Università Roma Tre - Corso di Laurea in Matematica AL110-Algebra 1 - A.A. 2018-2019 Esercizi foglio n.3

Esercizio 1. Si consideri la funzione $f: x \in \mathbb{Z} \to x^4 \in \mathbb{Q}$. Stabilire se f è iniettiva o suriettiva. Trovare inoltre $X_1 \neq X_2 \subseteq \mathbb{Z}$ e $Y_1 \neq Y_2 \subseteq \mathbb{Q}$ tali che $f(X_1) = f(X_2)$ e $f^{-1}(Y_1) = f^{-1}(Y_2)$.

Esercizio 2. Siano X e Y insiemi non vuoti. Provare che una relazione $\mathcal{R} \subseteq X \times Y$ è una funzione se e solo se $\Delta_X \subseteq \mathcal{R}\mathcal{R}^{-1}$ e $\mathcal{R}^{-1}\mathcal{R} \subseteq \Delta_Y$.

Esercizio 3. Siano X e Y insiemi. Sia $f: X \to Y$ una funzione. Siano poi $A_1, A_2 \subseteq X$ e $B_1, B_2 \subseteq Y$. Provare che

- (i) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$
- (ii) $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$
- (iii) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$
- (iv) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$

Provare inoltre che l'inclusione (ii) è in generale stretta e dimostrare che vale l'uguaglianza se e solo se f è iniettiva.

Esercizio 4. Siano X e Y insiemi. Sia $f: X \to Y$ una funzione. Si consideri la funzione $\overline{f}: \mathcal{P}(X) \to \mathcal{P}(Y)$ che per ogni $A \subseteq X$ è tale che $\overline{f}(A) \stackrel{\text{def}}{=} f(A)$. Provare che \overline{f} è iniettiva (suriettiva) se e solo se f è iniettiva (risp. suriettiva).

Esercizio 5. Si consideri la funzione $f: \mathbb{R} \to \mathbb{R}$ definita come

$$f(x) = \begin{cases} x^2 & x \ge 0 \\ x(3-x) & x < 0. \end{cases}$$

Dimostrare che f è invertibile e determinare esplicitamente la sua inversa.

Esercizio 6. Si consideri la funzione $f: \mathbb{Q} \to \mathbb{Q}$ definita come

$$f(x) = \begin{cases} x+1 & \text{se } x \in \mathbb{Z} \\ x & \text{se } x \notin \mathbb{Z}. \end{cases}$$

Dimostrare che f è invertibile e determinare esplicitamente la sua inversa.

Esercizio 7 (difficile). Costruire una biezione da \mathbb{R} in $\mathbb{R} \setminus \{0\}$.

Esercizio 8. Siano S, T, V, W insiemi non vuoti e siano $f: S \to T$ $g: T \to V$ e $h: V \to W$ applicazioni. Dimostrare che se le applicazioni $g \circ f$ e $h \circ g$ sono biettive, allora anche f, g e h sono biettive.