Università degli Studi Roma Tre Corso di laurea in Matematica GE210-Geometria 2 – A.A. 2014-2015 Appello B

Esercizio 1. Sia data la conica piana euclidea \mathscr{C} : $x^2 + y^2 - 6xy + 2 = 0$.

- (a) Classificare $\mathscr C$ e trovare una sua forma canonica $\mathscr C'.$
- (b) Disegnare \mathscr{C} .
- (c) Trovare un'isometria del piano euclideo che trasforma $\mathscr C$ in $\mathscr C'.$
- (d) Classificare l'isometria f.

Esercizio 2. Nel piano affine reale sono dati il punto A(1,1), il punto B(2,2) e le rette

$$r: x = y - 1 \qquad \qquad s: x = 0$$

Determinare, se esistono, tutte le affinità $f: \mathbb{A}^2(\mathbb{R}) \to \mathbb{A}^2(\mathbb{R})$ tali che

$$f(A) = B$$
 $f(r) = r$ $f(s) = s$

Tra le affinità trovate, c'è qualche isometria?

Esercizio 3. Sia $q: \mathbb{R}^3 \to \mathbb{R}$ la forma quadratica tale che

$$q(x_1, x_2, x_3) = (2+k)x_1^2 + 2x_2^2 + kx_3^2 + 4x_1x_2 - 2kx_1x_3,$$

con $k \in \mathbb{R}$.

- (a) Diagonalizzare q al variare di k.
- (b) Stabilire per quali valori di k la restrizione di q al sottospazio $W = \mathcal{L}((0,0,2), (1,1,0))$ è degenere.

Esercizio 4. (i) Trovare, se esiste, una retta parallela alla retta
$$r:$$

$$\begin{cases} y+2x=0\\ 2x-z+1=0. \end{cases}$$
 e contenuta nel piano $\pi: y+x-2=0.$

(ii) Trovare, se esiste, una retta passante per P(1,0,2) e parallela ai piani

$$\pi_1: 2x - y + 3 = 0 \in \pi_2:$$

$$\begin{cases} x = t + t' - 1 \\ y = 2 \\ z = 2t - t' + 1. \end{cases}$$

(iii) Trovare nello spazio due rette sghembe r_1 e r_2 tali che $d(r_1, r_2) = 1$ e tali che la perpendicolare comune ad r_1 e r_2 sia la retta s: $\begin{cases} x = 2 \\ z = 0. \end{cases}$

Esercizio 5. Nel piano proiettivo reale $\mathbb{P}^2(\mathbb{R})$ sono dati i punti

$$P_1[2,0,0]$$
 $P_2[-1,0,1]$ $P_3[1,-2,-1]$ $P_4[3,-1,0].$

- (a) Trovare, se esistono, tutte le proiettività di $\mathbb{P}^2(\mathbb{R})$ che fissano P_1 , P_2 e P_3 .
- (b) Trovare, se esistono, tutte le proiettività di $\mathbb{P}^2(\mathbb{R})$ che fissano P_1, P_2, P_3 e P_4 .
- (c) Trovare, se esistono, tutte le proiettività di $\mathbb{P}^2(\mathbb{R})$ che fissano P_1 , P_2 , P_3 , P_4 e che trasformano $Q_1[1,1,1]$ in $Q_2[1,0,1]$.