Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria - A.A. 2015-2016 Foglio n.19 – Spazi vettoriali euclidei prof. Cigliola

N.B. Negli esercizi seguenti si lavori rispetto al prodotto scalare standard.

Esercizio 1. Determinare per quali valori di k i seguenti vettori v e w sono ortogonali:

- (i) v = (2, 1, 0, -k) e $w = (-2, 0, \pi, -k)$ in \mathbb{R}^4 ;
- (ii) v = (1, -1, k) e w = (k, 1, k) in \mathbb{R}^3 ;
- (iii) $v = (k^2, -1, -5)$ e w = (2, 3, k) in \mathbb{R}^3 .

Esercizio 2. Determinare l'angolo (anche a meno del segno) compreso tra i seguenti vettori :

- (i) v = (2,1) e w = (-1,2) in \mathbb{R}^2 ;
- (ii) v = (0, 1, 1) e w = (1, 2, 1) in \mathbb{R}^3 ;
- (iii) $v = (5, 0, \sqrt{10}, -1)$ e w = (-1, 0, 0, 1) in \mathbb{R}^4 ;
- (iv) v = (-1, 0, -1) e w = (1, 2, 0) in \mathbb{R}^3 .

Esercizio 3. Nel sottospazio $U = \mathcal{L}((1,-1,1),(0,1,2),(-1,2,3))$ di \mathbb{R}^3 trovare due vettori che formano un angolo di $\frac{3}{4}\pi$ radianti.

Esercizio 4. Sia dato in \mathbb{R}^2 il vettore v = (1,3). Determinare il versore ortogonale a v formante col vettore u = (1,-1) un angolo ottuso. Determinare poi tutti i vettori paralleli a v di modulo 3.

Esercizio 5. Verificare che i vettori di \mathbb{R}^3 v = (1, -2, 1) e w = (1, 1, 1) sono ortogonali e determinare una base ortogonale di \mathbb{R}^3 che li contiene.

Esercizio 6. Determinare una base ortonormale \mathscr{B} di \mathbb{R}^3 che contiene il versore del vettore v = (1, 2, 1). Scrivere le matrici di passaggio dalla base canonica alla base \mathscr{B} e dalla base \mathscr{B} alla base canonica. Verificare che sono matrici ortogonali.

Esercizio 7. Sia dato in \mathbb{R}^3 il piano vettoriale $W = \mathcal{L}(v_1, v_2)$, dove $v_1 = (1, 1, -1)$ e $v_2 = (1, 1, 2)$. Verificare che l'applicazione $F : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ che ad ogni vettore di \mathbb{R}^3 associa la sua proiezione ortogonale su W è un endomorfismo. Trovare Ker F e Im F e provare che sono sottospazi complementari in \mathbb{R}^3 . Stabilire inoltre se F è diagonalizzabile.

Esercizio 8. Si considerino i vettori in \mathbb{R}^3

$$v_1 = (1, 2, -1)$$
 $v_2 = (1, 0, 1)$ $v_3 = (1, 2, 0)$

- (i) Calcolare $||v_1||$, $||v_2||$ e $||v_3||$.
- (ii) Calcolare gli angoli individuati dai tre vettori.

- (iii) Determinare tutti i vettori contemporaneamente ortogonali a v_1 e v_2 e provare che formano un sottospazio vettoriale di \mathbb{R}^3 .
- (iv) Calcolare tutti i vettori ortogonali a $w = \frac{1000}{873}v_3$.
- (v) Determinare la proiezione ortogonale di v_1 e v_3 sulla direzione del vettore v_2

Esercizio 9. Determinare in \mathbb{R}^3 il vettore proiezione ortogonale del vettore v = (0,1,2) sul sottospazio W generato dai vettori $v_1 = (1,1,0)$ e $v_2 = (0,0,1)$.

Esercizio 10. Determinare una base ortonormale di \mathbb{R}^3 a partire dalla base

$$\mathcal{B} = \{ (1,0,1), (0,1,1), (0,1,-1) \}$$

Esercizio 11. Determinare una base ortonormale del complemento ortogonale U^{\perp} del sottospazio

$$U = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 + x_2 - x_3 + x_4 = 2x_2 - x_4 = x_4 = 0 \}$$

Esercizio 12. Trovare una base ortogonale ed una base ortonormale del sottospazio di \mathbb{R}^5 definito dalle equazioni

$$\begin{cases} x_1 + x_2 + 2x_3 = 0 \\ x_1 + 2x_3 - x_4 - x_5 = 0 \\ 2x_1 - x_3 = 0 \end{cases}$$

Esercizio 13. Dimostrare l'identità del parallelogramma. Determinare un punto D in $\mathbb{A}^3(\mathbb{R})$ tale che il quadrilatero ABCD sia un parallelogramma, dove A(-1,-1,2), B(3,2,2) e C(2,-2,2). Verificare l'identità del parallelogramma per ABCD.

Esercizio 14. Siano v e w due vettori di \mathbb{R}^n . Dimostrare che vale la *prima formula di polarizzazione*:

$$v \cdot w = \frac{1}{2} (\|v + w\|^2 - \|v\|^2 - \|w\|^2)$$

Esercizio 15. Siano v e w due vettori di \mathbb{R}^n . Dimostrare che vale la seconda formula di polarizzazione:

$$v \cdot w = \frac{1}{4} (||v + w||^2 - ||v - w||^2)$$

Esercizio 16. Applicare il procedimento ortogonale di Gram-Schmidt ai vettori

$$v_1 = (1, 2, -1)$$
 $v_2 = (1, 0, 1),$ $v_3 = (0, -1, 2)$

per determinare una base ortonormale di \mathbb{R}^3 .

Esercizio 17. Siano U e W sottospazi vettoriali di \mathbb{R}^n . Provare che

- (i) $(W^{\perp})^{\perp} = W$
- (ii) $(U + W)^{\perp} = U^{\perp} \cap W^{\perp}$
- (iii) $(U \cap W)^{\perp} = U^{\perp} + W^{\perp}$
- (iv) $U \subseteq W \Rightarrow W^{\perp} \subseteq U^{\perp}$

Esercizio 18. Sia W il sottospazio di \mathbb{R}^3 generato dai vettori $w_1 = (-1,0,1)$ e $w_2 = (2,1,0)$. Decomporre il vettore v = (1,1,-1) secondo i sottospazi W e W^{\perp} .

Esercizio 19. Determinare una base ortonormale del sottospazio di \mathbb{R}^4 generato dai vettori

$$v_1 = (1, 1, 1, 0)$$
 $v_2 = (-1, 1, -1, 0)$ $v_3 = (1, 0, 1, 0)$

Esercizio 20. Siano v_1, v_2, \ldots, v_m versori a due a due ortogonali di \mathbb{R}^n . Dimostrare che $m \leq n$ e che v_1, v_2, \ldots, v_m sono linearmente indipendenti.

Esercizio 21. Calcolare una base ortonormale del sottospazio di \mathbb{R}^4

$$U = \mathcal{L}((0, -2, 4, 1), (25, 8, 29, 3000), (0, 2, 1, 1), (-1, 2, 1/2, 3), (0, 1, 1, 1))$$

Esercizio 22. Determinare una base ortonormale di \mathbb{R}^4 a partire dai vettori

$$v_1 = (1, 2, 0, 0)$$
 $v_2 = (0, 1, -1, 0)$ $v_3 = (0, 0, 1, -1)$ $v_4 = (0, 0, 0, 5)$

Esercizio 23. Determinare una base ortonormale del sottospazio W di \mathbb{R}^3 definito dall'equazione $x_1 - x_2 - x_3 = 0$. Completare la base ortonormale trovata per W ad una base ortonormale di \mathbb{R}^3 . Decomporre il vettore u = (1, 2, -1) secondo W e W^{\perp} .

Esercizio 24. Sia dato in \mathbb{R}^3 il sottospazio

$$W = \left\{ (x, y, z) \in \mathbb{R}^3 \mid x - 2y = x - z \right\}$$

- (i) Determinare una base di W e di W^{\perp} .
- (ii) Determinare una base ortogonale di W e di W^{\perp} .
- (iii) Determinare una base ortonormale di W e di W^{\perp} .

Esercizio 25. Sia dato in \mathbb{R}^4 il sottospazio

$$W = \{ (x, y, z, t) \in \mathbb{R}^4 \mid x + z = 2y - t = 0 \}$$

- (i) Determinare una base di W e di W^{\perp} .
- (ii) Determinare una base ortogonale di W e di W^{\perp} .
- (iii) Determinare una base ortonormale di W e di W^{\perp} .

Esercizio 26. Sia dato in \mathbb{R}^5 il sottospazio

$$W = \{ (x, y, z, u, v) \in \mathbb{R}^5 \mid x + z - t = y + z + u = 0 \}$$

- (i) Determinare una base di W e di W^{\perp} .
- (ii) Determinare una base ortogonale di W e di W^{\perp} .
- (iii) Determinare una base ortonormale di W e di W^{\perp} .

Esercizio 27. Determinare una base ortonormale del sottospazio W di \mathbb{R}^4 definito dall'equazione $x_1+x_2+x_3=0$. Completare la base ortonormale trovata per W ad una base ortonormale di \mathbb{R}^4 . Determinare la proiezione ortogonale del vettore u=(1,2,0,1) su W.

Esercizio 28. Siano dati in \mathbb{R}^4 i vettori

$$u_1 = (1, 1, 1, 1)$$
 $u_2 = (-3, 1, 1, 1)$ $u_3 = (0, 1, 1, -2)$

Verificare che u_1, u_2, u_3 sono a due a due ortogonali. Trovare poi un vettore $u_4 \in \mathbb{R}^4$ di norma $\sqrt{2}$, formante un angolo acuto con $e_2 = (0, 1, 0, 0)$ e tale che $\{u_1, u_2, u_3, u_4\}$ sia una base ortogonale di \mathbb{R}^4 .