Università Roma Tre - Corso di Laurea in Matematica AL110-Algebra 1 - A.A. 2018-2019 Esercizi foglio n.1

Esercizio 1. Siano dati gli insiemi $A = \{a, b, 0, 1, 2, *\}, B = \{a, c, *, 1\}, C = \{b, c, 0, 3\}$ e $D = \emptyset$. Calcolare:

- (i) $(A \cup B) \setminus (A \cap B)$;
- (ii) $[(A \cap B) \cap (C \cup D)] \setminus (A \cup B)$;
- (iii) $(A \cup B \cup C) \cap (B \cup C \cup D)$.

Esercizio 2. Siano S e T insiemi. Dimostrare che S = T se e solo se esiste un insieme V per cui si abbia $S \cap V = T \cap V$ e $S \cup V = T \cup V$.

Esercizio 3. Siano S, T, V insiemi. Dimostrare che $S \cap T \subseteq V$ se e solo se $S \subseteq V \cup (S \setminus T)$.

Esercizio 4. Siano S, T insiemi. Dimostrare che $S \setminus (S \setminus T) = S \cap T$.

Esercizio 5. Siano S, T, V insiemi. Dimostrare che

- (i) $S \cap (T \cup V) = (S \cap T) \cup (S \cap V)$;
- (ii) $S \cup (T \cap V) = (S \cup T) \cap (S \cup V)$.

Esercizio 6. Siano $p \in q$ proposizioni. Mostrare che $\overline{p} \wedge q \vee p = \overline{q} \vee p$.

Esercizio 7. Siano $A \in B$ insiemi. Posto $A\Delta B = (A \setminus B) \cup (B \setminus A)$ la differenza simmetrica di $A \in B$, provare che $A\Delta B = (A \cup B) \setminus (A \cap B)$.

Esercizio 8. Siano A, B, C insiemi. Dimostrare che si ha $A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$.

Esercizio 9. Calcolare l'insieme delle parti dell'insieme $A = \{1, \{1\}, 2\}$. Calcolare inoltre $A \cup \mathcal{P}(A)$, $A \cap \mathcal{P}(A) \in \mathcal{P}(A) \setminus A$.

Esercizio 10. Siano S, T insiemi. Dimostrare che $S \subseteq T$ se e solo se $\mathcal{P}(S) \subseteq \mathcal{P}(T)$.

Esercizio 11. Siano S, T insiemi. Dimostrare che $\mathcal{P}(S \cap T) = \mathcal{P}(S) \cap \mathcal{P}(T)$.

Esercizio 12. Siano S, T insiemi. Dimostrare che $\mathcal{P}(S) \cup \mathcal{P}(T) \subseteq \mathcal{P}(S \cup T)$. Provare che in generale l'inclusione è stretta. Dimostrare che vale l'uguaglianza se e solo se $S \subseteq T$ o $T \subseteq S$.

Esercizio 13. Dimostrare che $Card(A \cup B \cup C) = Card(A) + Card(B) + Card(C) - Card(A \cap B) - Card(A \cap C) - Card(B \cap C) + Card(A \cap B \cap C)$.