Università degli Studi di Roma La Sapienza Corso di laurea in Ingegneria Energetica Geometria A.A. 2014-2015 Foglio di esercizi n.14 (prof. Cigliola)

Esercizio 1. Si consideri la base \mathcal{B}' di \mathbb{R}^3 costituita dai vettori

$$v_1 = (1, -1, 1)$$
 $v_2 = (1, 0, 1)$ $v_3 = (0, 1, 1).$

Siano dati gli endomorfismi F, G e H di \mathbb{R}^3 tali che F sia associato alla matrice $\begin{pmatrix} 1 & 2 & -1 \\ 2 & 0 & 1 \\ 2 & 0 & 1 \end{pmatrix}$ rispetto alla base canonica \mathcal{B} di \mathbb{R}^3 , G(x,y,z) = (x+y,y+z,x+z), per ogni $(x,y,z) \in \mathbb{R}^3$, e H è tale che

$$H(v_1) = v_1 - v_2$$
 $H(v_2) = v_1$ $H(v_3) = v_1 + v_2 + v_3$.

- (i) Calcolare la matrice associata rispetto alla base canonica \mathcal{B} alle applicazioni $F \circ G, G \circ F, F \circ G \circ H$ e $F^2 \circ G \circ H^3$.
- (ii) Calcolare la matrice associata rispetto alla base \mathcal{B}' alle applicazioni $F \circ H$, $H \circ F$ e $F \circ G \circ H$.
- (iii) Calcolare gli autovalori di F^{10} , di G^{100} e di H^{-2} .
- (iv) Scrivere esplicitamente le equazioni di $F \circ G$, $G \circ F$, $F \circ G \circ H$ e $H \circ G \circ F$.
- (v) Stabilire se $F \circ G = G \circ F$ e se $F^2 = G^2$.

Esercizio 2. Scrivere le equazioni della rotazione del piano di 45° attorno all'origine in senso orario.

Esercizio 3. Siano date ρ_1 la rotazione di $\frac{\pi}{3}$ attorno all'origine e ρ_2 la rotazione di $\frac{\pi}{4}$ anch'essa attorno all'origine. Scrivere le equazioni della trasformazione composta $\rho = \rho_2 \circ \rho_1$ ed interpretare geometricamente il risultato ottenuto. Classificare ρ (dire se ρ è un'affinità, una trasformazione lineare, una isometria).

Esercizio 4. Sia σ la simmetria rispetto alla retta x=1 e sia τ_v la traslazione di vettore v=(0,2). Determinare le equazioni di $\sigma \circ \tau_v$ e di $\tau_v \circ \sigma$ e classificarle. Descrivere geometricamente queste due trasformazioni e verificare che $\sigma \circ \tau_v = \tau_v \circ \sigma$.

Esercizio 5. Scrivere le equazioni dell'isometria che manda l'origine nel punto O'(-1,2) e che ruota gli assi cartesiani di 60° in senso antiorario.

Esercizio 6. Classificare e descrivere geometricamente le seguenti trasformazioni

(i)
$$\Psi$$
:
$$\begin{cases} x' = \frac{1}{2} x \\ y' = \frac{1}{2} y \end{cases}$$

(ii)
$$\Psi$$
:
$$\begin{cases} x' = 2x + 1 \\ y' = 2y + 1 \end{cases}$$

(iii)
$$\Psi: \begin{cases} x' = \frac{\sqrt{2}}{2} x - \frac{\sqrt{2}}{2} y \\ y' = \frac{\sqrt{2}}{2} x + \frac{\sqrt{2}}{2} y \end{cases}$$

(iv)
$$\Psi: \begin{cases} x' = \frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y - 1\\ y' = \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y + 3 \end{cases}$$

(v)
$$\Psi$$
:
$$\begin{cases} x' = x + 2 \\ y' = y - 2 \end{cases}$$

(vi)
$$\Psi$$
:
$$\begin{cases} x' = y + 2 \\ y' = x - 2 \end{cases}$$

(vii)
$$\Psi: \begin{cases} x' = \frac{\sqrt{3}}{2}x + \frac{1}{2}y - 1\\ y' = \frac{1}{2}x - \frac{\sqrt{3}}{2}y + 3 \end{cases}$$

Esercizio 7. Calcolare i trasformati dei punti O(0,0) e P(1,-2) sotto l'azione delle trasformazioni dell'Esercizio 6.

Esercizio 8. Calcolare la trasformata della retta r: x - y + 2 = 0 sotto l'azione delle trasformazioni dell'Esercizio 6.

Esercizio 9. Siano date le rette r: x + y + 1 = 0 ed s: x - y + 2 = 0, la trasformazione $\varphi: \begin{cases} x' = \frac{\sqrt{3}}{2} x - \frac{1}{2} y + 1 \\ y' = \frac{1}{2} x + \frac{\sqrt{3}}{2} y - 1 \end{cases}$ ed i punti A(1,1), B(1,-2) e C(2,2).

- (i) Classificare φ .
- (ii) Determinare le trasformate $\varphi(r)$ e $\varphi(s)$ di r e s rispettivamente sotto l'azione di φ .
- (iii) Detto P il punto di intersezione tra r ed s, verificare che $\varphi(r) \cap \varphi(s) = \varphi(P)$.
- (iv) Calcolare area e perimetro del triangolo di vertici $\varphi(A)$, $\varphi(B)$ e $\varphi(C)$.

Esercizio 10. Diagonalizzare le seguenti forme quadratiche (precisando la matrice ortogonale usata)

(i)
$$q(x,y) = 2x^2 + 2y^2 - 2xy$$
;

(ii)
$$q(x,y) = x^2 + y^2 + 2xy$$
;

(iii)
$$q(x,y) = 2x^2 - y^2 + 4xy;$$

(iv)
$$q(x,y) = x^2 + 3y^2 + 2xy$$
;

(v)
$$q(x,y) = x^2 + 25y^2 + 10xy$$
;

(vi)
$$q(x,y) = x^2 + 4y^2 + 4xy$$
;

(vii)
$$q(x,y) = x^2 - y^2 + 2xy$$
;

(viii)
$$q(x,y) = xy$$
;

(ix)
$$q(x,y) = x^2 + y^2 + xy$$
;

(x)
$$q(x,y) = 3x^2 - 2y^2$$
;

(xi)
$$q(x, y) = 0$$
;

(xii)
$$q(x,y) = axy$$
, con $a \in \mathbb{R}^*$.

Esercizio 11. Per ciascuna delle seguenti coniche determinare matrice associata e rango:

(i)
$$\mathscr{C}$$
: $x^2 + y^2 + xy + x + y + 1 = 0$;

(ii)
$$\mathscr{C}$$
: $2x^2 + 3y^2 + 4xy - x + y = 0$;

(iii)
$$\mathscr{C}$$
: $-x^2 - 2y^2 + 3xy + x - 2y + 1 = 0$;

(iv)
$$\mathscr{C}$$
: $x^2 + x + 1 = 0$;

(v)
$$\mathscr{C}: x^2 = 0;$$

(vi)
$$\mathscr{C}$$
: $3x^2 - y^2 + 2xy + 2x - 4y + 1 = 0$;

(vii)
$$\mathscr{C}$$
: $x^2 - 3y^2 + xy + x + 2y - 5 = 0$.

Esercizio 12. Semplificare e determinare il grado dei seguenti polinomi:

(i)
$$p(x,y) = (x^2 - y + 1)(x + y + 2)$$
;

(ii)
$$p(x,y) = x^2(3xy + 2x - 1) - 3xy(x^2 + 2)$$
:

(iii)
$$p(x,y) = x^2 - 3(xy + 2x - y^2) + 3x(x + y + 1)$$
.