has no pole for this configura-
tion.

In particular we will prove that every threefold satisfying (?),
described by a non constant rational map λ : C̃ 99K P1, has
images of sections with bounded degree in terms of the Euler
Characteristic of the base curve.

4.4 Proof of the result

From now on we will work on an affine algebraic variety of
dimension three satisfying condition (?). We will denote by
DP the divisor defined on the fiber over the point P (or some-
times just D where the point we refer to is clear) and its three
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irreducible components will be indicated by D1 (the conic)
and D2, D3 (the two lines). The function λ : C̃ → P1 will
denote the map defined by

P 7→ λ′(DP).

We will suppose, at most after enlarging S, that λ is a S-unit,
i.e. S contains all its zeros and poles. We begin by proving the
following:

Lemma 4.4.1. Let C̃, S be as before and let π : X → C be an
affine fibered threefold verifying condition (?) and characterized by
a non-constant rational function λ. Let σ : C → X be a section of
π. Then there exist S-units u1, u2 ∈ O∗S and an S-integer y ∈ OS
satisfying

y2 = u2
1 + λu1 + u2 + 1 (4.5)

and such that deg σ(C) ≤ HC̃(u1) + HC̃(y).

Proof. From condition (?) it follows that, after a choice of ho-
mogeneous coordinates, we can consider affine coordinates
(x, y) in every fiber with respect to the line D2 viewed as the
line at infinity x0 = 0. In this system of coordinates, without
loss of generality, the line D3 has equation x = 0 and the conic
D1 has equation y2 = x2 + λx + 1. Now we turn our attention
to the section σ : C̃ \ S→ X. In our setting σ can be written as

σ(P) = (x(P), y(P), P) ∈ π−1(P) ∼= P2 \ DP.

Now it is a general fact that such a morphism has degree
bounded by the height of its components: indeed the degree
of σ is the number of intersection points with a generic hyper-
plane in a projective space where σ(C̃) is embedded and this
number is bounded by the sum of the heights of the compo-
nents x and y. This proves that

deg σ(C) ≤ HC̃(u1) + HC̃(y),
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where u1 := x. The fact that the image σ(P) avoids the line
D2 means that the function u1 := x ∈ O∗S, i.e. it is a unit,
and y ∈ OS, i.e. it is a regular function on the affine curve
C. Moreover, the condition that the image of σ avoids also
the conic D1 in every fiber means that we can define another
S-unit u2 where

u2 = y2 − u2
1 − λu1 − 1.

Hence the units u1, u2 and the S-integer y verify equation (4.5).

We will now work with equation (4.5) in order to describe its
solutions. Our goal is to prove the following

Theorem 4.4.2. With the notation above, every solution

(y, u1, u2) ∈ OS × (O∗S)2

of equation (4.5) satisfies one of the following conditions:

(i) a sub-sum on the right term of (4.5) vanishes;

(ii) u1, u2 verify a multiplicative dependence relation of the form
ur

1 · us
2 = µ, where µ ∈ κ∗ is a scalar and r, s, are integers,

non both zeros such that max{r, s} ≤ 5;

(iii) the following bound holds:

max{HC̃(u1), HC̃(u2)} ≤ 212(58χS(C̃) + 28HC̃(λ)
)
+ 8HC̃(λ).

We will now follow the proof, given by Corvaja and Zannier
of the constant case (Theorem 3.2.3 at page 50), deepening the
differences between the present and the non-split situation.
The starting point is the description of a suitable notion of
derivatives of rational function over the curve C. This comes
from Lemma 3.2.5 (page 52) where an appropriate differential
form is defined. We just notice that the Lemma refers to the
curve only without any reference to the bundle and hence can
be applied in all the cases under consideration.
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From now on the differential form ω and the finite set T ap-
pearing in Lemma 3.2.5 will be fixed and, for a rational func-
tion a ∈ κ(C̃) we will denote by a′ the only rational function
such that d(a) = a′ ·ω.

We consider now the derivative of a polynomial A ∈ κ[X, Y]
calculated in a point u1, u2 for some S-units u1, u2. One can
prove that (see [CZ5] Lemma 3.7)

(A(u1, u2))
′ = B(u1, u2),

where

B(X, Y) =
u′1
u1
· X ∂A

∂X
(X, Y) +

u′2
u2
·Y ∂A

∂Y
(X, Y).

We will use this identity in order to deal with equation (4.5).

Lemma 4.4.3. Let

A(X, Y) = X2 + λX + Y + 1,

B(X, Y) = 2
u′1
u1

X2 + λ

(
u′1
u1

+
λ′

λ

)
X +

u′2
u2

Y (4.6)

be polynomials inOS∪T(C̃)[X, Y], and let F(X) ∈ OS∪T[X], G(Y) ∈
OS∪T[Y] be the resultants of A(X, Y), B(X, Y) with respect to Y
and X, i.e. the polynomials

F(X) = X2
(

2
u′1
u1
− u′2

u2

)
+ X

(
u′1
u1
− u′2

u2
+

λ′

λ

)
λ− u′2

u2
(4.7)

G(Y) = Y2
(

2
u′1
u1
− u′2

u2

)2

+ Y
[(

u′1
u1

)2

(8− λ2) +
u′1
u1

u′2
u2

(λ2 − 4)+

+ λλ′
(

λ′

λ
− u′2

u2

)]
+

(
u′1
u1

)2

(4− λ2) + λ′2. (4.8)

Then for every solution (y, u1, u2) ∈ OS × (O∗S)2 of (4.5) we have
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y2 = A(u1, u2),
2yy′ = B(u1, u2).

Moreover the S-integer y divides both F(u1) and G(u2) in the ring
OS∪T.

Proof. Obviously equation (4.5) is exactly y2 = A(u1, u2). More-
over A(u1, u2)′ = B(u1, u2), so we have 2yy′ = B(u1, u2) as
desired.

For the second fact we observe that, for the general theory
of resultants, F and G are linear combinations of A and B
with coefficients that are polynomials inOS∪T, concluding the
proof.

Our next step will be to factor the polynomials F(X), G(Y) in
a suitable finite field extension of κ(C̃); this extension will be
a function field κ(D̃) for a cover D̃ → C̃. Besides, we will
estimate the Euler characteristic of the curve D̃. From now on
we will suppose that the leading and the constant term of the
polynomial F(X), G(Y) are both non zero.

Lemma 4.4.4. Given F, G, C̃, S, T as before, there exists a cover
D̃ → C̃, of degree less or equal to four, such that the Euler charac-
teristic of D̃ \U verifies

χU(D̃) ≤ 53χS(C̃) + 28HC̃(λ) + 5 ·max{0, 2g(C̃)− 2}, (4.9)

where U is the set formed by the pre-images of the zeros of the lead-
ing and constant coefficients of F and G and the pre-images of S and
T.

Proof. Our goal was to factor F(X) and G(X), so we define
the cover p : D̃ → C̃ by the property that κ(D̃) is the split-
ting field of F(X) · G(X) over κ(C̃). From this definition it
is straightforward that deg p is at most four, because κ(D̃) is
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generated over p∗(κ(C̃)) by the square roots of the discrimi-
nants of the two polynomials (recall that F(X) and G(X) both
have degree 2).

We will now bound the Euler characteristic of D̃ \U via the
Riemann-Hurwitz formula; for this goal we need an estimate
of the ramification points of the cover p. First of all we notice
that the ramification points are all contained in the zeros and
poles of the discriminants; moreover at any point the ramifi-
cation index is at most two. The poles are contained in S ∪ T
and the number of zeros of the discriminants is bounded by
their heights. The discriminant of F(X) is

Discr(F(X)) =

(
u′2
u2

)2

(λ2 − 4) +
(

u′2
u2

)(
8

u′1
u1
− 2

u′1
u1

λ2+

− 2λλ′
)
+

(
λ

u′1
u1

+ λ′2
)2

, (4.10)

so its height (which can be estimated counting its possible
poles) is bounded by

HC̃(Discr(F(X))) ≤ 2HC̃

(
u′2
u2

)
+ 2HC̃

(
u′1
u1

)
+ 2HC̃(λ

′) + 2HC̃(λ)

≤ 6χS(C̃) + 4HC̃(λ).

Analogously we can look at the discriminant of G(X)

Discr(G(X)) =

(
u′2
u2

)2[(u′1
u1

)2

λ2(4− λ2) +
u′1
u1

λλ′(8− 2λ2)+

+ λ′2(λ2 − 4)
]
+ 2

u′2
u2

[(
u′1
u1

)3

λ2(4− λ2)+

+

(
u′1
u1

)2

λλ′(λ2 − 8) +
u′1
u1

λ′2(4 + λ2)− λλ′
]
+

+

(
u′1
u1

)4

λ2 − 2
(

u′1
u1

)2

λ2λ′2 + λ′4 (4.11)
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and bound its height in the same way, obtaining that
HC̃(Discr(G(X))) is bounded above by

2HC

(
u′2
u2

)
+ 4HC̃

(
u′1
u1

)
+ 4HC̃(λ

′) + 4HC̃(λ) ≤

≤ 10χS(C̃) + 8HC̃(λ).

Therefore the number of ramification points is at most

](S ∪ T) + 16χS(C̃) + 12HC̃(λ).

We can now apply the Riemann-Hurwitz formula

2g(D̃)− 2 = (deg p)(2g(C̃)− 2) + ∑
P∈D̃

(eP − 1). (4.12)

Here e(P) is the ramification index of p at P and thus (eP − 1)
is either zero or one. Now we can apply the above estimate of
the ramification points of p and we obtain that

∑
P∈D̃

(eP − 1) ≤ ](S ∪ T) + 16χS(C̃) + 12HC̃(λ). (4.13)

Consider now the set U ⊂ D̃ introduced in the statement of
the Lemma. We have that

]U ≤ [κ(D̃) : p?(κ(C̃))] · ]p(U).

From this inequality and from (4.12) and (4.13) the quantity
2g(D̃)− 2 + ]U is bounded above by
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(deg p)
(

2g(C̃)− 2 + ]p(U)

)
+ ](S ∪ T) + 16χS(C̃) + 12HC̃(λ)

= (deg p)
(

2g(C̃)− 2 + ](S ∪ T) + ](p(U) \ (S ∪ T)
)
+

+ ](S ∪ T) + 16χS(C̃) + 12HC̃(λ)

≤ 4χS∪T(C̃) + 4](p(U) \ (S ∪ T)) + ](S ∪ T) + 16χS(C̃) + 12HC̃(λ).

We have to bound the number ](p(U) \ (S∪T)), but the points
in the image of U that are not in S ∪ T are precisely the zeros
of the leading and constant terms in F(X) and G(X). Again
we can estimate their number by looking at the height of these
terms. We obtain that

](p(U) \ (S ∪ T)) ≤ HC̃

(
2

u′1
u1
− u′2

u2

)
+ HC̃

(
u′2
u2

)
+

+ 2HC̃

(
2

u′1
u1
− u′2

u2

)
+ HC̃

((
u′1
u1

)2

(4− λ2) + λ′2
)

≤ 4χS(C̃) + HC̃

((
u′1
u1

)2

(4− λ2) + λ′2
)

≤ 8χS(C̃) + 4HC̃(λ).

Taking this into account we can return to the previous in-
equality to finish our proof:

χU(D̃) ≤ 4χS∪T(C̃) + 32χS(C̃) + 16HC̃(λ) + ]S + ]T+

+ 16χS(C̃) + 12HC̃(λ)

≤ 52χS(C̃) + 28HC̃(λ) + 5]T + ]S

≤ 53χS(C̃) + 28HC̃(λ) + 5 max{0, 2g(C̃)− 2}.
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The next step in the proof of our main result is an application
of a theorem by Corvaja and Zannier concerning the “greatest
common divisor” of two rational functions on C̃ of the form
a− 1 and b− 1 where a and b are units with respect to some
specified finite set (in our case the set will be U). In particu-
lar we are going to apply Corollary 3.2.9 from page 54 for a
suitable choice of units a and b: these units will be chosen in
such a way that their heights will be “close” to the heights of
u1, u2 and such that the sum appearing in the statement of the
previous Theorem gives an upper bound for ∑v∈D̃\U v(y). We
begin by proving the following

Lemma 4.4.5. Let (u1, u2, y) be a solution of equation (4.5)
(recall that we are supposing that the leading and constant coeffi-
cients of F, G are both non zero). Let D̃, U as before. Then there
exist U-units a, b ∈ κ(D̃) such that the quantity

|max{HD̃(a), HD̃(b)} −max{HD̃(u1), HD̃(u2)}| (4.14)

is bounded above by 32 · χS(C̃) + 8HC̃(λ) and

∑
v∈D̃\U

min{v(1− a), v(1− b)} ≥ 1
4
· ∑

v∈D̃\U
v(y). (4.15)

Moreover, a = u1α−1, b = u2β−1 for suitable α, β such that
F(α) = G(β) = 0.

Proof. Being the field κ(D̃) defined as the splitting field for the
polynomial F(X) ·G(X) we can write the two polynomials as

F(X) =

(
2

u′1
u1
− u′2

u2

)
(X− α) · (X− ᾱ),

G(X) =

(
2

u′1
u1
− u′2

u2

)2

(X− β) · (X− β̄).

We claim that the roots α, ᾱ (resp. β, β̄) of F (resp. G) are
U-units. This follows from the definition of U (see Lemma
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(4.4.4)), because the leading and constant coefficients of the
two polynomials are U-units. We consider now the following
polynomials obtained from F and G dividing by αᾱ

(
2 u′1

u1
− u′2

u2

)
and ββ̄

(
2 u′1

u1
− u′2

u2

)2 respectively, i.e. the polynomials

F(X) := (Xα−1 − 1)(Xᾱ−1 − 1)

G(X) := (Xβ−1 − 1)(Xβ̄−1 − 1).

Now, by Lemma (4.4.3), the U-integer y divides both F(u1)
and G(u2), and hence it divides the polynomials F(u1) and
G(u2) in the ring of U-integers. From this it follows that

∑
v∈D̃\U

min{v(u1α−1− 1)+ v(u1ᾱ−1− 1), v(u2 β̄−1− 1)+ v(u2 β̄−1− 1)}

is bounded below by ∑
v∈D̃\U

v(y).

We want to analyze the left side term of the last inequality: ob-
serve that for every fourple of rational functions W1, W2, Z1, Z2
one has (we omit the valuations)

∑
v

min{W1 + W2, Z1 + Z2} ≤∑
v

min{W1, Z1}+ ∑
v

min{W1, Z2}+

+ ∑
v

min{W2, Z1}+ ∑
v

min{W2, Z2} ≤ 4 ∑
v

min{W̃, Z̃},

for suitable W̃ ∈ {W1, W2} and Z̃ ∈ {Z1, Z2}. In our case we
obtain that there exist U-units a ∈ {u1α−1, u1ᾱ−1} and b ∈
{u2β−1, u2 β̄−1} such that:

4 ∑
v∈D̃\U

min{v(a− 1), v(b− 1)} ≥ ∑
v∈D̃\U

v(y),

proving (4.15). Next we want to prove that the heights of
these U-units a, b are “close” to the heights of u1, u2. We ob-
serve that the difference appearing in the left side term of
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(4.14) is bounded by the maximum of the D̃-heights of the
roots of F and G. Again we bound these heights by estimat-
ing their possible poles. It is then sufficient to observe that the
poles of the roots α, ᾱ (resp. β, β̄) are either zeros of the lead-
ing coefficient or poles of the constant term of the polynomial
F (resp. G). Hence

max{HD̃(α), HD̃(ᾱ)} ≤ HD̃

(
2

u′1
u1
− u′2

u2

)
+ HD̃

(
u′2
u2

)
≤ 4HC̃

(
2

u′1
u1
− u′2

u2

)
+ 4HC̃

(
u′2
u2

)
≤ 8χs(C̃).

In the same way we get the quantity max{HD̃(β), HD̃(β̄)} is
bounded above by

HD̃

(
2

u′1
u1
− u′2

u2

)2

+ HD̃

[(
u′1
u1

)2

(4− λ2) + λ′2
]

≤ 4HC̃

(
2

u′1
u1
− u′2

u2

)2

+ 4HC̃

[(
u′1
u1

)2

(4− λ2) + λ′2
]

≤ 32χs(C̃) + 8HC̃(λ).

In order to apply Theorem (3.2.9) we need an upper bound
for ∑v∈D̃\U v(y) in terms of the heights of u1, u2. This bound
is obtained by an application of a theorem by U. Zannier in
[Zan] which reads as follows:

Theorem 4.4.6 (Zannier). Let D̃, U as before, m ≥ 2 an in-
teger, θ1, . . . , θm U-units such that no subsum of θ1 + · · · + θm
vanishes. Then the U-integer θ1 + · · ·+ θm satisfies

∑
v∈D̃\U

v(θ1 + · · ·+ θm) ≥ HD̃(θ1 : · · · : θm)−
(

m
2

)
χU(D̃).
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We are going to apply this Theorem to the U-integer

y = u2
1 + λu1 + u2 + 1,

using the fact that

HD̃(u
2
1 : λu1 : u2 : 1) ≥ max{2HD̃(u1), HD̃(u1) + HD̃(λ), HD̃(u2)}

≥ max{HD̃(u1), HD̃(u2)}.

In particular, assuming that no subsum of the right term of
equation (4.5) vanishes, we obtained the following

Lemma 4.4.7. For every solution (y, u1, u2) of (4.5) such that
no subsum of the right term vanishes, one has

HD̃(y) ≥ ∑
v∈D̃\U

v(y) ≥ max{HD̃(u1), HD̃(u2)} − 6χU(D̃).

Now we put together this last inequality with the results of
Lemma (4.14) and we obtain that, for every solution of (4.5)
there exist U-units a, b such that the sum

∑
v∈D̃\U

min{v(a− 1), v(b− 1)}

is greater or equal than

1
4

(
max{HD̃(a), HD̃(b)} − 6χU(D̃)− 32χS(C̃)− 8HC̃(λ)

)
.

Using the fact that χS(C̃) ≤ χU(D̃) we obtain that the same
quantity is bounded below by

1
4

(
max{HD̃(a), HD̃(b)} − 38χS(C̃)− 8HC̃(λ)

)
. (4.16)

We can now apply Theorem (3.2.9) to deduce the following
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Proposition 4.4.8. Let (y, u1, u2) ∈ OS × (O∗S)2 be a solu-
tion of equation (4.5) such that no subsum of the right term van-
ishes, and the leading and constant term of the polynomials F, G are
not zero. Let D̃, U be as defined in Lemma (4.4.4) and a, b ∈ O∗U as
defined in Lemma (4.4.5). Then either

max{HC̃(u1), HC̃(u2)} ≤ 212
(

58χS(C̃)+ 28HC̃(λ)
)
+ 8HC̃(λ)

(4.17)

or a, b verify a multiplicative dependence relation of the form

ar · bs = 1

for integers (r, s) ∈ Z2 \ {0} with

max{|r|, |s|} ≤ 5. (4.18)

Proof. We suppose that inequality (4.17) does not hold and
we want to prove the dependence relation for a, b. In order to
apply Corvaja and Zannier Theorem (3.2.9) we are going to
show that the left-hand side of (4.17) is greater than the right-
hand side of (3.3). Our starting point is

max{HC̃(u1), HC̃(u2)} > 212 ·
(

58 ·χS(C̃)+ 28HC̃(λ)
)
+ 8HC̃(λ).

From Lemma (4.4.4) we know that

χU(D̃) ≤ 58 · χS(C̃) + 28HC̃(λ)

and so we obtain that

max{HC̃(u1), HC̃(u2)} > 212χU(D̃) + 8HC̃(λ).

Remember that our aim is to apply Theorem (3.2.9) and so
we need to work with the maximum of the heights of a, b.
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For this reason we apply (4.14) which estimates the close-
ness of H(ui) and H(a), H(b) and, using HC̃ ≤ HD̃ we get
max{HD̃(a), HD̃(b)} is bounded above by

max{HD̃(u1), HD̃(u2)} − 32χS(C̃)− 8HC̃(λ)

≥ max{HD̃(u1), HD̃(u2)} − 32χU(D̃)− 8HC̃(λ).

From these last two inequalities we obtain the lower bound

max{HD̃(a), HD̃(b)} ≥ (212 − 32)χU(D̃). (4.19)

In order to simplify the notation we put H = max{HD̃(a), HD̃(b)}
and χ = χU(D̃). We claim that

∑
v∈D̃\U

min{v(a− 1), v(b− 1)} > 3 · 2 1
3 H

2
3 χ

1
3 (4.20)

To prove the claim we observe that, from (4.16), it is enough
to show that

1
4

H − 38χ > 3 · 2 1
3 H

2
3 χ

1
3 .

We define the function

f (t) =
1
4

t− 3 · 2 1
3 t

2
3 χ

1
3 − 38χ

and we notice that our claim is equivalent to f (H) > 0. Now
the function f is an increasing function for t ≥ 210χ, therefore
it is enough to prove it for H = (212 − 32)χ > 210χ. Hence
the claim is equivalent to

1
4
(212 − 32)χ− 3 · 2 1

3 (212 − 32)
2
3 χ > 38χ

With some algebraic manipulations one gets
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1
4
(212 − 32)χ− 3 · 2 1

3 (212 − 32)
2
3 χ =

2
10
3 (27 − 1)

2
3

[
1
4

2
5
3 ((27 − 1)

1
3 − 3 · 2 1

3

]
χ =

40 · 6 ·
[

2−
1
3 · 2 13

6 − 3 · 2 1
3

]
χ =

40 · 6 ·
[

2
1
3 (2

5
3 − 3)

]
χ >

40 · 6 ·
[

1 · 1
6

]
χ

which proves the claim. Now we can apply Theorem (3.2.9)
which implies that a, b verify a multiplicative dependence re-
lation of the form arbs = 1 for some integers r, s not both zero.
The same Theorem gives the bound (3.4) and hence, together
with (4.19) and (4.16), we obtain

H
max{|r|, |s|} >

1
4

H − 10χ >
1
5

H

Therefore we get max{|r|, |s|} ≤ 5, as desired.

The conclusion of Proposition 4.4.8 gives us a multiplicative
relation of dependence between a, b instead of u1, u2. How-
ever this relation is guaranteed by Lemma 3.14 in [CZ5] wh-
ich gives us the following result:

Lemma 4.4.9 ([CZ5]). In the previous notation, if a multi-
plicative relation of the form ar · bs = µ holds for a constant µ ∈ κ,
then either one between a and b is constant or u1, u2 satisfy a mul-
tiplicative dependence relation of the same type.

Now we go back to Theorem (4.4.2): here we should take care
of the constant term of the polynomial G in a different way
as in the constant case. In detail the vanishing of this term
does not directly imply an explicit bound for the degree of
the images f (C) as in the split function field case; here we
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should apply again the whole machinery in order to explicitly
find the unit u1 and so reduce the problem to equation y2 =
µ + u2 + 1, which was already solved in the split case and
gives the desired bound. For readability reasons we split the
proof of Theorem (4.4.2) in two cases: Lemma (4.4.10) for the
case in which the constant coefficient of G is not zero, and
Lemma (4.4.11) for the other case. Clearly the two lemmas
together gives Theorem (4.4.2).

Lemma 4.4.10. Suppose that the constant term of the polyno-
mial G does not vanish, i.e., with the notation of 4.4.2, every solu-
tion (y, u1, u2) ∈ OS × (O∗S)2 of equation (4.5)

y2 = u2
1 + λu1 + u2 + 1

satisfies also (
u′1
u1

)2

(4− λ2) + λ2
(

λ′

λ

)2

6= 0. (4.21)

Then one of the following conditions holds:

(i) a sub-sum on the right term of (4.5) vanishes;

(ii) u1, u2 verify a multiplicative dependence relation of the form
ur

1 · us
2 = µ, where µ ∈ κ is a scalar and r, s, are integers,

non both zeros such that max{r, s} ≤ 5;

(iii) the following bound holds:

max{HC̃(u1), HC̃(u2)} ≤ 212 ·
(
58 ·χS(C̃)+ 28HC̃(λ)

)
+ 8HC̃(λ).

Proof. We start assuming that (i), (ii) and (iii) are not satis-
fied and we are going to find a contradiction. First of all we
note that, if (i) is not satisfied, no subsum of (4.1) can vanish.
Moreover the polynomials F and G defined in 4.4.3 could not
be constant because the vanishing of their leading coefficients
would imply some multiplicative relation between u1 and u2
which is excluded by (ii). The same is true for the constant co-
efficient of F (which is u′2/u2): it cannot be zero otherwise u2
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would be constant; moreover, by our assumptions, the same
holds for the constant coefficient of G. Hence both F and G
are non constant polynomials whose constant coefficients are
not zero.

Since we excluded the case where the leading and constant
coefficients of F and G vanish, we can apply (4.4.8) and obtain
a multiplicative relation between a = u1α−1 and b = u1β−1;
this follows from the fact that inequality (4.17) is excluded by
(iii). From this relation, applying (4.4.9), we get that either a
or b is constant or u1 and u2 verify a multiplicative relation of
the same type. The former case would imply that the height
of u1 (or u2) would be the same as the height of α (resp. β) so
it would be lesser or equal than 8χS(C̃) (resp. 32χS(C̃)); but
this contradicts our assumption that (iii) does not hold and
hence it is excluded. The latter case is precisely (ii) that was
assumed to be false. In both cases we get a contradiction and
this concludes the proof.

Lemma 4.4.11. Suppose that the constant term of the poly-
nomial G vanishes, i.e., with the notation of 4.4.2, every solution
(y, u1, u2) ∈ OS × (O∗S)2 of equation (4.5) satisfies also(

u′1
u1

)2

(4− λ2) + λ2
(

λ′

λ

)2

= 0. (4.22)

Then one of the following conditions holds:

(i) (y, u1, u2) satisfy an equation whose solutions verify conclu-
sions of Theorem (4.4.2).

(ii) u1, u2 verify a multiplicative dependence relation of the form
ur

1 · us
2 = µ, where µ ∈ κ is a scalar and r, s, are integers, not

both zero such that max{r, s} ≤ 5;

Proof. The first trivial case is the case in which λ is constant
which is excluded since we are assuming that the threefold
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defined by λ is not trivial. The second case is the case in which
λ is a non constant S-unit. In this case we obtain, in the ring
OS, the following identity (here we recall that can enlarge S
so that it contains every point for which λ = 2):

(
u′1
u1

)2

= − λ2

4− λ2

(
λ′

λ

)2

. (4.23)

Now we observe that the ringO∗S is finitely generated modulo
constants, so every u1 ∈ O∗S is of the form µ · va1

1 · · · v
ah
h for

some µ ∈ κ and v1, . . . , vh ∈ O∗S. Therefore we have

u′1
u1

=
h

∑
i=1

ai
v′i
vi

.

Being λ ∈ O∗S the right-hand side of equation (4.23) could
also be expressed in the vi and their derivatives; in particular
4.23 becomes an equation in the unknown ai and this equa-
tion will have a unique (for given λ and S) solution in the ai.
Hence u1 will be uniquely determined up to a constant factor
and therefore its height will be a constant. So we can assume
that u1 = a f for a constant a ∈ κ and a fixed S-unit f . This
leads to consider equation y2 = a2 f 2 +λa f + u2 + 1. We claim
that this case gives (i). The claim follows from a repetition of
all the considerations done until now for equation (4.5): we
obtain the same estimates with different polynomials F̃, G̃.
Again we look at the vanishing of the constant and leading
coefficients and this time we found that the case in which the
constant coefficient of the new polynomial G̃ vanishes gives
us either u1 = 0 or u1 = f where a = 1. In both cases this
reduces the problem to the equation y2 = µ + u2 + 1, where µ
is now fixed, which has already been treated in the split func-
tion field case and gives (i). The case in which the constant
term of G̃ is not zero is precisely one of the cases of (i) and
this concludes the proof of the claim.
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Finally we prove Theorem (4.1.1) using the previous Theo-
rem.

Proof of Theorem (4.1.1). As in Lemma (4.4.1) a section

σ : C̃ \ S→ X

will be of the form

σ : P 7→ (u1(P), y(P), P)

where the S-unit u1 and the S-integer y verify equation (4.5)
for a S-unit u2. In this setting we can apply Theorem (4.4.2)
and conclude that one of (i),(ii),(iii) holds. Let us analyze ev-
ery case.

• In the first case (i) we have that some sub-sum of u2
1 +

λ(P)u1 + u2 + 1 will vanish. Hence σ(C) is either a line
or a conic and its degree verifies the bound (recall that
being λ non constant its height is at least one).

• In the second case (ii) we have a multiplicative rela-
tion between the two S-units of the form ur

1 = us
2 · µ

for a scalar µ ∈ κ and two integers r, s with absolute
value lesser or equal than 5. From this it follows that
deg σ(C) ≤ HC̃(u1) + HC̃(y) ≤ 20 and again the bound
is verified.

• In the last case (iii) we have max{HC̃(u1), HC̃(u2)} is
bounded above by 212 ·

(
58 ·χS(C̃)+ 28HC̃(λ)

)
+ 8HC̃(λ)

from which we obtain the desired bound.
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5
Approaches to fewer

components

Up to this point we have discussed cases of Lang-Vojta Con-
jecture in which the number of components of the divisor at
infinity D were at least three. The aim of the last part of this
Thesis is to develop a strategy to deal with complements of
divisor with fewer components, or even irreducible. We be-
gin by giving the following definition:

Definition 5.0.12. Given a normal crossing divisor D in a
smooth projective variety X we call logarithmic irregularity of
the couple (X, D) the number of irreducible components minus 1.

Equivalent formulation, similar to the compact case, can be
given by defining logarithmic irregularity as the dimension
of the space of sections of the logarithmic cotangent bundle.

Previous Theorems like Theorem 3.1.1 and Theorem 3.2.3 and
more generally Theorem 3.3.2 imply that, for P2, the split case
of Lang-Vojta Conjecture for function fields is known when
the logarithmic irregularity of P2 and the divisor D is greater
or equal to 2, i.e. is greater or equal to the dimension. The first
question we want to address is whether this methods can be
applied to study the case of logarithmic irregularity strictly
smaller than the dimension or not.
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5.1 Limits of Corvaja and Zannier methods

The methods applied in chapter 3 and chapter 4, coming from
ideas of Corvaja and Zannier, extends to Theorem 3.3.2 at
page 56 (and in particular for the projective plane Theorem
3.3.3 at page 56). However it is clear that the key point of all
these strategies is, explicitly or implicitly, the existence of a
finite map to G2

m. Such existence follows from the presence of
at least three components of the divisor at infinity. Actually
the equations of the three components of the divisor D defines
such a map as sketched in Remark 3.3.1 at page 56. Once the
existence of the map is proved, one constructs an “extra com-
ponent” coming form the ramification and then reduces the
algebraic hyperbolicity to a generalized S-units equation in
such a way that the conclusion follows from an application of
Brownawell-Masser Theorem (see Subsection 3.3.1 at page 57
for more details).

The question we are interested in now is whether this strategy
could be modified to deal with the case of logarithmic irreg-
ularity strictly lesser than 2. As discussed above this seems
unlikely. Let us focus on a specific key example in which this
difficulty is showed:

Example 5.1.1. Let D be a divisor in P2 consisting of two con-
ics in general position. Let f1, f2 be the equations of the two
conics. It is defined a natural map from the complement P2 \
D to Gm by

P 7→ f1(P)
f2(P)

.

One can also prove that Gm is the generalized Albanese Va-
riety of P2 \ D which in particular implies that every map
P2 \ D to the two dimensional torus factors through the pre-



5.1. Limits of Corvaja and Zannier methods 89

vious map to Gm, i.e.

P2 \ D //

##G
GG

GG
GG

GG
G2

m

Gm

==||||||||

Thus there is no natural map from P2 \ D → G2
m allowing to

apply Theorem 3.3.3. At the same time once can see how the
“algebraic” approach developed in Chapter 4 and Chapter 5
can be applied neither. In facts one could try to mimic the
construction of the corresponding equations in S-units and S-
integers, but in this case, having only the equations of the two
conics defining the complement, one can build up just one S-
unit and two S-integers. The corresponding equations cannot
be handled as the one considered in Chapter 5. As an example
of a situation that can occur one could consider the following
equation

x2 = P(u, y),

in which x, y are S-integers and u is an S-unit for a finite set
of points S in a smooth curve C̃ and P is a polynomial. Dif-
ferentiating with respect to suitable differential form defining
on the curve one obtain the following equation

2xx′ =
u′

u
· u ∂P(u, y)

∂u
+ y′

∂P(u, y)
∂y

,

where now the term multiplying the derivative with respect
to y has height that cannot be bounded independently of y,
because y is not a S-unit.

Previous example shows how the case of logarithmic irreg-
ularity strictly less than 2 are cannot be recovered from the
known cases of bigger irregularity. In particular, the differ-
entiation argument used in the proof of Theorem 3.2.3 and
Theorem 4.1.1, that led to an application of a gcd theorem of
S-units, does not seems to be recovered here. Namely the lack
of a third irreducible component of the divisor D translate
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into the absence of a natural defined S-unit. This led to con-
sider more difficult Diophantine equations for which, at the
present, no general methods can be applied to describe their
solutions. At the same time, the same problem arises when
one tries to construct a map to the two dimensional algebraic
torus, in order to apply Theorem 3.3.2: the equation of a third
irreducible component appears to be fundamental for such a
map to exists and hence we cannot see any way to recover re-
sults for quartics with less than three irreducible components
using the constructions and results obtained by Corvaja and
Zannier.

We end this section by noticing that such limitation appears
also when considering complements of plane curves with
higher degree. In fact, Theorem 3.3.3 applies to complements
of curves of arbitrary degree, provided that the curve has at
least three components and the degree is greater than four.
For this reason it is natural to consider other approach for
dealing with affine surface with log irregularity lesser than
two.

5.2 Ideas from deformations and curve count-
ing

A first systematic treatment of algebraic hyperbolicity for com-
plements of normal crossing divisor in P2 where the log irreg-
ularity is strictly smaller than 2 can be found in Xi Chen’s arti-
cle [Che3] (and previously for surface in the pre-print [Che2]).
Although with a different goal in mind, i.e. Kobayashi conjec-
ture on hyperbolicity of complements of nc divisors in P2, the
ideas presented in the papers have some similarities with the
approach taken in this Thesis. Therefore we will devote this
section to an introduction to Chen’s ideas and to its limitation
to an extension to degree four divisors.
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5.2.1 Chen’s argument

The main idea of [Che3], already present in [Che2] is the fol-
lowing: algebraic hyperbolicity for complements P2 \ D is
much easier to prove when D is reducible. Then for a generic
D the natural strategy would be to degenerate it to a “highly”
reducible divisor, i.e. a union of lines in general position and
then try to recover the same result using the knowledge of the
case of the union of lines. It turns out that this strategy gives
the desired result also in higher dimension, however we are
not going to focus on this important aspect of Chen’s work
and we focus only on the two dimensional case.

In order to state precisely the results let us fix some nota-
tion first: in this section S will be a normal projective vari-
ety with canonical singularities (although in our application
S will always be P2 hence non-singular), N1(S) will denote
the free abelian group generated by 1-cycles modulo numer-
ical equivalence, and N1(S) will denote the group of divisor
modulo the same equivalence. We call a function φ : N1 → R

an additive function on N1(S) if φ ∈ Hom(N1(S), R). Since in
the case S non singular one has Hom(N1(S), R) = N1(S)⊗R,
an additive function φ corresponds to an R-divisor D and
φ(C) = C · D.

The first result proved by Chen is a generalization of Theorem
3.1.1 to arbitrary surface and sufficiently reducible divisor.

Theorem 5.2.1 (X. Chen). Let S be as above, B = ∑n
i=1 Bi an

effective divisor with normal crossing singularities, F a curve on S.
Assume that Bi is a very general member of a base point free linear
system PLi for each i ≥ 1, while B0 and F are fixed curves, meeting
properly in smooth points of B0. Let φ be a function

φ : Z1 := {1− cycles on S} → R,

for which there exists ε ∈ R such that

1. (KS + B − Bi) · C ≥ εφ(C) for all i ≥ 1 and all C ⊂ S
non-rigid;
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2. 2g(C)− 2 + (B− B0) · C ≥ εφ(C) for all C reduced;

3. χT(C) ≥ εφ(C) for all irreducible components of F, where
T = ν−1(C ∩ B) and ν is the normalization of C.

Then for all reduced irreducible curves C in S, not contained in B
the following holds:

χT(C) ≥ εφ(C),

where T is as above.

We note that Chen does not use the notion of Euler Charac-
teristic for affine curves as used throughout this Thesis, but
rather defines explicitly an intersection multiplicity, that he
denotes by iS(C, D). We used previous notation in order to be
consistent with the rest of the Thesis.

Theorem 5.2.1 gives the already known result of algebraic hy-
perbolicity for the complement of at least 5 lines in P2: is it
sufficient to apply the Theorem with B0 = F = ∅, B− B0 =
L1, . . . , Ld with d ≥ 5 and φ = deg. We stress however that
the requirement d ≥ 5 is crucial since:

KP2 + B− Bi ∼ (d− 4)H,

with H a line in P2. This feature with be important in the se-
quel: in particular it gives first evidence that the argument we
are going to describe, using Theorem 5.2.1, cannot be applied
directly to complements of quartics.

The key idea of Chen’s construction is to take Theorem 5.2.1
as a starting point and reducing the proof of algebraic hyper-
bolicity for complements of irreducible divisor to the Theo-
rem via degeneration. This idea is made explicit in the fol-
lowing

Theorem 5.2.2. In the notation above, let{I1, I2, . . . , Im} be a
partition of {1, 2, . . . , n}, D0 = B0 and let Dk be a very general
member of P(⊗i∈IkLi) for every k > 1. Let D be D0 ∪ D1 ∪ · · · ∪
Dm. If φ : N1(S) → R is an additive function such that there
exists a real number ε such that
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1. (KS + B − Bi) · C ≥ εφ(C) for all i ≥ 1 and all C ⊂ S
non-rigid;

2. 2g(C)− 2 + (B− B0) · C ≥ εφ(C) for all C reduced;

3. χT(C) ≥ εφ(C) for each irreducible component C ⊂ F, with
T = ν−1(C ∩ D);

then for all irreducible curves C in S not contained in D the follow-
ing holds:

χT(C) ≥ εφ(C).

The Theorem formalized the idea of deformations of the divi-
sor D: here the components Dk are degenerated to the union
∪Bj for j ∈ Ik in such a way that Theorem 5.2.1 can be applied.
Choosing as before S = P2, B0 = F = ∅, Bi a line in P2 for
each i ≥ 1, D a very general curve of degree d in P(H0(OS))
and φ = deg one get the following:

Corollary 5.2.3. Given a very general plane curve D of degree
d ≥ 5, for all reduced irreducible curves C ⊂ P2 not contained in
D, denoted by T = ν−1(C · D), with ν the normalization of C, the
following holds:

χT(C) = 2g(C)− 2 + #T ≥ (d− 4)deg C.

In particular for all very general plane curves D of degree d ≥ 5,
P2 \ D is algebraic hyperbolic.

We note again that the bound degD ≥ 5 is strict since both
in Theorem 5.2.2 and in Corollary 5.2.3 the statement and the
proof will be false if we consider D to be a generic quartic.
Moreover, in Chen’s paper, his definition of algebraic hyper-
bolicity refers to what we called strong algebraic hyperbol-
icity (see page 41); this in particular implies that Theorem
5.2.2 gives that no map Gm → P2 \ D exists provided that
deg D ≥ 5 and D is a very general member of OP2(d).

Idea of the Proof of Theorem 5.2.2 As pointed out above
the main idea of the proof is to degenerate D to a union ∪Bi
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for which Theorem 5.2.1 can be applied. What actually is
done is to degenerate one component of D at the time, while
keeping the remaining fixed, and then applying an induction
argument on the number of irreducible components.

Let X = S× ∆, with ∆ the unit disk parametrized by t, and
let W be an effective divisor in the family X such that

• W is the sum of m components W(1), . . . , W(k);

• for each k 6= 1, W(k) restricted to each fiber is Dk;

• W(1) is a pencil of curves in P(⊗i∈I1Li) where the cen-
tral fiber W(1)

0 = B1 ∪ D′1 is reducible, while the general
fiber is a general element of the linear series.

Basically the family consider the case in which D2, . . . , Dm are
fixed D1 moves in a family W(1) in which the general fiber
W1

t is a general member of the linear series P(⊗I1L), and the
special fiber over t = 0 reduces to a union B1 ∪ D′1. In this
setting one can consider a family of curves Y → ∆, flat over
∆, with a proper map π : Y → X and a commutative diagram

Y

��

π // X

��
∆ α // ∆

with α a base change of order α. Up to applying semistable
reduction one can assume that:

• Y is smooth and irreducible and Y0 is nodal;

• π|Yt maps Yt birationally onto its image for all t 6= 0;

• π(Y) meets W properly;

• Yt ∩ π−1(W) extends to disjoint sections of Y → ∆;

• Y → X is minimal with the above properties.

The conclusion of the Theorem is equivalent to prove:

χT(Yt) ≥ εφ(π(Yt))
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for t 6= 0 assuming that

χT0(C) ≥ εφ(C),

with C ⊂ S irreducible not contained in W0 and where T is
the set of inverse images in the normalization of Yt of the in-
tersection with Wt and T0 are the inverse image, in the nor-
malization of C, of the intersection with W0. Now one can
define, for each component Γ of Y0, a finite set of points σ(Γ)
which counts the point of intersection in Γ coming from

lim
t→0

Yt ∩ π−1(W)

and the nodes of Y in Γ. Then the following holds:

χT(Yt) = ∑
Γ
(2pa(Γ)− 2 + #σ(Γ)).

Then one is reduced to show that

2pa(Γ)− 2 + #σ(Γ) ≥ εφ(π(Γ)).

At this point Chen studies separately the case in which Γ is
contracted, π(Γ) intersect properly W0 and finally, the most
delicate case, when the support of π(Γ) is contained in W0.
In both cases one can recover the desired bound for the Euler
Characteristic determining the set σ(Γ) via a subtle blowup
construction and a lower bound for the ramification of the
reduction map of the normalization of each component Γ.

5.2.2 Limits of Chen methods

We end this Chapter by a brief analysis of the features of
Chen’s result and proof that will resemble part of ideas de-
veloped in the next chapter.

First of all the most difficult step in the above proof is to deal
with curves, or components of curves, that are mapped to a
component of the divisor W0. In facts, as described in Chen’s
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paper, one can look at the family π : Y → X as a family of
pre-stable maps with marked points given by the intersection
with the divisor W. With this picture in mind one should deal
with the possible degeneration that the image of such family
of maps could acquire in the fiber over t = 0. This is the hard
part in which a careful description and control of the set σ(Γ)
plays a fundamental role. The use of pre-stable map however
suggests that some moduli space of pre-stable maps could en-
ter the picture allowing a more abstract reformulation of the
problem of hyperbolicity. This will be the path we are going
to follow in the last part of this Thesis.

Secondly we note how the deformation argument sketched
above is really natural when dealing with hyperbolicity ques-
tions; Namely, in many cases (if not all the known cases), a
result for complements of reducible divisor, usually union of
hyperplanes in generic position, is already available, or can
be recovered in an easier way. Using this knowledge one
could try to obtain a result for a generic irreducible divisor
degenerating it to a union of sufficiently many components
having normal crossing and recover the desired conclusion
from the known results in the reducible case. However this
strategy works only for algebraic hyperbolicity and cannot be
extended to Kobayashi hyperbolicity, which was the starting
point of Chen’s analysis: unfortunately Kobayashi Hyperbol-
icity is not an algebraic condition on varieties.

Thirdly we want to stress the fact that the difficulty in deal-
ing with the set σ as well as with the set S used in previ-
ous chapter, is that its cardinality depends only on the num-
ber of points of intersection but not on the multiplicities of in-
tersection. Moreover, for non ordinary multiple points, the
multiplicity coming from the singularity is not detected ei-
ther. Hence one can say that the major difficulty in the pre-
vious construction is that, when dealing with the family of
pre-stable maps Y → X, there is no control on the multiplici-
ties of intersection in the family.
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Finally, from the fact that Chen was interested in strong alge-
braic hyperbolicity and not on log-general type surface, part
of its method cannot simply be extended to deal with com-
plements of very generic quartics in P2. In particular his str-
onger result for complements of very generic curves of degree
at least 5, together with its generalization to higher dimen-
sion, provides a strategy to prove that there are no Gm immer-
sion on the varieties considered, a result that we know to be
false in a generic log-general type surface (see Remark 2.2.7
at page 42). Moreover, all the results in its paper requires a
very generic hypothesis that makes such results weaker than
the corresponding one obtained by Corvaja and Zannier in
the three component case.

From these observation the idea of the present work is to take
a different approach to this problem via Logarithmic Geome-
try. This will allow to control in an efficient way the multiplic-
ities of intersection, incorporating them as a part of the data of
the deformation. Namely Logarithmic Geometry will give us
tools that consent to fix such multiplicities in a family of stable
maps, once we consider the family as a family of logarithmic
maps. Then we will, in some sense, extend Chen’s deforma-
tion arguments for study algebraic hyperbolicity, in the weak
sense, for complements of very generic quartic in P2. The role
played by Theorem 5.2.1 will be taken by Corvaja and Zan-
nier’s Theorem 3.2.3. Despite the naturality of a logarithmic
approach, we will need a heavy machinery coming form the
theory of Logarithmic Stable maps to Deligne-Falting pairs,
as developed by Qile Chen and Dan Abramovich. We will
devote all the next chapter to recall the basic facts we need
for state the mail result for complements of quartics.
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6
Logarithmic Geometry

Logarithmic Geometry can be traced back to ideas of Fontaine
and Illusie; the first systematic discussion of its foundations
has been given by Kazuya Kato in [Kat2]. The theory has been
applied with success both in Arithmetic Geometry (works by,
among others, Faltings, Kato and Tsuji) and in Algebraic Ge-
ometry (related to, Toric Geometry, (p-adic) Hodge Theory,
Moduli Spaces and others). In this chapter we will recall the
basic definitions needed for fully describing the ideas of the
next chapter. For more detailed and extensive introduction to
this fascinating theory we refer the reader to Arthur Ogus lec-
tures [Ogu], to the first sections of [ACG+] and to [Ill]. This
chapter is organized as follows: the first section will recall
the basic notion of logarithmic structure, logarithmic schemes
and maps moving from the pivotal example of a normal cross-
ing divisor in a smooth variety. In the second section the focus
will be the notion of logarithmic curve which is the natural
generalization of pre-stable curve. We are going to briefly de-
scribe the notion of stable logarithmic curve giving evidence
that this notion naturally generalizes usual stable curves: in
particular we will show that log curves encodes naturally a
marked structure as well as some constrains on the possible
singularities. Then we will see how it is possible to give e log-
arithmic structure to any pre-stable curve in a canonical way.
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The last section will be dedicated to log stable maps, a gen-
eralization and an extension of usual stable maps originated
from the work of Kontsevich [Kon]. In this direction we will
concentrate on the moduli of stable maps and its analogous
in the logarithmic category, the stack of log stable maps in the
particular case in which the target log scheme is a Deligne
Falting pair, a structure to which belongs the couple we are
mostly interested in, i.e. P2 and a reduced simple normal
crossing divisor D.

In the context of this Thesis the importance of Logarithmic
Geometry, and more in detail of log stable maps and their
moduli, comes from the fact that they provide the appropri-
ate framework in which Theorem 3.2.3 can be extended. Ac-
tually, the reformulation and extension of Corvaja and Zan-
nier’s Theorem in terms of Logarithmic Geometry will be the
key point that will allow to extend the result to complements
of more general divisors.

6.1 Background and basic constructions

Throughout this Thesis we will assume that all monoids, i.e.
semi-groups with unit, are commutative and all morphisms
between monoids preserve the unit elements. The structure
sheaf of a scheme will be viewed as a sheaf of monoids under
multiplication, unless otherwise specified.

We begin by the motivating example of a normal crossing di-
visor in a smooth variety: this is not only one of the main his-
torically motivation of Logarithmic Geometry, but it is also
the one that we will use the most in the following parts of this
Thesis.

Example 6.1.1. Let X be a smooth variety (or more generally a
regular scheme) and let D be a normal crossing divisor on X.
If U denotes the complement X \ D, one can try to describe
the invertible elements of the ring OX(U), i.e. regular func-
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tion of X that are invertible when restricted to U. In a more
functorial way one can try to define a sheafM on X that as-
sociates to each open subset V of X the setM(V) of regular
functions of X whose restriction to V \ D is invertible, i.e.

M(V) = { f ∈ OX(V) : f |V\D ∈ OX(V \ D)∗}.

Then the following facts hold:

1. M can be given the structure of sheaf of monoids on
X: it is clear that M defines a sheaf, however sum of
invertible functions needs not to be invertible and hence
there is no ring-structure onM(V) for every V.

2. M contains the sheaf of unitsO∗X. In particular there ex-
ists a well-defined mapM→ OX which is the identity
when restricted to O∗X.

3. InformallyM “remembers” the inclusion U → X: while
being defined on X encodes information about U and
his complement D.

4. Derivatives of sections ofM generate the space of sec-
tions of the sheaf of differentials Ω1

X(D) with logarith-
mic poles along D which (partially) justifies the termi-
nology of logarithmic geometry.

5. The normal crossing condition can be rephrased in local
terms if one considers the étale topology instead of the
Zariski topology.

6.1.1 Log structure and log-schemes

Motivated by the previous example we give the following
definition due to K. Kato

Definition 6.1.2. Given a scheme X a pre-logarithmic struc-
ture on X is a sheaf of monoid M on the étale site of X, together
with a morphism of sheaves of monoids α : M → OX where OX
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is viewed as a sheaf of monoids under multiplication. The map α is
sometimes called the structure morphism.

If the map α−1O∗X → O∗X given by α is an isomorphism, M, or
rather the couple (M, α), is called a logarithmic structure on the
scheme X.

Remark 6.1.3. 1. The sheafM defined in example 6.1.1 is a
logarithmic structure on the smooth variety X with the
inclusion mapM→ OX.

2. There is an associated logarithmic structure to every pre-
logarithmic structure (M, α) indicated byMa: is given
by

Ma = O∗X ⊕α−1O∗X M,

i.e. the quotient (in the category of monoids) ofO∗X⊕M
by the relation on sections over a geometric point P ∈ X
defined by

(u, a) ∼ (u′, a′)⇔ ∃v, v′ ∈ α−1O∗X,P :

{
u · α(v′) = u′ · α(v)
v + a = v′ + a′

(this characterization is possible because O∗X is actually
a group under multiplication; see [Kat2] (1.3)). Equiv-
alently the associated logarithmic structure is obtained
by the pushout of the following diagram in the category
of monoids over the étale site

α−1O∗X
α //

��

M

O∗X

.

The structure map for the associated logarithmic struc-
tureMa is given by

Ma → OX (u, a) 7→ u · α(a).

3. Given a monoid M and a ring R there is a canonical log-
arithmic structure that can be defined on X = Spec R[M],
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where R[M] denotes the monoid algebra (the R-algebra
whose underlying module structure is free with basis
M). The log structure comes from the canonical map
M → R[M]. Usually the scheme X = Spec R with its
canonical logarithmic structure is denoted by
Spec (M→ R[M]).

Definition 6.1.4. A logarithmic scheme, usually called a log
scheme, is a scheme X together with a log structure (M, α) defined
on X. We usually denote the log scheme by X when the logarithmic
structure is clear, or by the couple (X,M), suppressing the map
α. If we need to specify the underlying scheme rather than the log
scheme we will use the standard notation (after [Ogu] and [ACG+])
X.

Definition 6.1.5. Given a log scheme (X,MX), the charac-
teristic of the log structureMX is the quotient sheaf

M :=MX/O∗X.

In the same way we focus on varieties rather than on arbi-
trary schemes, we are going to describe a smaller class of log-
arithmic schemes where the underlying sheaves of monoids
possess nice properties that, quoting Kato, are not “too patho-
logical”. We begin by introducing properties of log structures
analogous to being quasi-coherent, coherent and locally free
for sheaves.

Definition 6.1.6. A log-structureM on a scheme X is called
quasi-coherent if étale locally there exists a monoid P together with
a homomorphism PX → OX, where PX denotes the constant sheaf
associated to P, such that the associated logarithmic structure is
isomorphic to M. If the monoid P can be chosen to be finitely-
generated thenM is called a coherent log structure on X. If P '
Nk for some k, the log structureM is called locally free.

In the same spirit, seeking an analogous for normal schemes,
we give the following definitions:

Definition 6.1.7. A monoid (M,+) is called integral if, for
every m1, m2, m ∈ M such that m1 + m = m2 + m it holds m1 =



104 6. Logarithmic Geometry

m2. This is equivalent to require that the natural map M → Mgp

is injective, where Mgp is the associated group of the monoid M.

A monoid (M,+) is called saturated if it is integral and for every
m ∈ Mgp, n ∈ N, if n ·m ∈ M then m ∈ M.

Definition 6.1.8. A log structureM is called integral if it is
a sheaf of integral monoids. It is called fine if it is coherent and
integral; is called fine and saturated, or more briefly fs, if it is a
coherent sheaf of saturated monoids.

Remark 6.1.9. Integral quasi-coherent log structures can be
characterized as follows: given a quasi-coherent log structure
M on a scheme X, M is integral if étale locally is isomor-
phic to the log structure associated to the pre log structure
PX → OX for some integral monoid P. The same holds for
fine log structures replacing quasi-coherent with coherent and
integral with finitely generated and integral (see Definition 6.1.16
for an equivalent reformulation using charts).

Example 6.1.10. 1. In the setting of example 6.1.1 let MD
be the log structure induced by the normal crossing di-
visor D. By the normal crossing hypothesis, the divisor
D can be written (étale) locally as the union of regular
closed subschemes given by fi = 0 with i = 1, . . . , r for
some positive integer r. In this notation, the log struc-
ture MD is the log structure associated to the pre log
structure given by

Nr → OX (n1, . . . , nr) 7→∏
i

f ni
i .

In particularMD is fine and saturated, being N finitely
generated, integral and saturated.

2. To an integral monoid P with no invertible element other
than the unit one can associate an integral logarithmic
structure M on a scheme X via M := O∗X ⊕ P → OX
defined by

(u, a) 7→
{

u if a = 1
0 if a 6= 1
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It can be shown that every integral logarithmic structure
arise in this way. An important example is the so-called
standard logarithmic point defined in the following way:
let X = Spec k be the 0-dimensional affine scheme for
a field k, and consider the integral log structure on X
associated to the integral monoid N as above. Such a
structure, with the additive notation for N is given by

k∗ ⊕N→ OX (u, n) 7→
{

u if n = 0
0 if n 6= 0

and is usually denoted by

(u, n) 7→ u · 0n,

where one defines 00 = 1 and 0n = 0 if n 6= 0.

6.1.2 Log maps

Definition 6.1.11. Given two log structuresM1 andM2 on
a scheme X, a morphism of log structure is a morphism of sheaves
of monoid M1 → M2 compatible with structure morphisms, i.e.
such that the following diagram is commutative

M1 //

α1 ""D
DD

DD
DD

D M2

α2||zz
zz
zz
zz

OX

.

Definition 6.1.12. Given a morphism of schemes f : X →
Y and a (pre) log structure M on Y, the inverse image of M,
denoted by f ∗M is the logarithmic structure associated to the pre
log structure on X associate to the map

f−1(M)→ f−1OY → OX.

Example 6.1.13. 1. The canonical log structure defined in
Remark 6.1.3 on Spec R[M] for a monoid M and a ring R
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associated to the map M→ R[M] can be defined equiv-
alently as the pullback of the canonical log structure on
Spec (M→ Z[M]) via the map Z→ R.

2. The log structure of the standard logarithmic point de-
fined in 6.1.10 can be seen as the inverse image of the log
structure on Spec k[x1, . . . , xn] given by the divisor D :
xi = 0 for some i, via the map Spec k→ Spec k[x1, . . . , xn]
that sends the point Spec k to the origin of the affine
space Spec k[x1, . . . , xn].

With these two notions one can define maps in the category
LSch of log schemes in the following way:

Definition 6.1.14. A morphism of log schemes (X,MX) →
(Y,MY) is a couple ( f , f [) where f : X → Y is a morphisms in
the category of schemes and f [ : f ∗MY → MX is a morphism of
log structures on X.

In the same way characteristics were defined for schemes we
can define the analogous notion for maps:

Definition 6.1.15. Given a log morphism f : (X,MX) →
(Y,MY) the characteristic of f , or the relative characteristic,
is the quotient monoid sheaf MX/N where N is the image of
f ∗MY →MX.

In order to work locally on log schemes and log maps, we
introduce the useful notion of chart:

Definition 6.1.16. Given a log scheme (X,MX), and a monoid
P, a chart for MX is a morphism P → Γ(X,MX) (or equiv-
alently PX → MX) such that the induced map on logarithmic
structure P → M is an isomorphism, where P denotes the log
structure associated to the prelog structure induced by the chart,
i.e. to P→ Γ(X,MX)→ Γ(X,OX).

Remark 6.1.17. Give a map P → Γ(X,MX) is equivalent to
give a map of log schemes

(X,MX)→ Spec (P→ Z[P]),

see [Ogu] for more details.
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Having defined charts for log structures we can make more
precise Definition 6.1.8 in the following way: given a fine log
scheme (X,MX) from the coherence of MX we get a map
PX → OX from the constant sheaf associated to a finitely gen-
erated monoid P whose associated log structure is isomorphic
toMX. This map induces a map P → Γ(X,MX) which is a
chart forMX. This shows that for fine log schemes charts al-
ways exists. In particular fine, fine and saturated and locally
free log schemes can be characterized using charts.

The notion of chart can be extended to morphisms between
log schemes in a natural way:

Definition 6.1.18. Given a morphism of log schemes

f : (X,M)→ (Y,N ),

a chart for f is a triple

(PX →M,QY → N , Q→ P)

consisting of

1. a chart PX →M for (X,M) and a monoid P;

2. a chart QY → N for (Y,N ) and a monoid Q;

3. a monoid homomorphism Q→ P.

such that the following diagram is commutative:

QX //

��

PX

��
f ∗N //M

Remark 6.1.19. Similarly to the case of charts of log structure,
if the schemes (X,M) and (Y,N ) are fine log schemes, a
chart for the map f : (X,M) → (Y,N ) always exists (see
[Kat2], Lemma 2.10).
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6.1.3 Log smoothness

In the following subsection we are going to discuss the notion
of smoothness in the logarithmic category: one of the main
point we are going to focus on, is that log smoothness will
not a priori implies flatness of the underlying morphism. In
this setting the notion of integral log structure will provide
the extra condition needed for such a flatness to hold.

We begin by the following definition:

Definition 6.1.20. Given a morphism of fine log schemes f :
(X,MX) → (Y,MY), f is called log(arithmically) smooth if
the underlying morphism between schemes f : X → Y is locally of
finite presentation, i.e. affine locally represented by a map

Spec A→ Spec B where A =
B[x1, . . . xn]

f1, . . . , fr

and for any commutative diagram of log schemes

T0
φ //

j
��

X

f
��

T1 ψ
// Y

,

where j is a (strict) closed immersion defined by a square zero ideal
and φ, ψ are log morphisms, there exists a morphism g : T1 → X
such that φ = g ◦ j and ψ = f ◦ g, i.e. such that the following
diagram commutes

T0
φ //

j
��

X

f
��

T1 ψ
//

g
??��������
Y

.

This is equivalent to require the map f to be formally smooth and
locally of finite presentation in the category of log schemes.
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Logarithmic smoothness is related to the smoothness of the
underlying map between schemes in the following way:

Proposition 6.1.21. Let f : (X,MX) → (Y,MY) be a log
morphisms between fine log schemes. If f ∗MY 'MX then f is log
smooth if and only if f is smooth as a map between the underlying
schemes.

Note that a log-smooth map needs not to be smooth as a map
between the underlying schemes. The typical example is the
map from a curve with only normal crossing singularities to
a log point: one can see that the map is log smooth while the
underlying map between schemes has singularities being the
curve singular. As an explicit example one can consider the
map

f : Spec
C[x1, x2]

x1 · x2
→ Spec (N→ C),

where the first log structure is given by

N2 → C[x1, x2]

x1 · x2
,

sending ei 7→ xi, and the log map is defined by

N2 // C[x1, x2]

x1 · x2

N

∆

OO

// C

OO
,

with ∆ the diagonal. This is another point in which Log Ge-
ometry allows to deal with singularity as if they were smooth.

As mentioned above log smoothness does not imply flatness
of the underlying map but if we require the map to be integral
we get the flatness. Let us first recall the following

Definition 6.1.22. A morphism f : (X,MX) → (Y,MY) of
fine log schemes is called integral if for every closed point x ∈ X
the map f−1(MY)x → MX,x induces a flat map on the monoid
algebras Z[ f−1(MY)x]→ Z[MX,x].
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With the integrality assumptions flatness follows from log smooth-
ness. The following theorem holds:

Theorem 6.1.23 (Kato). Given a log smooth and integral mor-
phism between fine logarithmic schemes, the underlying map of
schemes is flat.

6.2 Log stable curves

Logarithmic geometry provides tools to extend the usual no-
tion of stable curve and stable maps to the relative case. For
curves the functor of the moduli problem for genus g, n
marked stable curves is representable by a DM stack Mg,n wh-
ich compactifies the open stack of smooth irreducible curves
of genus g with n markings; moreover the boundary given by
singular stable curves is a normal crossing divisor D . There-
fore it is given a natural logarithmic structure MM on the
moduli spaces Mg,n. Analogous construction, using inverse
image of MM and the divisors defined by sections, can be
made on the universal family Cg,n in a canonical way. One
then expects that each stable curve can inherit a logarithmic
structure from these canonical logarithmic structures. This is
the starting point for the definition of log stable curve.

6.2.1 Log curves as stable curves

Recall that a genus g, n pointed pre-stable curve over a scheme
S is a flat projective morphism of schemes C → S with n
sections such that every geometric fiber is a projective, con-
nected, reduced, (at most) nodal curve of arithmetic genus g;
it is called a stable curve if its group of automorphisms is fi-
nite. Equivalently, the stability condition can be expressed by
requiring that the twisted dualizing sheaf ωCs(P1 + · · ·+ Pn)
is ample, where Cs is a geometric fiber and P1, . . . , Pn are its
marked points. Our first goal is to show that stable genus g n
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pointed curves and log curves are, in some sense, “faces of the
same coin”, i.e. on one side to each genus g, n pointed stable
curve can be given a log structure in a natural way, and on the
other side, each log curve has a structure of a usual pre-stable
curve where the log structure encodes information similar to
the pointed structure. These results were first established by
Fumiharu Kato in [Kat1]; we refer to this paper, together with
[ACG+], for details and complete proofs.

We begin with the following

Definition 6.2.1 ([Kat1] 1.2). A log curve over an fs log scheme
(S,MS), is a log smooth and integral morphism f : X → S of fs log
schemes such that each geometric fiber is a connected and reduced
curve.

We note that from the integrality assumption it follows that
the map f is flat as a map between the underlying schemes.
In order to deal with moduli space we specify the definition
of arrows with the following

Definition 6.2.2. An isomorphism of log curves C1 → S and
C2 → S over an fs scheme S with log structureMS1 ,MS2 respec-
tively, is a couple (σ, γ) where

1. σ : (S,MS1)→ (S,MS2) is an isomorphism of log schemes
such that the underlying map between schemes is the identity;

2. γ : (C1,M1)→ (C2,M2) is an isomorphisms of log schemes
whose underlying map between schemes is an isomorphism of
pre-stable curves over S;

3. the two maps are compatible with the log curve structure, i.e.
the following diagram is commutative

(C1,M1) //

��

(C2,M2)

��
(S,MS1)

// (S,MS2)

With the definition of arrows we can form a category of log
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curves together with a stability condition that we will de-
scribe later. The main feature of log curves is that the f s hy-
pothesis together with the log-smoothness restrict the possi-
ble singularities that can appear in such curves. The following
theorem holds:

Theorem 6.2.3 ([Kat1] 1.3). Given a log curve

f : (X,MX)→ (S = Spec k,MS)

with k separable closed then X has at worst nodal singularities.
Moreover, call r1, . . . , rl the set of double points of X, then there
exists s1, . . . , sn points distinct from the nodes, such that the char-
acteristic of f is given by

MX/S = Zr1 ⊕ · · · ⊕Zrl ⊕Ns1 ⊕ · · · ⊕Nsn ,

where for a monoid P we denote by Px the skyscraper sheaf sup-
ported at x.

As a corollary we see that, not only the log curve structure on
(X,MX) → (Spec k,MS) gives X a pre-stable structure, but
it gives also a set of “special” points, namely s1, . . . , sn in the
previous notation; such points should be thought as marked
points for the curve X. Indeed, if every fiber of X → S is
a genus g curve, the si make possible to define sections Σi :
S → X, and hence recover a genus g, n-pointed structure on
the curve X (see [Kat1], Proposition 1.7 for detailed discussion
and proofs). We will refer to the points si as the marked points
of the log curve.

We have seen how markings can be recovered from the log
structure on a log curve. Next step is to define the stability
condition in terms of Log Geometry. For this we need the
following definition

Definition 6.2.4 (Logarithmic differentials). Given a mor-
phism of log schemes f : X → Y, there exists a OX-module Ω1

X/Y,
called the sheaf of logarithmic differentials, which carries a uni-
versal derivation (d, dlog) in the logarithmic category and verifies,
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for every OX-module A

HomOX (Ω
1
X/Y, A) ' DerY(X, A)

as OX-modules.

In the case Y = Spec (N → k) is the standard log point, X a
smooth variety andMX coming from a normal crossing divi-
sor D, then the module Ω1

X/Y is generated by the differentials
with logarithmic poles along D (with a relation). For details
and properties of Ω1

X/Y see [Ogu].

Proposition 6.2.5 ([Kat1] 1.13). Given a log curve

f : (X,MX)→ (S = Spec k,MS)

with marked points {s1, . . . , sn}, there exists a natural isomorphism

Ω1
X/S ' ωX(s1 + · · ·+ sn).

From the previous Proposition one can see that the stability
condition can be rephrased in terms of the sheaf of log differ-
entials which naturally encodes the contribution of the mark-
ings. Hence we can give the following definition:

Definition 6.2.6 (Log stable curve). Given a log-curve f :
X → S let p ∈ S denote a close point; define l = l(p) and n =
n(p) to be the integers such that

MXp/p = Zr1 ⊕ · · · ⊕Zrl(p) ⊕Ns1 ⊕ · · · ⊕Nsn(p).

Then f (X) is called a g, n log stable curve if f is proper, X has
genus g, n(p) = n for every p and Ω1

X/S is ample.

6.2.2 Canonical log structure on stable curves

From the previous discussion it follows that every g, n log sta-
ble curve is (naturally) a genus g, n-pointed stable curve in
usual sense. Next step would be a natural converse of the
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previous construction, i.e. given a usual stable curve, define a
natural/canonical log structure so that the relative character-
istic is supported at the nodes. Since we are going to use this
construction in the sequel we briefly recall it.

Let X → S be a stable genus g curve with n markings. We are
going to restrict to the special case S = Spec k for a field k al-
though the same construction can be done over the spectrum
of a strict Henselian ring. Near a node ri of f one can find
a Cartesian diagram, over an étale neighborhood of (points
specializing to) ri, that looks as follows:

Ui
ψi //

��

Spec
k[x, y, t]
(xy− t)

π

��
S

ϕi // Spec k[t]

Define on the bottom right corner a log structure N→ k[t] by
e 7→ t; in the same way on the upper right corner define a log
structure

N2 → k[x, y, t]
(xy− t)

by
e1 7→ x e2 7→ y

(e denotes generator for N). Then if ∆ is the diagonal N →
N2, (π, ∆) is a log morphism. Using these structures we can
pull them back to S and Ui via ϕi and ψi respectively, obtain-
ing log structures Li andM′

i.

Away from ri we defineM′′
i to be the pullback of Li; the log

structure Mi on X will be defined as the gluing of M′
i and

M′′
i . Finally letN be the log structure induced by the divisor

of marked points.

Definition 6.2.7 (Canonical log structure on stable curves).
Given a stable curve f : X → S of genus g with n marked points,
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in the previous notations, the canonical log structure on f is the
following couple of log structures on X and S respectively

MX =M1 ⊕O∗X · · · ⊕O∗X Ml ⊕O∗X N
MS = L1 ⊕O∗X · · · ⊕O∗X Ll .

With this structure f : (X,MX) → (S,MS) is a log curve as
in Definition 6.2.1 where the morphism at the level of log structure
is naturally defined by construction (and by the Cartesian diagram
above).

Remark 6.2.8. The canonical structure on the base MS is lo-
cally free, i.e. there exists a non-negative integer l such that
MS,s ' Nl for every closed point s ∈ S. This gives a global
chart Nl → MS. Now the analogous of the local picture de-
scribed above in the neighborhood of a node, at the level of
(pre) log structures looks as follows:

M|U Nl−1 ⊕N2oo

π∗(MS)|U

π[

OO

Nl−1 ⊕Noo

(id,∆)

OO

The image in MS of the generator of the bottom right N is
called the element inMS smoothing the node p.

The canonical log structure verifies a minimality condition in
the following sense: given a log curve f : X → S, for any
other log curve f ′ : X′ → S′ whose underline curve is iso-
morphic to the base change X′ ' X ×S S′ and such that the
divisor of marked points of X′ is sent scheme-theoretically to
the divisor of marked points of X, there exist unique log maps
α, β, extending the maps given by the fiber product, making
the following diagram Cartesian

X′

f ′
��

β // X

f
��

S′ α // S
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We end this section by explicitly determining the stalks of
the characteristic at smooth points, marked points and nodes.
This will give, in particular, a local description of the canon-
ical structure over marked points and nodes in terms of the
logarithmic structure of the base.

Remark 6.2.9. Given a log curve (C,M) with canonical log
structure over a point (Spec k,N ), where N comes from a
monoid P with the unit as the only invertible element, the
characteristic of M at the level of stalks can be described as
follows:

1. Over a generic point ξ, or a closed point different from
nodes and marked points, the log structure comes en-
tirely from below hence

Mξ = P.

2. Over a marked point s the log structure comes from the
base plus a contribution of the marked point. In partic-
ular, given Theorem 6.2.3 and Definition 6.2.7 one gets

Ms = P⊕N.

3. Finally over a node r the log structure has again a com-
ponent coming from the base and a component depend-
ing on the node. From the description given at the be-
ginning of this subsection of the local behavior of the
canonical structure in a neighborhood of a node, one
sees that

Mr = P⊕N N2,

where the map N → P, given by 1 7→ p, comes from
C → Spec k and the map N→N2 is the diagonal.

6.3 Log stable maps

In this section we are going to review the extension of the
theory of stable maps to log stable maps via Logarithmic Ge-
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ometry tools. Originated by the work of Kontsevich [Kon] to
rigorously formulate (and check) prediction in enumerative
geometry, the moduli space of stable maps, compactifying the
space of maps from stable curves to varieties with fixed nu-
merical data, gives the proper framework to build Gromov-
Witten (GW) invariants’ theory and their computation. Since
the works [Li1] and [Li2] (in the algebraic category), relative
GW invariants with respect to a smooth divisor has been ex-
tensively studied from different points of view. In a 2001 lec-
ture Bernd Siebert proposed a new approach based on Log-
arithmic Geometry that, lately, led to establish the right set-
tings for a good moduli theory of log stable maps [GS]. A
different approach was introduced by Chen in [Che1] which
uses marked graphs instead of insights from tropical geom-
etry with some restriction on the target spaces. Both these
approaches define a suitable condition on the log maps (basic-
ness in Gross and Siebert’s work, minimality in Chen’s paper)
which allows to define moduli spaces for these maps (with
some extra conditions) which are proper and carry a perfect
obstruction theory, as well as a virtual fundamental class.

For the purpose of the present work, we are mainly interested
in Chen’s approach, or better in its generalization [AC], since
it deals precisely with the situation we are interested in, i.e.
a target space where the log structure is given by a simple
normal crossing divisor. We refer to the papers [Che1] and
[AC] for detailed proofs.

6.3.1 Basic properties of log stable maps

We start by recalling that a stable map f : C → Y is a diagram

C
π
��

f // Y

S
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with Y a projective scheme, π : C → S a pre-stable curve and
f : C → Y a morphism; the stability condition requires that
AutY(Cξ) is finite for every geometric point ξ ∈ S. When con-
sidering moduli problems for stable maps one fixes the genus
g and the number n of marked points of C → S together with
a curve class β in the projective scheme Y. Once these numer-
ical data are assigned, there exists a Deligne-Mumford stack
Mg,n(Y, β) parametrizing stable maps f : C → Y from pre-
stable curves C of genus g with n marked points such that
f∗[C] = β. We note briefly that pre-stable maps form a cate-
gory fibered in grupoids over Sch, the category of schemes,
and that this category is represented by an algebraic stack wh-
ich contains, as a proper substack, stable maps of fixed numer-
ical data (g, n, β).

We begin by an extension of this definition to the logarithmic
category.

Definition 6.3.1. A pre-stable log map f : C → Y over a
fs log scheme S is a couple given by a log curve π : C → S and
a morphism of log schemes C → Y. It can be represented by the
following diagram:

(C,MC)

π
��

f // (Y,MY)

(S,MS)

where now the diagram lives in the logarithmic category. A pre-
stable log map is called stable if the underlying map between schemes
is stable in the usual sense.

Morphisms of (pre-)stable curves are morphisms of log curves as in
Definition 6.2.2 that are compatible with the log map; more precisely
given two pre-stable log maps f1 : (C1,M1) → (Y,MY) and f2 :
(C2,M2) → (Y,MY) over (S,MS1) and (S,MS2) respectively,
an isomorphism of pre-stable log maps is an isomorphism of the log-
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curves (σ, γ) such that the following diagram is commutative:

(Y,MY)

(C1,M1)
γ //

��

f1 --

(C2,M2)

��

f2

CC

(S,MS1)
σ // (S,MS2)

Previous Definition can be extended to deal with the case of
families of targets, i.e. replacing the fs log scheme Y with a
family Y → B of projective log schemes (see [Che1] section 2
and [AC] section 5). Objects and arrows of the corresponding
category are defined similarly to the previous Definition.

In the same spirit of Remark 6.2.9 we give a local descrip-
tion of a log map in the case where the log structure MY
on the target Y is given by a smooth divisor D. This gives
a map N → MY (see example 6.1.10). This log structure
(and more generally every locally free DF-structure (see next
section)) is equivalent to the data of a line bundle L (in this
case OY(−D)) and a section s ∈ H0(L∨) which gives a map
L → OY that induces the logarithmic structure on Y.

Remark 6.3.2. Let f : C → Y be a log map over a geometric
point S = Spec k with log structure MS. Suppose that the
log structure MY on Y is given by a smooth divisor D ⊂ Y
as above and that the log structure of the curve C → S is
the canonical one. For every point p ∈ C in an irreducible
component Z = Zp ⊂ C there is a map at the level of the
characteristics

f
[

: f ∗(MY)p →MC,p.

As in remark 6.2.9 we focus on three cases that exhaust all the
possible behaviors of the map f

[
.

1. Let p be a smooth, non-marked point. Then the map
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reads
f
[

: f ∗(MY)p →MS.

If δ denotes the standard generator of N then we have

that f
[
(δ) = e ∈ MS. Such e is called the degeneracy

of the irreducible component Z = Zp. By the descrip-
tion of MY, if f (p) /∈ D for all p ∈ Z then the image

of f
[

vanishes. We call a component Z degenerate if its
degeneracy is not zero.

2. Let p be a marked point. Now the maps reads

f
[

: f ∗(MY)p →MS ⊕N

and then, with the above notation we have that

f
[
(δ) = e + cp · σp,

where cp is a non negative integer and σp denotes the
generator of N in the stalk of the characteristic of C.
The integer cp is called the contact order of f at p. It can
be identify with the multiplicity of intersection ( f (C) ·
D) f (p).

3. Let p be a node, at the intersection of two irreducible
components Z and Z′. Let ep be a smoothing of the node
p, and let log xp and log yp be elements in MC given
by the local coordinates of Z and Z′ respectively, at p.
Then by the construction of the canonical log structure
of C → S the following equality holds inMC :

ep = log xp + log yp.

Hence, without loss of generality, the map f
[

can be as-
sumed to be

f
[
(δ) = e + cp · log xp

for a non negative integer cp, called the contact order of f
at the node p. The node is called distinguished if cp 6= 0.
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The degeneracy of the two components Z and Z′ are
respectively e and e + cp · ep. Sometimes Z is called the
lower component and Z′ the upper component of p

The main property of the contact orders is summarized in the
following

Lemma 6.3.3. Give a log map f : C → Y over S the following
hold:

1. for every marking Σi, there exists an open subset S′ such that
the order of contact along Σi is constant;

2. for every node at the intersection of two irreducible compo-
nent there exists an open subset S′′ such that either the node
is smoothed out or its contact order remains the same.

6.3.2 Deligne Falting pairs and moduli of minimal
log stable maps

As for usual stable maps one can construct the moduli space
associated to log (stable) maps, which is a category fibered in
grupoids over a log scheme S with fixed genus and marked
points. This stack, denoted by LMg,n(Y) (or LMg,n(Y/B)
in the relative setting), is a category fibered in grupoids that
associates to every log scheme (or B-scheme) S the grupoids
of log maps over S, such that the underlying map has source
given by a pre-stable genus g curve with n marked points.
This stack is algebraic in the sense of Artin ([Che1]) but is,
nonetheless, unhandy, containing all possible log structure on
the base S. Since the main goal is to study log maps without
the information on the base structure we will focus on two
open substacks parametrizing a special subclass of log maps
called minimal.

A complete treatment of minimality for log stable maps is be-
yond the scope of this chapter, nevertheless we gave here the
basic definition and results referring to [Che1] section 3 and
[AC] for detailed construction and proofs.
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Before moving to minimality we fix the settings in which such
a notion is naturally defined. We begin by the following

Definition 6.3.4. Given a log scheme (X,MX) we call it a
Deligne-Faltings pair, often written as DF pair, ifMX is locally
free and there is a morphism of locally constant sheaves Nk →MX
which locally lifts to a chart. The map Nk →MX is called a global
presentation of MX and the integer k is called the rank of the
Deligne-Falting pair (X,MX).

As a typical example take a smooth Cartier divisor D in a
smooth scheme X, and equip X with the log structure MX
coming from D. Then (X,MX) is a Deligne-Faltings pair of
rank 1, andMX corresponds to the line bundleOX(−D) with
the map OX(−D)→ OX.

For the rest of this chapter assume fixed a rank k DF pair
(Y,MY) with Y projective and global presentation of MY
given by Nk →MY. In the case k = 1 to such a pair it corres-
ponds the data of a line bundle L and a section s ∈ H0(L∨)
which give a map of sheaves L → OY whose associated log
structure isMY. If s is not a zero section, then, denoted by D
the vanishing locus of s, L = OY(−D). Moreover if δ is the
generator of N, which we will identify by abuse of notation
with its image inMY, we have that δ lifts, locally, to a section
of OY whose vanishing locus gives the divisor D.

If k > 1 then for i = 1, . . . , k one has maps αi : N→Nk given
by the inclusion of the i-th component. The composition

N
αi //Nk //MY

defines a rank 1 DF structureMY,i on Y which gives a decom-
position

MY =
k⊕

i=1

MY,i

in which eachMY,i, by the discussion above, corresponds to
a couple (Li, si) of line bundles and sections. As an example
of such a construction, generalizing the above example, one
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can consider a simple normal crossing divisor in which each
Li corresponds to OX(−Di), for an irreducible component Di
of D.

The first definition of minimality follows from the log struc-
ture of the moduli space in the following way: consider the
category LMg,n(Y) fibered over fs log scheme, instead of log
schemes. Such a category admits a fs logarithmic structure
as an Artin stack; denote it by K(Y) = (K,MK): stable log
maps over S are equivalent to log morphism S → K(Y). The
existence of such a fs log stack permits to identify a minimal
structure on log maps over usual schemes by pulling back the
log structureMK.

More formally, given a scheme S, an object of the stack K(Y)
is an arrow S→ K(Y). This map gives a log scheme S = Smin

where the log structure is pulled back from K(Y). Now from
every log map over S, f : C → Y, one obtains a log map
with log structure pulled back from K(Y) and its universal
family C. This can be made explicit in the following Cartesian
diagram:

C //

��

Cmin //

��

C

��

// Y

S //

  A
AA

AA
AA

AA
Smin //

��

K(Y)

��
S // K(Y)

Definition 6.3.5. A log map f : C → Y over S is called mini-
mal if the log structure on C → S is pulled back from the log struc-
ture of K(Y). This is equivalent to require that the map S→ K(Y)
corresponding to f is strict.

Minimality can be checked combinatorially from the map f :
C → Y without any reference to the log structure of the stack
K(Y). This has the advantage that, given any log map, one
can define explicitly a minimal log structure associated to f .
In fact one can do better and obtaining the following:



124 6. Logarithmic Geometry

Theorem 6.3.6 (Q. Chen). To any log map f : (C,MC)→ Y
over an fs log scheme (S,MS) there exists a minimal log map over
(S,MS

min), and a map of fs log schemes

Φ : (S,MS)→ (S,MS
min),

both unique up to isomorphism, such that the following diagram is
commutative

(Y,MY)

(C,MC)
ΦC //

��

f --

(C,MC
min)

��

fmin

BB

(S,MS)
Φ // (S,MS

min)

Construction 6.3.7. We briefly sketch the ideas underlying Chen’s
combinatorial description of minimality for the case k = 1. To
each log map f : C → Y over S there is a canonical graph asso-
ciated, namely the dual graph of the curve C. To such a graph,
Chen gives weights to the edges given by contact orders and
an orientation to a subset of them coming from the partial
order defined by upper and lower components; he then con-
structs a monoid M(G f ) which posses a generator for each
vertex and edge together with some natural relations coming
from the local behavior of the map at the level of characteristic
described in subsection 6.3.1. By quotienting out the torsion
part of the associated group and taking the saturation of the
image of the monoidM(G f ) in such a quotient one obtains a
sharp monoid,M(G f ) with a canonical map

φ :M(G f )→MS.

Then the map f is minimal if and only if φ is an isomorphism.

We now fix discrete data that gives a partition of the moduli
space of log stable maps.
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Notation 6.3.8. Denote by Γ the fourple (β, g, n,~c) where

1. β ∈ H2(Y, Z) is a curve class;

2. g is a non-negative integer denoting the genus;

3. n is a non-negative integer denoting the number of marked
points;

4. ~c is a set of tuples, denoting the contact order of the
markings. In particular ~c = (cij) with i = 1, . . . , k and
j = 1, . . . , n such that

β · c1(L∨i ) =
n

∑
j=1

cij.

Here the Li are the line bundles associated to the DF pair
(Y,MY) of rank k, and c1 denote the first Chern class.

Definition 6.3.9. A minimal log stable map f : C → Y over
a geometric point S is called minimal with respect to Γ, or Γ-
minimal if

1. the curve C → S is a log pre-stable curve of genus g with
n-markings;

2. the pushforward of the fundamental class of C equals β, i.e.
f∗[C] = β;

3. the contact order along the i-th marking with the j-th compo-
nent Dj of the divisor D is given by cij.

The stack parametrizing minimal stable maps with genus g, n-
markings and curve class β is denote by Kg,n(Y, β) and the stack
parametrizing Γ-minimal stable maps is denoted by KΓ(Y).

The above stacks are both algebraic and the following parti-
tion, of open and close substacks holds:

Kg,n(Y, β) =
⊔
Γ

KΓ(Y).
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The main properties of the above stacks are summarized in
the following

Theorem 6.3.10 (Q. Chen, Abramovich - Chen). The fibered
category KΓ(Y) is a proper Deligne-Mumford stack with a repre-
sentable and finite map to the stack of standard stable maps obtained
by removing log structures.

Remark 6.3.11. The projectivity of the scheme Y is essential
for the properness of the stack; however some properties can
be recovered with the weaker hypothesis of Y being separated
and of finite type over C.



7
Complements of a very

generic quartic

The main goal of this chapter is to extend Theorem 3.2.3 to
complements of very generic quartics. The main idea is to
consider flat deformations of degree four divisors in P2 and
reformulate Corvaja and Zannier result in order to make it
invariant under such deformations of the boundary divisor.
The tool used here is Logarithmic Geometry in the sense of
Kato and Illusie as introduced in Chapter 6. We will begin by
an extension of the result for complements of a conic and two
lines to log-stable maps. The aim is to give a “moduli” refor-
mulation relating the degree bound to a vanishing of certain
moduli space of log stable maps to DF pair as defined by Chen
and Abramovich-Chen (see Section 6.3). This will be the focus
of the second section where we will prove that the strengthen
version of Theorem 3.2.3 is actually equivalent to the empti-
ness of some stacks of (minimal) log stable maps. Once this
equivalence is settled we use the properness of the stacks to
obtain the same vanishing for stacks constructed from com-
plements of more general degree four divisor.



128 7. Complements of a very generic quartic

7.1 Three components case for log-stable maps

Corvaja and Zannier prove Lang-Vojta Conjecture in the split
function field case for the complement of a conic and two lines
in P2 as described in detail in section 3.2.1 at page 50. Their
main result, i.e. Theorem 3.2.3 page 50 states that morphisms
f : C̃ → P2 such that C̃ is a smooth projective curve, f−1(D) ⊂
S for a divisor D in P2 consisting of a conic and two lines with
normal crossing and a finite set of points S ⊂ C̃, verify

deg( f (C̃)) ≤ 215 · 35 ·max{1, χ(C̃ \ S)},

where as usual the Euler characteristic of the affine curve C̃ \ S
is defined as

χ(C̃ \ S) := χS(C̃) = 2g(C̃)− 2 + #S.

The first step towards a generalization of Theorem 3.2.3 is to
consider more general maps than the one considered by Cor-
vaja and Zannier. The reason is that we want to use deforma-
tion arguments applied to our situation and this led naturally
to consider reducible curves.

7.1.1 Extending Corvaja and Zannier Theorem

Consider a flat deformation Dt of the divisor D, a conic and
two lines in general position, in which the general member
is a quartic and the special fiber over a geometric point is
D0 = D. Construct the associated fibered threefold X in
which every fiber is P2 with the corresponding divisor Dt.
We want to study families of curves that moves in the defor-
mation, i.e. such that when restricted to a fiber give a plane
curve. In particular we want to answer the following ques-
tions:

Q1: Suppose that the image in the general fiber is smooth:
what can be sad about the image in the special fiber
P2, D0?
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A: From the theory of stable map we know that such a curve
could acquire at most nodal singularities and in partic-
ular can become reducible.

Q2: What can be said about the variation of the number of
points of intersection with the divisor Dt?

A: The question here is more subtle: the main difficulty is
that multiplicities of intersection cannot be controlled
a priori in the family. Even worse one of the compo-
nents of the curve can be mapped on a component of
the boundary divisor. In such a case even defining the
multiplicity of intersection can be troublesome. That is
precisely the point in which Logarithmic Geometry will
play an important role.

From the previous discussion there is some evidence that we
have to deal with morphisms from pre-stable curves, i.e. re-
ducible connected curves with at worst nodes as singulari-
ties. The first thing we have to care about is the behavior of
the set S, i.e. the set of points in the curves that are mapped
to the divisor, when considering reducible curves instead of
irreducible ones. With this goal in mind we first define the
concept of partial normalization of a curve.

Definition 7.1.1. Let C be an affine, reducible and at worst
nodal curve. We resolve the nodal singularities which do not occur
as points of intersection of different components. The strict trans-
form of C gives rise to a curve of the form C̃ \ S for a projective,
reducible and at worst nodal curve C̃ in which every node occurs
as a point of intersection of two different components; we call C̃ \ S
a partial normalization of C. In particular all partial normalized
curves have simple normal crossing singularities.

As an example consider the figure 7.1 in which a blow-up
of a curve C̃ at the node P is pictured: the blow-up resolves
singularities in the irreducible components distinct from the
normal crossing singularities arising as intersection between
different components.
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P1

P2

Q1

Q2

Q3

Q4

blP //

P

Q1

Q2

Q3

Q4

Figure 7.1: Partial normalization of a curve

Now from a partial normalization of C we would like to con-
sider the set S such that it is additive with respect to the irre-
ducible components of C, i.e. if C1, . . . , Cr are the irreducible
components of the partial normalization of the pre-stable
curve C and Si denotes the set of points of S that lie in the
irreducible component Ci, we want to understand whether is
it true that

r

∑
i=1

#Si
?
= #S.

It is easy to construct examples in which the former equality
does not hold. Consider a two component plane curve C1 ∪C2
in which each component is isomorphic to a line and they
intersect in a unique node P = C1 ∩ C2. Suppose that the only
point of S in the curve is the node. Then one has

#S1 = 1 #S2 = 1 #S = 1.

As this example shows, the problems can arise when con-
sidering curves in which the points of S are nodes. In facts
nodes are special points of two different irreducible compo-
nents and therefore they count twice when considered in each
component separately, but at the same time, they are counted
once in the total curve. More in general one can prove that
if the set S does not contain any node then its cardinality is
additive in the previous sense. On the other hand, when the
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set S contains nodes, the additivity fails to hold. Nevertheless
one can relate the total number of points of the set S with the
sum of the number of points in each irreducible component
in the following way:

Lemma 7.1.2. Let C be the partial normalization of a pre-stable
curve and let S as before. Let Ci be the i-th irreducible component of
C for i = 1, . . . , r and let Si = S ∩ Ci, i.e. the set of points of S in
the irreducible component Ci, then the following holds:

r

∑
i+1

#Si ≤ #S + # nodes .

Proof. For previous discussion, if S does not contain any node
then #S is additive in its components and hence the conclu-
sion holds trivially. Suppose that S contains exactly a node P:
then such a node is a point of at most two components, say Ci
and Cj. This implies that

Si ∪ Sj = (Si \ {P}) ∪ (Sj \ {P}) ∪ {P}

and then, since

#Si + #Sj = #S ∩ (Ci ∪ Cj) + 1,

one gets
r

∑
k=1

#Sk = #S + 1.

From the previous calculation we get that if S contains n nodes
then sum of the number of points of S in each component is
precisely equal to #S + n. Hence, in the worst situation in
which S contains all the nodes we get the upper bound re-
quired.

Remark 7.1.3. From the proof of Lemma 7.1.2 we actually
proved something more: we showed that if n is the number
of nodes contained in S then

#S = ∑ #Si − n,
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which in particular implies that the cardinality of S is additive
if no nodes are contained in S. However, for future needs, we
will need only the estimate given in the previous Lemma.

Next step is to study how the Euler characteristic behave for
reducible curves with respect to the Euler Characteristic of
the irreducible components. We split the description in the
following two lemmas, treating first the case in which all the
irreducible components have positive Euler characteristic.

Lemma 7.1.4. Let C̃ = ∪n
i=1Ci (n ≥ 2) be a projective, re-

ducible and at worst nodal curve, in which every node occurs as
a point of intersection of two different components; let g = g(C̃),
gi = g(Ci) and let S be a finite set of points on C̃ with Si = S ∩ Ci.
If χSi(Ci) > 0 for all i, then the following holds:

n

∑
i=1

max{1, 2gi − 2 + #Si} ≤ 2g− 2 + #S i.e.

n

∑
i=1

max{1, χSi(Ci)} ≤ χs(C̃).

In particular χS(C̃) ≥ 1.

Proof. The starting point is the formula for the genus of a con-
nected at worst nodal projective curve which reads as follows:

g(C̃) =
n

∑
i=1

g(Ci) + #nodes− #components + 1. (7.1)

From this and from Lemma 7.1.2 we get that

χS(C̃) = 2g− 2 + #S

= 2
n

∑
i=1

gi + 2# nodes − 2# comp + #S

≥ 2
n

∑
i=1

gi + 2# nodes − 2# comp + ∑ #Si − # nodes

≥
n

∑
i=1

χSi(Ci) + # nodes .
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Now, we are assuming that for every component χSi(Ci) ≥ 1.
Then

χS(C̃) ≥
n

∑
i=1

χSi(Ci) + # nodes

≥
n

∑
i=1

max{1, χSi(Ci)}.

Previous Lemma leaves out the case in which irreducible com-
ponents of the curve have non positive Euler Characteristic.
From geometric construction one can see that the only case
that do not follow in the previous result is the one in which
one of the components has genus 0 and only two points of
S. In this case one cannot recover the same result but only a
optimal estimate that read as follows:

Lemma 7.1.5. With the notation above, without any restric-
tion on the Euler characteristic of the irreducible components the
following holds:

χS(C̃) ≥
n

∑
i=1

χSi(Ci) + # nodes .

In particular, every time there exist more than one irreducible com-
ponent, the Euler characteristic χS(C̃) is always positive.

Proof. The desired bound follows from Lemma 7.1.4 together
with the lower bound:

# nodes ≥ # components − 1.

7.1.2 Extension to log stable maps

As mentioned at the beginning of this section we want to
extend Theorem 3.2.3 (page 50) to a more general class of
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maps. This class of maps will be the class of logarithmic stable
maps introduced in Section 6.3 Chapter 7. This choice is nat-
ural in the following sense: maps considered by Corvaja and
Zannier were morphism from abstract nonsingular curves C̃
with a distinguished set of points S (whose complement cor-
responded to the normalization of an affine curve) to P2, such
that the inverse image of the intersection between the (image
of) the curve and the divisor D (a conic and two lines in gen-
eral position) was precisely S. In this setting the target (P2, D)
of such maps is a Deligne-Falting pair, being D a simple nor-
mal crossing divisor. Moreover the divisor S on the source
curve gives a log-structure over C̃, and extends the map to a
logarithmic map being S precisely the inverse image of D. In
particular the map between log structures is strict and the log
map is automatically stable, because we require the source to
be irreducible, non singular and the map to be non-constant.
For this reasons, having in mind a moduli construction, we
want to study whether the conclusion of Corvaja and Zan-
nier’s Theorem holds more in general for a generic stable log-
map (C̃, S)→ (P2, D).

We are then concerned with log-morphisms ϕ : C̃ → P2 such
that the pre-image of points of intersection ϕ(C̃) ∩ D are con-
tained in S. For our needs being a stable log-morphism from
the curve C̃ to P2 with respect to the divisor D is equivalent
to the following conditions:

1. the underlying map between schemes is stable;

2. For every irreducible component Ci of C̃ such that Ci
maps to a degree one irreducible component of D, Si
contains at least three points.

3. For every irreducible component Cj of C̃ such that Cj
maps to the degree two irreducible component of D, Sj
contains at least four points.

Here Si ⊂ S is again the set of points of S lying in the irre-
ducible component Ci, i.e. Si = S ∩ Ci. Then extension of



7.1. Three components case for log-stable maps 135

Theorem 3.2.3 follows from the following theorem (from now
on, in order to simplify the notation we put A = 215 · 35).

Theorem 7.1.6. Given C̃, S, D as above, let ϕ : C̃ → P2 be
a non-constant log-morphism such that ϕ−1(D) ⊂ S. Then the
degree of the image ϕ(C̃) verifies:

deg(ϕ(C̃)) ≤ A ·max{1, χ(C̃ \ S)}.

Proof. If C̃ is irreducible the conclusion is given by Theorem
3.2.3. Hence we will assume that C̃ has more than one irre-
ducible component. From Lemma 7.1.5 this implies that the
Euler Characteristic χS(C̃) is strictly positive.

We divide the proof in three steps:

Step 0 We begin by proving the theorem for the case in which
C̃ has precisely two irreducible components C̃ = C1 + C2
such that ϕ(C1) = D1 = {line}, and ϕ(C2) meets prop-
erly the divisor D with χS2(C2) > 0. This will illustrate
the main ideas of the proof in a handy case, before con-
sidering the general situation. Denote as usual S1, S2
as the set of points of S in the two irreducible compo-
nents C1 and C2 respectively. In this case, being ϕ a
log-morphism, we have #S1 ≥ 3. Define fi := ϕ|Ci for
i = 1, 2; in this setting we obtain

deg ϕ(C̃) = deg f1(C1) + deg f2(C2)

= 1 + deg f2(C2).

We turn our attention to the component C2: the image
of this smooth curve has proper intersection with the
divisor D and hence falls into the cases of Theorem 3.2.3.
Thus

deg f2(C2) ≤ A ·max{1, 2g(C2)− 2 + #S2}.

At the same time we have Equation 7.1 for the genus of
a connected at worst nodal curve, from which, together
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with the stability condition, we get

deg ϕ(C̃) = deg f1(C1) + deg f2(C2)

≤ 1 + A max{1, 2g(C2)− 2 + #S2}
≤ A[2g(C1)− 2 + 3] + A max{1, 2g(C2)− 2 + #S2}
≤ A[2g(C1)− 2 + #S1] + A max{1, 2g(C2)− 2 + #S2}
≤ A[2g(C1)− 2 + #S1] + A[2g(C2)− 2 + #S2]

≤ A
(
2[g(C1) + g(C2)]− 2 · 2 + #S1 + #S2

)
.

Using Lemma 7.1.2, which gives #S1 + #S2 bounded above
by #S plus the number of nodes, and the formula for the
genus of a pre-stable curve we conclude that

deg ϕ(C̃) ≤ A
(
2[g(C1) + g(C2)]− 2# comp + #S + # nodes

)
≤ A

(
2[g(C1) + g(C2)]− 2# comp + 2# nodes + #S

)
≤ A

(
2g(C̃)− 2 + #S}

≤ A max{1, 2g(C̃)− 2 + #S}.

We observe that, as in the proof of lemma (7.1.4) we can
always assume #S2 ≥ 2; moreover the same proof could
be applied in the case of a two-component curve in wh-
ich one of the two components maps over the degree-
two component of the divisor D.

Step 1 Having Step 0 we apply the same ideas to a more gen-
eral situation. We start from a connected at worst nodal
affine curve whose partial normalization, in the sense
defined above, is C̃ \ S where C̃ is a connected at worst
nodal projective curve in which the nodes occur only
as intersection of two different components. For a fixed
log-morphism ϕ : C̃ → P2 such that ϕ−1(D) ⊂ S, we
arrange the components of C̃ in four groups so that

C̃ = t Ci t Gj tDh t Ek,
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where the image of the components Ci meets properly
the divisor D and χSi(Ci) > 0, the image of the compo-
nents Gj meets properly the divisor D and χSj(Ci) = 0
(i.e. curves of genus 0 with two points in each Sj), ϕ(Dh)
overlaps a line of the divisor D and Ek is mapped over
the degree-two component of D. We note that one can
prove that in the three components case the only im-
ages of curves with zero Euler characteristic are lines; in
particular their degree is always strictly less than 2. As
before, for every component Ci we can apply Theorem
(3.2.3) which gives

deg ϕ(Ci) ≤ A ·max{1, 2g(Ci)− 2 + #Si}.

Where Si is the set of points of S lying on Ci. For the sets
S and Si we have the following estimate

#S ≥ ∑
i:Ci∈C̃

#Si + ∑
j:Gj∈C̃

2 + ∑
h:Dh∈C̃

3 + ∑
k:Ek∈C̃

4− # nodes .

As before we want to relate the genus of the curve C̃ to
the genus of its irreducible components; Equation 7.1 in
this setting gives

g(C) = ∑
A∈C̃

g(A) + # nodes − # components + 1

where the sum runs over all the irreducible components
of C̃. Note however that all the components different
from the Ci have genus zero and hence do not contribute
to the sum. With these two inequalities we can analyze
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the degree of the image of the curve obtaining that

deg ϕ(C̃) = ∑
i

deg ϕ(Ci) + ∑
j

deg ϕ(Gj)+

+ ∑
h

deg ϕ(Dh) + ∑
k

deg ϕ(Ek)

≤∑
i

A max{1, 2g(Ci)− 2 + #Si}+ ∑
j

2 + ∑
h

3 + ∑
k

4

≤ A{2[∑
i

g(Ci) + ∑
j

g(Gj) + ∑
h

g(Dh) + ∑
k

g(Ek)]+

− 2# comp + ∑
i

#Si + ∑
j

2 + ∑
h

3 + ∑
k

4}

≤ A{2[∑
i

g(Ci) + ∑
j

g(Gj) + ∑
h

g(Dh) + ∑
k

g(Ek)]+

− 2# comp + ∑
i

#Si + ∑
j

#Sj + ∑
h

#Sh + ∑
k

#Sk}

≤ A{2[∑
i

g(Ci) + ∑
j

g(Gj) + ∑
h

g(Dh) + ∑
k

g(Ek)]+

− 2# comp + #S + # nodes }
≤ A{2[∑

i
g(Ci) + ∑

j
g(Gj) + ∑

h
g(Dh) + ∑

k
g(Ek)]

− 2# comp + #S + 2# nodes }
≤ A{2g(C̃)− 2 + #S}
= A max{1, χ(C̃ \ S)},

where the last equality follows from the assumption that
C̃ has more than one irreducible component and from
Lemma 7.1.5.

Step 2 Finally we prove the Theorem for a generic log stable
map ϕ : C̃ → P2 with ϕ−1(D) ⊂ S. This time we divide
the irreducible components of C̃ in two groups

C̃ = tCi t Pj,

where Pj are the components contracted to points by
the map ϕ. From Step 1 we know that the restriction
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of ϕ to the irreducible components not contracted by ϕ
verifies the conclusion of the Theorem, i.e., called C the
union of all such components and f = ϕ|C we have

deg f (C) ≤ A ·max{1, χ(C \ SC)},

with SC = S ∩ C, provided that such a union of compo-
nents is connected. If it is not connected is enough to
consider each connected component separately. At the
same time the degree of the image of C̃ through ϕ is the
same as deg f (C). Therefore the conclusion holds by the
following computation:

χS(C̃) = 2g− 2 + #S ≥ 2g(C)− 2 + #SC ,

being the genus not less than the sum of the genus of its
irreducible components, and being SC contained in S.

Previous Theorem prove that the same result as Theorem 3.2.3
holds more generally for log-stable maps. In particular, im-
age of log-stable maps is bounded by the Euler Characteristic.
Moreover, it shows that the stability conditions gives a bound
from below to the number of points of S in a component that
maps over an irreducible component of the divisor D. At the
same time a bound for the S ∩ Pj is given, in such a way that
for every contracted component Pj its Euler Characteristic is
positive, for every genus g(Pj).

7.2 Emptiness of moduli spaces

Our ultimate goal, as discussed in Chapter 5, is trying to ex-
tend these results to complements of divisors in P2 with less
than three irreducible components. The idea we would like
to formalize is the following:
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Dt1
Dt2

Dt0Ct1
Ct2

Ct0

Figure 7.2: Idea of extension to lesser components.

Let D be a quartic in P2 which flattly deform to a conic and
two lines. Consider such a deformation as a flat fibration over
a connected base curve. If every curve in the fiber of D moves
in the family it gives rise to a curve in the fiber of the conic
and two lines. Such a curve should verify the bound of The-
orem 7.1.6. If the curve has been moved keeping track of the
intersection multiplicities with the divisors in each fiber then
a similar bound holds also with respect to the divisor D in the
starting fiber.

A picture of the previous idea can be seen in figure 7.2: here
the algebraic family of divisors Dt is considered over an affine
open of P1 and three fibers are drawn: Dt1 , Dt2 are quartics
having two irreducible components while Dts is the conic and
two lines appearing in Theorem 7.1.6.

From figure 7.2 one can see how the cardinality of the set S can
a priori change in a deformation of the divisor D. We have al-
ready seen how to define intersection with D for stable curves
with components mapping to an irreducible component of D:
log stability condition gives a lower bound for the point of
S in such irreducible component, even if the component is
mapped over an irreducible component or it is contracted by
the map. Now we want a way to control the set S with re-
spect to a flat family of divisor. This in particular will cover
the case of a two conic deforming to a conic and two lines, or
even more generally a quartic deforming to a conic and two
lines.
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Instead of proving that #S can be controlled in a flat defor-
mation we will prove that, given numerical data Γ, any class
of log-stable maps with such data has constant #S. Then we
will see how properties of certain moduli space for maps with
fixed numerical data Γ are related to Theorem 7.1.6.

7.2.1 Algebraic Hyperbolicity via moduli of log-stable
maps

Let us look more carefully to the inequality of Theorem 7.1.6:

deg f (C̃) ≤ A ·max{1, χS(C̃)}.

If we denote by β the curve class in P2 corresponding to f (C̃)
we have that deg f (C̃) = deg β. Then if g and n denotes the
genus of C̃ and the number of points of S we have that previ-
ous inequality can be rewritten as

deg β ≤ A ·max{1, 2g− 2 + n};

in particular this implies that we cannot choose independently
the quantities g, n and β for a map f . The first consequence of
this reformulation is the following

Proposition 7.2.1. Let (P2,MD) be the DF pair given by con-
sidering the log structure induced by D. Let Γ = (g, n, β,~c) be
discrete data such that

deg β ≥ A ·max{1, 2g− 2 + n}.

Then the moduli space KΓ(P
2,MD) is empty.

Proof. Every element of KΓ(P
2,MD) is a minimal log stable

map f : C̃ → P2. By the description of Γ given in 6.3.8 at page
125, since

β · c1
(
OP2(Di)

)
=

n

∑
j=1

cij,
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with D = D1 + D2 + D3 as usual, we see that #S < n (since
some of the cij may a priori be zero). In these settings, Theo-
rem 7.1.6 gives

deg β = deg f (C̃) ≤ A ·max{1, 2g− 2 + #S}
≤ A ·max{1, 2g− 2 + n}.

In the spirit of previous Proposition we give the following

Definition 7.2.2. In the settings above we call a discrete data
Γ = (g, n, β,~c) admissible if

deg β ≤ A ·max{1, 2g− 2 + n}.

If ~c as at least one element non zero for each j, we call Γ strictly
admissible. We say that Γ is A-admissible if we want to explicitly
specify the dependency from the constant A.

One of the implication of the Proposition is that, given dis-
crete data Γ, all the Γ-minimal log stable map in KΓ(P

2,MD)
satisfy #S ≤ n independently of ~c. Moreover, for every vec-
tor of multiplicities ~c the set S is precisely the set of marked
point Pα for which at least one of the ciα is non zero. In partic-
ular, fixing Γ will automatically fix also #S for all the maps in
KΓ(P

2,MD). We can rephrase this in the following

Corollary 7.2.3. Theorem 7.1.6 implies that KΓ(P
2,MD) is

empty for every vector of multiplicities~c in Γ, for every non admis-
sible discrete data Γ.

Note that Proposition 7.2.1 and Corollary 7.2.3 are stated in
the case in which D has three components however one could
give a more general result, i.e. algebraic hyperbolicity of P2 \
D for a simple normal crossing divisor D of any degree and
any number of irreducible components implies the emptiness
of the corresponding moduli spaces of log stable maps.

Now the deformation argument we sketched before can be
applied in the following way: the properness of the stack
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KΓ(P
2,MD) implies that the equality KΓ(P

2,MD) = ∅ for
all non admissible Γ extends to the general fiber of a flat de-
formation of the divisor D. Therefore, in order to prove alge-
braic hyperbolicity for the complement of a generic quartic in
P2 we only need to show that the emptiness of KΓ(P

2,MD)
for non admissible discrete data implies algebraic hyperbol-
icity.

Proposition 7.2.4. Let B > 0 be an integer. Given a simple
normal crossing divisor D in P2 denote by MD the log structure
associated. If for any discrete data Γ which is not B-admissible the
moduli space KΓ(P

2,MD) is empty then every non-constant mor-
phism f̃ : C̃ → P2 verifies:

deg f̃ (C̃) ≤ B ·max{1, χS(C̃)},

where S = f−1(D).

Proof. Let f̃ : C̃ → P2, be a non-constant morphism. From
Theorem 6.3.6 at page 124 it follows that there exists a mini-
mal log map f over a geometric point having as underlying
map f . To such a minimal map it corresponds a point in a
moduli space KΓ(P

2,MD) for some Γ = (g(C̃), n, f∗[C̃],~c).
Note that n here comes from the data associated to the pre-
stable curve naturally defined by f̃ , i.e. it does not depend on
the log structure associated. In particular, if we fix the set of
marked points as the set of pre-images of points of intersec-
tions f̃ (C̃) · D, it follows that n = #S. Now the existence of
the map f implies that KΓ(P

2,MD) is not empty. Therefore,
by hypothesis Γ is B-admissible. Then

deg f̃ (C̃) = deg β ≤ B ·max{1, 2g− 2 + n}
= B ·max{1, 2g− 2 + #S}.

Given Proposition 7.2.1 and Proposition 7.2.4 one can state the
following
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Theorem 7.2.5. Let D be a simple normal crossing divisor in
P2 and let MD be the log structure associated. Then P2 \ D is
algebraically hyperbolic if and only if there exists a positive constant
A such that for every discrete data Γ not A-admissible the moduli
space KΓ(P

2,MD) is empty.

7.3 Properness of the stack

Theorem 7.2.5 gives a sort of “moduli interpretation” of alge-
braic hyperbolicity, translating the problem to the emptiness
of some moduli space of logarithmic stable maps. In particu-
lar in the three components case, Corvaja and Zannier result
together with its generalization, Theorem 7.1.6, can be read
as a property of such moduli spaces, providing emptiness for
non A-admissible discrete data with constant A = 215 · 35.
Moreover, the emptiness of the moduli space is a property
that behaves well with respect to flat deformation of the di-
visor D. In particular, the following property of KΓ(P

2,MD)
holds:

Proposition 7.3.1. Let D,MD as before. Then there is a proper
map

KΓ(P
2,MD)→M (D),

where M (D) is the moduli of divisor D in P2 of fixed degree.

Previous proposition follows from Theorem 6.3.10 and the
fact that D here is assumed (simple) normal crossing, hence in
particular toroidal. Now giving a deformation of the divisor
D(3) = D1 + D2 + D3 one gets that the properness of the map
allows to extend the emptiness of the stack KΓ(P

2,MD(3)) to
the generic member of the deformation. In particular this
gives emptiness of the corresponding stack for the generic
quartic degenerating to the divisor consisting of a conic and
two lines. The union of all such conditions over all possi-
ble genus, number of marked points and degree of the push-
forward of the fundamental class of a curve, gives algebraic
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hyperbolicity for the complement of a very generic quartic.
Therefore the following theorem holds:

Theorem 7.3.2. Let D be a very generic quartic in P2. If D has
only simple normal crossing singularities then P2 \ D is (weakly)
algebraic hyperbolic.

Here by very generic we mean a part from countably many
exception, i.e. in the complement of a countable union of
proper closed subvarieties in the Hilbert scheme of plane
quartics, Hilb2(4t − 2) = Proj(H0(P2,OP2(4))) . Note that
the only interesting part of previous Theorem is given by the
cases of log irregularity strictly smaller than two; the other
cases follows from Theorem 3.1.1 and Theorem 3.2.3. More-
over the constant appearing in the hyperbolicity condition
here is the same as the one given by Corvaja and Zannier
Theorem. in particular if a different strategy were considered,
i.e. extending the four lines’ case instead of the three compo-
nents’ one, the constant could have been lowered also for the
generic quartic with three components. The rest of the chap-
ter will be devoted to the proof of Theorem 7.3.2.

We stress that the very generic hypothesis will allow to drop
the simple normal crossing requirement, since a very generic
quartic can be always be chosen to have normal crossing sin-
gularities. However we still prefer to explicitly state it be-
cause the result on the properness of the stack requires it as a
fundamental hypothesis. Present work by Abramovich, Chen
and others seems to give the possibility to obtain the proper-
ness of the stack dropping this hypothesis and then making it
redundant also in our context.

The main step in the proof of Theorem 7.3.2 is to prove that
being algebraic hyperbolic does not depend on the number
of irreducible components of the divisor D. Once such inde-
pendence is proved the result will follow from the extensions
of Corvaja and Zannier’s Theorem 3.2.3. This invariance will
be proved using the moduli interpretation of hyperbolicity
given by Theorem 7.2.5 and using the fact that for the generic
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member of a deformation to a conic and two lines the stack
KΓ(P

2,MD) coincide with the same stack in the special fiber.
Hence the emptiness of these moduli spaces in the case of
three components extends to the case of very generic quar-
tic. Then the equivalence between the emptiness of the stacks
for non admissible discrete data and algebraic hyperbolicity
will finish the proof.

7.3.1 Invariance under deformation

In this subsection we focus on the following

Proposition 7.3.3. Let D be the generic member of a flat de-
formation of a quartic into D(3), a divisor consisting of a conic and
two lines. Then for any discrete data Γ one has

KΓ(P
2,MD) = KΓ(P

2,MD(3)),

where MD and MD(3) are the log structure associated to D and
D(3) respectively.

Proof. The only real issue in the previous statement is that
a flat deformation of a quartic is not in general log smooth.
Thus the total space in the log category does not automati-
cally give a log map which allows to use the proper map of
Proposition 7.3.1. However, since all the log structures in-
volved come from normal crossing divisor, it is enough to
consider a normal crossing divisor in the total space such that,
its restriction to the special fiber gives D(3), and the restriction
to the generic fiber gives D.

Consider a flat deformation h : D → B of quartics such that
Db = D for the generic point b ∈ B, and Ds = D(3) for a close
point s ∈ B. Since all the members of D are plane quartics the
total space D naturally embeds in P2 × B. Moreover, without
loss of generality we can assume B to be smooth projective
of dimension 1, or even more, we can choose B such that its
completion is contained in P1 (one could also assumed B to
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be the spectrum of a local ring in which s is the only closed
point and b is the generic one). Notice that such a deformation
always exists because we can consider the line in the Hilbert
Scheme of quartics containing the conic and two lines. The
affine open set in the line which does not contain any (too)
singular quartic will give the desired deformation.

Now we claim that D ⊂ P2 × B is a normal crossing divisor
in P2 × B. First we note that, up to restricting B if necessary,
we may assume that D has normal crossing singularities. Fi-
nally D can be chosen to be defined locally by one equation
depending on the uniformizing parameter of B. Such equa-
tions defines D inside P2 × B. Here we used the fact that we
can choose a generic normal crossing D(3) in any way since
Theorem 7.1.6 applies to every degree 4 and three component
plane curve, provided it has normal crossing singularities.

From the fact thatD is a normal crossing divisor we have that
P2× B has a natural fs log structureMwith the property that
on each fiber P2 = P2

b of the second projection the restriction
ofM gives the log structure defined by the normal crossing
divisor Db. This exhibits P2 × B as a log scheme with a log
map to B. Such map has a flat underlying map as a map of
schemes. Moreover, being D → B flat, it gives a log map
P2 × B, with B with trivial log structure.

Now Theorem 6.3.10 together with Proposition 7.3.1 applied
to P2 × B gives the conclusion.

Example 7.3.4. Considering the case of two conics, and a flat
family given by a constant irreducible conic C1 given by f = 0
and a conic C2,t degenerating to two lines as

x2 − y2 = t

over B = Spec C[t]. On P2 × B the divisor D given by x2 −
y2 − t = 0 and f = 0 is a normal crossing divisor provided
that C1 ∩ C2,t intersect transversally. Up to reducing B we can
always assume this to hold. Then over P2 × B the log struc-
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ture given by D is fs and the restriction to every fiber P2
t is the

log structure given by C1 + C2,t.

7.3.2 Properness of the moduli space of log-stable maps

The end of the proof of Theorem 7.3.2 now follows from the
results proved in the previous sections.

Proof of Theorem 7.3.2. Let D be a plane quartic and denoted
by D(3) a conic and two lines in general position. By Theorem
7.2.5 we only need to show that there exists a constant A′ such
that KΓ(P

2,MD) is empty for all non A′-admissible discrete
data Γ. By Proposition 7.3.3 we have that KΓ(P

2,MD) coin-
cide with KΓ(P

2,MD(3)). At the same time, by Corvaja and
Zannier’s result, Theorem 3.2.3, and by Proposition 7.2.1, the
stack KΓ(P

2,MD(3)) is empty for all non admissible Γ with
respect to the constant A = 215 · 35. Then the same holds
for the stack with respect to the log structure coming from D
finishing the proof. In particular this gives vanishing for the
stack with non A-admissible discrete data, and hence alge-
braic hyperbolicity, with the same constant appearing in The-
orem 7.1.6.

Remark 7.3.5. We stress that the very generic hypothesis here
is necessary since for every discrete data Γ the emptiness of
the stack extends to the generic member of the deformation.
This is equivalent to assume that for every Γ the result holds
away from a finite number of quartics. At the same time to
prove algebraic hyperbolicity we need to consider the mod-
uli spaceKΓ(P

2,MD) for infinitely many, although countably
many, discrete data. This implies that the result holds away
from countably many closed subset of the parameter space of
plane quartics.

The discreteness of the Γ follows from the fact that

β ∈ H2(P2, Z) ' Z
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and given g, n and β the choices of possible contact orders ~c
are finite.

In particular Theorem 7.3.2 gives a weaker result than Theo-
rem 7.1.6 for complements of P2 in which the log irregularity
is less than 2. While it uses in an essential way the fact the
Corvaja and Zannier’s result, as well as its extensions, applies
to a generic quartic with three irreducible components, our re-
sult gives genericity only for a fixed discrete data Γ but cannot
recover such genericity for proving algebraic hyperbolicity.
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