Sapienza Università di Roma - Corso di Laurea in Ingegneria Energetica Analisi Matematica II - A.A. 2016-2017 – prof. Cigliola Foglio n.16 – Forme differenziali - Campi vettoriali

Esercizio 1. Provare che la forma differenziale

$$\omega = \frac{2xy^2}{(1+x^2y^2)^2} dx + \frac{2x^2y}{(1+x^2y^2)^2} dy$$

è chiusa. Stabilire inoltre se è esatta ed in caso affermativo, trovare tutte le sue primitive.

[Chiamiamo a(x,y) e b(x,y) le due funzioni componenti di ω così da avere $\omega = a(x,y) \ dx + b(x,y) \ dy$. i coefficienti a e b della forma sono funzioni definite in tutto il piano reale, sono inoltre di classe \mathcal{C}^{∞} . Perché ω sia chiusa si deve avere l'uguaglianza delle derivate $a_y = b_x$. Essa è verificata, infatti si ha $a_y = b_x = \frac{4xy(1-x^2y^2)}{(1+x^2y^2)^3}$. Siccome il piano \mathbb{R}^2 è semplicemente connesso, la forma ω è anche esatta. Cerchiamo una sua primitiva f(x,y), ovvero una funzione tale che il differenziale $df = \omega$. Poiché deve essere

 $df = f_x dx + f_y dy = a dx + b dy$, si deve avere che $f_x = a$ e $f_y = b$. Pertanto, integrando rispetto ad y la funzione b, otteniamo la f cercata a meno di costanti rispetto ad y (cioè a meno di funzioni che dipendono solo da x). Si ha allora che

 $f(x,y) = \int \frac{2x^2y}{(1+x^2y^2)^2} dy = -\frac{1}{1+x^2y^2} + k(x)$. Per determinare precisamente la funzione k, dobbiamo utilizzare la funzione a. Si deve avere che $a = f_x$. Cioè $\frac{2xy^2}{(1+x^2y^2)^2} = \frac{2xy^2}{(1+x^2y^2)^2} + k'(x)$, da cui k'(x) = 0. Ne deduciamo che k è una funzione anche costante rispetto ad x, essa è infine una costante reale. Allora $f(x,y) = -\frac{1}{1+x^2y^2} + k$.]

Esercizio 2. Verificare che le seguenti forme differenziali sono esatte nel loro dominio e, per ciascuna di esse, determinare una primitiva:

(i)
$$\omega = \sin x \, dx + \cos y \, dy$$
 [$f = \sin y - \cos x$]

(ii)
$$\omega = (x^2y + y^2 + 1) dx + (\frac{x^3}{3} + 2xy) dy$$

$$[f = \frac{x^3y}{3} + xy^2 + x]$$

(iii)
$$\omega = (2e^y - ye^x) dx + (2xe^y - e^x) dy$$
 [$f = 2xe^y - ye^x$]

(iv)
$$\omega = \frac{1}{1+y^2} dx - \frac{2xy}{(1+y^2)^2} dy$$
 [$f = \frac{x}{1+y^2}$]

Esercizio 3. Provare che il campo vettoriale

$$F = (2x + 5y^3, \ 15xy^2 + 2y)$$

è irrotazionale. Stabilire inoltre se esso è conservativo e determinare un suo potenziale in caso positivo.

[Per procedere speditamente, conviene utilizzare il formalismo delle forme differenziali in due variabili. Si trova che un potenziale di F è la funzione $U(x,y) = x^2 + 5xy^3 + y^2$.]

Esercizio 4. Si dica se i campi vettoriali seguenti sono conservativi. Si determini per essi un potenziale, se esiste.

(i) $F(x, y, z) = (x^2, y, z)$;

[Il campo è irrotazionale e definito in tutto \mathbb{R}^3 , che è semplicemente connesso. Cerchiamo un suo potenziale U. Deve essere $U_x = x^2$. Integrando rispetto ad x troviamo che $U = \frac{1}{3}x^3 + a(y,z)$, dove la funzione a è costante rispetto alla variabile x. Derivando la U trovata rispetto ad y, abbiamo che $U_y = a_y = y$. Integrando rispetto ad y, abbiamo che $a(y,z) = \frac{1}{2}y^2 + b(z)$. Dalla terza componente di F deduciamo che $U_z = b'(z) = z$, cioè $b = \frac{1}{2}z^2 + k$, con k costante reale. Mettendo insieme i pezzi troviamo che $U(x,y,z) = \frac{1}{3}x^3 + \frac{1}{2}y^2 + \frac{1}{2}z^2 + k$.]

(ii) $F(x, y, z) = (x - xe^z, -y, e^z)$

[Il campo non è irrotazionale (il rotore non è nullo $\nabla \wedge F = -xe^z$ **j**), allora non può essere conservativo.]

(iii)
$$F = (xy - \sin z, \frac{1}{2}x^2 - \frac{e^y}{z}, \frac{e^y}{z^2} - x\cos z)$$

[Il campo è irrotazionale. Si osservi però che il suo dominio (deve essere $z \neq 0$) non è connesso, quindi nemmeno semplicemente connesso. Sulle componenti connesse e semplicemente connesse z>0 e z<0 però si può trovare il potenziale $U=\frac{1}{2}x^2y-x\sin z-\frac{e^y}{z}+k, \text{ procedendo con integrazioni successive.}]$

Esercizio 5. Si consideri la forma differenziale

$$\omega = \frac{y}{x^2 + y^2} dx - \frac{x}{x^2 + y^2} dy.$$

- (i) Dire se ω è chiusa. [sì]
- (ii) Calcolare l'integrale di ω lungo la circonferenza γ di centro l'origine e di raggio 1, percorsa in senso antiorario.

[La curva γ può essere parametrizzata come $\gamma(t) = (\cos t, \sin t)$, al variare di $t \in [0, 2\pi]$. Il vettore tangente è $\gamma'(t) = (-\sin t, \cos t)$. L'integrale diventa: $\int_{\gamma} \omega = \int_{0}^{2\pi} [\sin t \cdot (-\sin t) - \cos t \cdot \cos t] dt = -\int_{0}^{2\pi} dt = -2\pi.]$

(iii) Dire se ω è esatta.

[Poiché l'integrale di ω lungo γ , che è una curva chiusa, non è nullo, la forma ω non può essere esatta.]

Esercizio 6. Si consideri la forma differenziale

$$\omega = 2xdx + 3y^2dy.$$

- (i) Dire se ω è chiusa. [sì]
- (ii) Dire se ω è esatta.

[La forma è chiusa, definita su tutto il piano \mathbb{R}^2 ed è di classe \mathcal{C}^{∞} . Essa è esatta. Si trova facilmente una sua primitiva: $F(x,y) = x^2 + y^3$.]

(iii) Calcolare l'integrale di ω lungo l'arco di circonferenza γ di centro l'origine 3 raggio 2 che va dal punto (2,0) al punto (0,2) in senso antiorario.

[Poiché conosciamo una primitiva
$$F$$
 di ω , abbiamo che
$$\int_{\gamma} \omega = F(0,2) - F(2,0) = 8 - 4 = 4.$$
]

(iv) Calcolare l'integrale di ω lungo la circonferenza γ di centro l'origine e di raggio 1, percorsa in senso antiorario.

[Poiché ω è esatta e γ è chiusa, tale integrale vale 0.]

Esercizio 7. Si calcoli

$$\int_{\Gamma} (x^3 - xy^3) \, dx + (y^2 - 2xy) \, dy,$$

dove Γ è il perimetro del quadrato $Q = [0,2] \times [0,2]$ percorso in senso antiorario.

[Usando le formule di Gauss-Green si ha
$$\int_{\Gamma}(x^3-xy^3)\,dx+(y^2-2xy)\,dy=\int_0^2(\int_0^2(3xy^2-2y)\,dx)dy=8\,.]$$

Esercizio 8. Calcolare l'area della figura D sottesa ad un arco di cicloide descritta da un cerchio di raggio r.

[Ricordiamo che una parametrizzazione dell'arco di cicloide è $\gamma(t)=(rt-r\sin t,\ r-r\cos t)$, al variare di $t\in[0,2\pi]$. Per delimitare la regione di cui si vuole calcolare l'area, dobbiamo concatenare γ con il segmento (di base) PO, dove $P(2\pi r,0)$ e O è l'origine degli assi. In tal modo, si osservi che il verso di percorrenza indotto su γ è opposto a quello canonico sottinteso nelle formule di Gauss-Green. Usiamo la formula per l'area: $A(D)=\int_{\partial D}-ydx=\int_{-\gamma}-ydx+\int_{PO}-ydx=\int_{\gamma}ydx+0$. Il secondo integrale è identicamente nullo poiché lungo il segmento PO la coordinata y è costantemente nulla. Infine si ha $A(D)=r^2\int_0^{2\pi}(1-\cos t)^2dt=3\pi r^2$. Abbiamo così dimostrato un risultato che Galileo avevo intuito sperimentalmente: l'area sottesa ad una gobba della cicloide vale tre volte l'area del cerchio che la descrive.]

Esercizio 9. Si consideri la curva (chiusa) γ di equazioni parametriche Essa ha equazioni parametriche

$$x = r \cos^3 \theta$$
, $y = r \sin^3 \theta$, $0 \le \theta \le 2\pi$.

detta asteroide a quattro punte. Usando le formule di Gass-Green l'area della regione da essa delimitata vale $\frac{3}{8}\pi r^2$.

[Il verso indotto dalla parametrizzazione è quello canonico. Allora
$$\mathcal{A} = \frac{1}{2} \int_{\gamma} -y dx + x dy = \frac{3}{2} r^2 \int_{0}^{2\pi} \cos^4 \theta \sin^2 \theta + \sin^4 \theta \cos^2 \theta d\theta = \frac{3}{2} r^2 \int_{0}^{2\pi} \cos^2 \theta \sin^2 \theta d\theta = \frac{3}{8} \pi r^2.$$
]

Esercizio 10. Dimostrare che l'area della regione racchiusa dalla cardioide di equazione polare $\rho = r(1 + \cos \theta)$ misura $\frac{3}{2}\pi r^2$.

Esercizio 11. Calcolare l'integrale della forma differenziale $\omega = x^2 dx + xy dy$ lungo l'arco di parabola $\gamma(t) = (t^2, t)$, con $-1 \le t \le 1$.

Esercizio 12. Si calcoli l'integrale della forma differenziale

$$\omega = -\frac{y}{x^2 + y^2}dx + \frac{x}{x^2 + y^2}dy.$$

lungo l'arco di circonferenza di centro l'origine, di raggio 2, di estremi (2,0) e ($\sqrt{3}$,1), orientato in senso antiorario.

Esercizio 13. Si calcoli l'integrale della forma differenziale

$$\omega = xy \ dx + (y^2 + 1) \ dy.$$

(i) lungo il segmento di estremi
$$(0,0)$$
 e $(1,1)$. [5/3]

(ii) lungo l'arco della parabola
$$x = y^2$$
 di estremi $(0,0)$ e $(1,1)$.

Dedurne che ω non è una forma esatta.

[I due integrali sono distinti sebbene abbiamo gli stessi estremi di integrazione.]

Esercizio 14. Si calcoli l'integrale della forma differenziale

$$\omega = (x^2 + y^2 + z^2) dx + (x^2 + y^2 + z^2) dy + (x^2 + y^2 + z^2) dz.$$

lungo l'arco di elica cilindrica $\gamma(t)=(\cos t,\sin t,t)$ per $t\in \left[0,\frac{\pi}{2}\right].$

[Dopo laboriosi calcoli si trova
$$\frac{\pi}{2} + \frac{\pi^3}{24} + \frac{\pi}{4}(\pi - 4)$$
]

Esercizio 15. Si calcoli l'integrale della forma differenziale

$$\omega = (x - z) dx + (1 - xy) dy + y dz.$$

- (i) lungo il segmento di estremi (0,0,0) e (1,1,1). [7/6]
- (ii) lungo il segmento di estremi (0,1,2) e (1,1,-1).
- (iii) lungo l'arco della curva $\gamma(t)=(t,t^2,t^3)$ di estremi (0,0,0) e (1,1,1). [29/20]

Dedurne che ω non è una forma esatta.

[Il primo e il terzo integrale sono distinti sebbene abbiamo gli stessi estremi di integrazione.]