Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria - A.A. 2015-2016 Foglio n.1 – Calcolo matriciale prof. Cigliola

Esercizio 1. Calcolare:

(i)
$$\begin{pmatrix} 1 \\ -2 \\ 0 \\ \pi \end{pmatrix} \begin{pmatrix} -1 & 0 & -\frac{1}{2} & 1 \end{pmatrix};$$

(ii)
$$(1 -2 0 \pi) \begin{pmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ 1 \end{pmatrix}$$
;

(iii)
$$\begin{bmatrix} \begin{pmatrix} -1\\1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} 1 & 2 & -1\\0 & -1 & 1\\-1 & 0 & -2 \end{pmatrix}^2 - \begin{pmatrix} 1 & 1\\0 & 1\\-1 & -1 \end{pmatrix}^T$$
. $\begin{pmatrix} -2 & -1 & 1\\0 & 0 & 1 \end{pmatrix}$

Esercizio 2. Siano

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & 2 \\ -2 & 1 \end{pmatrix}$$

Calcolare:

(i)
$$2A - B$$
;
$$\begin{pmatrix} 0 & 1 \\ 3 & -1 \end{pmatrix}$$

(ii)
$$3A + 2B - 4C$$
; $\begin{pmatrix} 7 & -3 \\ 9 & -2 \end{pmatrix}$

(iii)
$$-2A + B + 2C - 2B$$
:

(iv)
$$3B + 2(2A - C) - (A + B + 2C);$$

$$\begin{pmatrix} 7 & -3 \\ 9 & -2 \end{pmatrix}$$

(v)
$$A^T + B^T - 2C^T$$
 $\begin{pmatrix} 3 & 4 \\ -2 & -1 \end{pmatrix}$

Esercizio 3. Siano

$$A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} -2 & 1 & -1 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 0 & -1 \end{pmatrix}$$

Calcolare quando possibile

(i)
$$AC$$
;
$$\begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}$$

(ii)
$$(BC)A$$
;
$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 2 \\ -1 & 1 & 2 \end{pmatrix}$$

(iii)
$$B + (CA)$$
;
$$\begin{pmatrix} -3 & 2 & 0 \\ 2 & 1 & 2 \\ 2 & 0 & -1 \end{pmatrix}$$

(v)
$$BA^T$$
; $\begin{pmatrix} -3 & 2 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}$

(vi)
$$3A^T + BC$$
.

Esercizio 4. Una matrice quadrata A si dice idempotente se $A^2 = A$. Dimostrare che se AB = A e BA = B allora A, B, AB e BA sono idempotenti.

Esercizio 5. Trovare una formula per il calcolo delle seguenti potenze di matrici a coefficienti reali e la si dimostri per induzione:

$$\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}^n \qquad \qquad \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}^n \qquad \qquad \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}^n.$$

[Si hanno rispettivamente le matrici $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & na \\ 0 & 1 \end{pmatrix}$, per ogni $n \in \mathbb{N}$, poi $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}^n = 2^{n-1} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, con $n \ge 1$, ed infine $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, per ogni $n \ge 1$.]

Esercizio 6. Data la matrice $A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$, provare che $A^2 = 2A - I_2$ e calcolare A^{100} .

[Per il calcolo della potenza conviene usare una formula da dimostrare per induzione come nell'esercizio precedente.]

Esercizio 7. Trovare le matrici della forma $X = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ tali che $X^2 = I_2$. Provare inoltre che l'unica matrice per cui si ha $X^3 = I_2$ è la matrice $X = I_2$.

[Le sole matrici di tipo X per cui si ha $X^2 = I_2$ sono la matrice identica, la sua opposta e tutte le matrici di tipo $\begin{pmatrix} 1 & b \\ 0 & -1 \end{pmatrix}$ oppure $\begin{pmatrix} -1 & b \\ 0 & 1 \end{pmatrix}$, con $b \in \mathbb{R}$.]

Esercizio 8. Sia data la matrice $A = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$. Trovare le matrici $X = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ tali che AX = 0.

[Si ottengono le matrici di tipo
$$\begin{pmatrix} 0 & 0 \\ z & t \end{pmatrix}$$
, al variare di z e t in \mathbb{R} .]

Esercizio 9. Trovare tutte le matrici a coefficienti reali che commutano sotto il prodotto con la matrice $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Ripetere lo stesso esercizio con la matrice $B = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$.

[Le matrici che commutano con A sono della forma $\begin{pmatrix} x & y \\ 0 & x \end{pmatrix}$, al variare di x e y in \mathbb{R} . Le matrici che commutano con B sono della forma $\begin{pmatrix} x & y \\ -y & x-y \end{pmatrix}$, al variare di x e y in \mathbb{R} .]

Esercizio 10. Sia A una matrice quadrata a coefficienti reali con una riga od una colonna le cui entrate sono tutte nulle. Provare che A non può essere invertibile.

Esercizio 11. Siano A e B due matrici simmetriche di ordine n a coefficienti reali. Provare che AB è una matrice simmetrica se e solo se AB = BA.

Esercizio 12. Si dimostri che per ogni $A \in \mathcal{M}_n(\mathbb{R})$, le matrici $A + A^T$, A^TA ed AA^T sono simmetriche e che la matrice $A - A^T$ è antisimmetrica.

Esercizio 13. Decomporre le matrici

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ -1 & 1 & -3 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 & 2 \\ 1 & -1 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$

come somma di una matrice simmetrica e di una antisimmetrica.

[Si utilizzino le formule date a lezione. Per A si ottengono la parte simmetrica $\begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix}$ e la parte antisimmetrica $\begin{pmatrix} 0 & \frac{3}{2} \\ -\frac{3}{2} & 0 \end{pmatrix}$.]

Esercizio 14. Stabilire se le seguenti matrici sono invertibili ed in caso affermativo determinarne l'inversa:

(i)
$$\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$
 [non invertibile]

(ii) $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}$

(iii) $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$ $\begin{pmatrix} \frac{1}{3} & 0 & \frac{1}{3} \\ -\frac{2}{3} & 0 & \frac{1}{3} \\ 0 & 1 & 0 \end{pmatrix}$

(iv) $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ [non invertibile]