Sapienza Università di Roma - Facoltà I3S Corso di Laurea in Statistica Economia Finanza e Assicurazioni Corso di Laurea in Statistica Economia e Società Corso di Laurea in Statistica gestionale Matematica II corso - A.A. 2017-2018 - prof. Cigliola Foglio n.1 - Logica e insiemistica

Esercizio 1. Si indichino con c i cani, con u gli uomini e con p(c, u) il predicato 'c è amico di u'. Usando il linguaggio simbolico, riscrivere le frasi p_1 ='Ogni cane è amico di qualche uomo' e p_2 ='C'è solo un cane amico di tutti gli uomini'.

Usando il linguaggio comune, riscrivere gli enunciati

- (i) $q_1 = \exists c \exists! u : p(c, u);$
- (ii) $q_2 = \exists \ c \ \exists \ u : p(c, u);$
- (iii) $q_3 = \forall c \forall u : p(c, u)$.

[Le prime due frasi diventano $p_1 : \forall c \exists u : p(c, u) e p_2 : \exists ! c \forall u : p(c, u)$. Le altre tre proposizioni diventano q_1 ='C'è un cane che è amico di un uomo soltanto', q_2 ='C'è un cane che è amico di un uomo' e q_3 ='Tutti i cani sono amici di tutti gli uomini'.]

Esercizio 2. Spiegare perché è falsa la seguente affermazione: 'Se n è un numero negativo, allora anche n+3 è negativo.'

[Questo enunciato può essere riformulato come un predicato nella variabile n. Ad esempio $p(n): \forall$ numero negativo n anche il numero n+3 è negativo. Così riformulato è più facile negarlo e mostrare quindi che è falso. Per quanto abbiamo imparato sopra, per negare il \forall dobbiamo esibire almeno un numero n che è negativo, ma tale che n+3 è positivo. Ad esempio n=-2 fa al caso nostro poiché n+3=1 che è un numero positivo.]

Esercizio 3. Usando il linguaggio matematico, riscrivere la seguente proposizione: 'Non c'è un luogo in cui piove ogni giorno'.

[Indichiamo con g i giorni, con l i luoghi e con p(g,l) il predicato 'Nel giorno g piove nel luogo l'. Allora la frase della traccia diventa: $\exists \ l \ \forall \ g: p(g,l)$. Ricordando come si negano i quantificatori più semplicemente otteniamo la formulazione $\forall \ l \ \exists \ g: \overline{p(g,l)}$ che si legge 'In ogni luogo c'è un giorno in cui non piove'.]

Esercizio 4. Dimostrare la seguente proposizione 'Se $n \in \mathbb{N}$ è dispari, allora n non è multiplo di 10'. Formulare l'implicazione contronominale, inversa e contraria. Stabilire se è vera l'implicazione inversa.

[Per comodità conviene provare la contronominale che dice 'Se n è multiplo di 10, allora n è pari'. Ciò è vero poiché se n = 10m, per qualche intero m, allora vale anche n = 2(5m) che è un numero pari. La proposizione inversa è 'Se n non è multiplo di 10, allora n è dispari'(che è falsa). La contraria è 'Se n è pari, allora n è multiplo di 10'(falsa anche questa).]

Esercizio 5. Siano p: 'ABC è un triangolo rettangolo' e q: 'ABC è un triangolo scaleno'. Scrivere il contenuto delle espressioni $\overline{p},\ p \wedge q,\ p \vee q,\ \overline{p} \vee \overline{q},\ \overline{\overline{q}},\ p \Rightarrow q,\ q \Rightarrow \overline{q}$.

[Nell'ordine si ottengono le proposizioni: \overline{p} :'Il triangolo ABC non è rettangolo'; $p \land q$:'Il triangolo ABC è rettangolo e scaleno'; $p \lor q$:'Il triangolo ABC è rettangolo o scaleno'; $p \land \overline{q}$:'Il triangolo ABC è rettangolo e non è scaleno'; $\overline{p} \lor \overline{q}$:'Il triangolo ABC o non è rettangolo o non è scaleno'; \overline{q} :'Non è che il triangolo ABC non è scaleno'; $p \Rightarrow q$:'Se il triangolo ABC è rettangolo, allora è scaleno'; $q \Rightarrow \overline{q}$:'Se il triangolo ABC è scaleno, allora non è scaleno'.]

Esercizio 6. Siano date p e q proposizioni. Costruire le tabelle di verità di $\overline{p} \vee q$; $(\overline{p} \vee q) \wedge \overline{q}$; $q \Rightarrow (\overline{p} \vee q)$.

p	q	\overline{p}	\overline{q}	$\overline{p} \lor q$	$(\overline{p} \lor q) \land \overline{q}$	$q \Rightarrow (\overline{p} \vee q)$
V	V	F	\mathbf{F}	V	F	V
\mathbf{V}	\mathbf{F}	F	V	F	F	V
F	V	V	F	V	F	V
F	\mathbf{F}	V	V	V	V	V

Esercizio 7. Siano $A = \{a, 1, 2, 3, b, 4\}, B = \{a, c, 1, 2\} \in C = \{b, 3, d, 5\}.$ Calcolare $A \cup B, A \cap B$, $A \cup B \cup C$, $B \cap C$, $(A \cap C) \cup B$, $B \setminus C \in C \setminus A$.

[Si ha che
$$A \cup B = \{1, 2, 3, 4, a, b, c\}$$
, $A \cap B = \{a, 1, 2\}$, $A \cup B \cup C = \{1, 2, 3, 4, 5, a, b, c, d\}$, $A \cap B = \{a, 1, 2\}$, $B \cap C = \emptyset$, $(A \cap C) \cup B = \{a, b, c, 1, 2, 3\}$, $B \setminus C = B$ ed infine $C \setminus A = \{d, 5\}$.]

Esercizio 8. Siano dati gli insiemi $A = \{a, b, c\}$ e $B = \{\emptyset, x\}$. Determinare $\mathcal{P}(A)$ e $\mathcal{P}(B)$.

[Si ha che
$$\mathcal{P}(A) = \{ \emptyset, \{ a \}, \{ b \}, \{ c \}, \{ a, b \}, \{ a, c \}, \{ b, c \}, \{ a, b, c \} \}$$
 e $\mathcal{P}(B) = \{ \emptyset, \{ x \}, \{ \emptyset \}, \{ \emptyset, x \} \}.$]

Esercizio 9. Siano dati gli insiemi $A = \{a, b\}$ e $B = \{0, 1\}$. Calcolare $A \times B$ e $B \times A$. Sono uguali questi due insiemi?

[Si ha che il primo insieme
$$A \times B = \{(a,0),(b,0),(a,1),(b,1)\}$$
 e che $B \times A = \{(0,a),(0,b),(1,a),(1,b)\}$. I due insiemi sono diversi poiché ad esempio la coppia $(a,1)$ è un elemento del primo insieme ma non del secondo.]

Esercizio 10. A partire dalle leggi di De Morgan per la logica, dedurre le leggi di De Morgan per l'insiemistica.

Siano dati gli insiemi $A \in B$. Vogliamo provare che $\overline{A \cup B} = \overline{A} \cap \overline{B}$. Consideriamo i predicati $p(x): x \in A \in q(x): x \in B$. Allora p(x) è verificato da tutti e soli gli elementi di A, q(x) da tutti e soli quelli di B. Prendiamo un elemento $x \in \overline{A \cup B}$. Questo equivale a dire che è vera la proposizione $p(x) \vee q(x)$. Per la seconda legge di De Morgan della logica, a sua volta questa proposizione è equivalente a $p(x) \wedge q(x)$. Infine, quest'ultima proposizione è equivalente a dire che $x \in \overline{A} \cap B$. Segue l'uguaglianza voluta dei due insiemi. La prima legge di De Morgan si mostra allo stesso modo.]

Esercizio 11. Siano date $p \in q$ proposizioni. Dimostrare che vale la seguente equivalenza:

$$\overline{\overline{p} \wedge q} \vee p \Leftrightarrow \overline{q} \vee p.$$

[In maniera semplice questa equivalenza può essere provata usando le tavole di verità. Più elegantemente, ragioniamo come segue usando le proprietà dimostrate. Partiamo da $\overline{p} \wedge q$. Per la prima legge di De Morgan essa diventa $\overline{p} \vee \overline{q} \Leftrightarrow p \vee \overline{q}$, cancellando poi la doppia negazione. Sicché la proposizione di partenza diventa $(p \vee \overline{q}) \vee p$. Infine sfruttando nell'ordine le proprietà commutativa, associativa e la legge di idempotenza si ha il risultato finale:

$$(p \vee \overline{q}) \vee p \Leftrightarrow (\overline{q} \vee p) \vee p \Leftrightarrow \overline{q} \vee (p \vee p) \Leftrightarrow \overline{q} \vee p$$
.

Esercizio 12. Siano date $p \in q$ proposizioni. Dimostrare che le seguenti implicazioni sono tautologie: $p \Rightarrow (p \lor q)$ e $(p \land q) \Rightarrow p$. Esse sono dette rispettivamente il passaggio all'alternativa ed il principio di scelta. Si faccia un esempio per entrambe. Dedurne che anche $(p \wedge q) \Rightarrow (p \vee q)$ è una tautologia.

Dalle seguenti tabelle si vede che sono implicazioni sempre vere:

p	q	$p \lor q$	$p \wedge q$	$p \Rightarrow (p \lor q)$	$(p \land q) \Rightarrow p$
V	V	V	V	V	V
V	F	V	F	V	V
F	V	V	F	V	V
F	F	\mathbf{F}	\mathbf{F}	V	V

Come esempio del passaggio all'alternativa si pensi a 'Se un numero è minore di 5, allora è anche minore o uguale a 5'. Per il principio di scelta si ha ad esempio 'Se ABC è un triangolo sia rettangolo che isoscele, allora è in particolare un triangolo isoscele'. L'ultima implicazione segue dalla proprietà transitiva dell'implicazione.]

Esercizio 13. Determinare l'insieme delle parti dell'insieme $A = \{a, b, \{c, d\}\}$.

[I sottoinsiemi di
$$A$$
 sono: \emptyset , $\{a\},\{b\},\{\{c,d\}\},\{a,b\},\{a,\{c,d\}\},\{b,\{c,d\}\},\{a,b,\{c,d\}\}\}$

Esercizio 14. Siano dati gli insiemi $A = \{x, y, 1\}$, $B = \{x, 1\}$ e $C = \{1, y\}$. Calcolare gli insiemi $(A \times B) \cap (A \times C)$ e $A \times (B \cap C)$. Verificare che sono uguali.

[Sono entrambi uguali all'insieme
$$\{(x,1),(y,1),(1,1)\}$$
.]

Esercizio 15. Per ciascuna delle seguenti coppie di insiemi A e B trovare, se possibile, un insieme C che è disgiunto da B ma non da A:

- (i) $A = \{1, 2, 3\} \in B = \{1\}$
- (ii) $A = \{1, 2, 3\} \in B = \{1, 4\}$
- (iii) $A = \{1, 2\} \in B = \{1, 2, 5\}$

[Nei primi due casi ad esempio si possono considerare i seguenti insiemi: $C_{(i)} = \{3\}$ e $C_{(ii)} = \{2\}$. Nel terzo caso è impossibile perché A è sottoinsieme di B, quindi tutto ciò che interseca A, interseca anche B.]

Esercizio 16. Dire a quale delle seguenti proposizioni è equivalente: 'Non tutte le mele sono dolci'

- (i) Qualche mela è dolce.
- (ii) Tutte le mele non sono dolci.
- (iii) Almeno una mela non è dolce.
- (iv) Nessuna mela è dolce.
- (v) Qualsiasi mela è dolce.

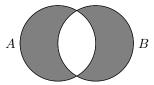
[c)]

Esercizio 17. A quale delle seguenti è equivalente la negazione della frase 'In ogni città c'è solo una curva pericolosa'?

- (i) Tutte le curve di Roma sono pericolose.
- (ii) C'è una città in cui nessuna o tutte le curve sono pericolose.
- (iii) Non esiste una città con una curva pericolosa.
- (iv) A Parigi non ci sono curve pericolose.
- (v) In ogni città tutte le curve sono pericolose.

[b)]

Esercizio 18. Si consideri la figura qui di seguito. Cosa rappresenta la parte colorata?

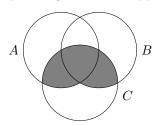


- (i) $A \cap B$;
- (ii) $(A \setminus B) \cup B$;

- (iii) $A \cup B$;
- (iv) $(A \setminus B) \cup (B \setminus A)$;
- (v) $(A \cap B) \setminus A$.

[d)

Esercizio 19. Si consideri la figura qui di seguito. Cosa rappresenta la parte colorata?



- (i) $A \cap B \cap C$;
- (ii) $(A \setminus B) \cup (B \setminus C)$;
- (iii) $(A \cup B) \setminus C$;
- (iv) $(A \cap C) \cup (B \cap C)$;
- (v) $(A \cup B) \cap (A \cup C)$.

[d)]

Esercizio 20. Sia dato l'insieme $A = \{x, y, z\}$. Si dica se le seguenti affermazioni sono vere o false.

- (i) $\varnothing \in \mathcal{P}(A)$
- (ii) $\varnothing \subset \{x\}$
- (iii) $\varnothing \in A$
- (iv) $A \cup A = \{2x, 2y, 2z\}$
- $(v) A = \{x\} \cup \{y\} \cup \varnothing \cup \{z\}$
- (vi) $y \in \mathcal{P}(A)$ ed $y \in A$ V
- (vii) $A = \{x, y\} \cup \{y, z\} \cup \{z, x\}$ V

Esercizio 21. Sia $A = \{a\}$. Dire se le seguenti affermazioni sono vere o false.

- (i) $a \in A$
- (ii) $a \subseteq A$
- (iii) $\{a\} \subseteq A$
- (iv) $\{a\} \in \mathcal{P}(A)$
- (v) $\{\emptyset\} \in A$
- (vi) $\varnothing \in \mathcal{P}(A)$
- (vii) $\{\emptyset\} \in \mathcal{P}(A)$
- (viii) $a \in \mathcal{P}(A)$

(ix)
$$\{a\} \subseteq \mathcal{P}(A)$$

$$(\mathbf{x}) \ \{\{a\}\} \subseteq \mathcal{P}(A)$$

Esercizio 22. Ripetere l'esercizio 21 nell'ipotesi che sia $A = \{\emptyset, a\}$.

Esercizio 23. Ripetere l'esercizio 21 nell'ipotesi che sia $A = \{\emptyset, a, \{a\}\}$.

Esercizio 24. Ripetere l'esercizio 21 nell'ipotesi che sia $A = \{\emptyset, \{\emptyset, a\}\}$.

Esercizio 25. siano A e B insiemi. Sia $X \subseteq A \times B$. È vero che esistono due sottoinsiemi $S \subseteq A$ e $T \subseteq B$ tali che $X = A \times B$?

Esercizio 26. Siano dati gli insiemi $A = \{a, b, 0, 1, 2, *\}, B = \{a, c, *, 1\}, C = \{b, c, 0, 3\}$ e $D = \emptyset$. Calcolare:

- (i) $(A \cup B) \setminus (A \cap B)$;
- (ii) $[(A \cap B) \cap (C \cup D)] \setminus (A \cup B)$;
- (iii) $(A \cup B \cup C) \cap (B \cup C \cup D)$.

Esercizio 27. Siano A, B insiemi. Dimostrare che

$$\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B).$$

Esercizio 28. Siano A, B insiemi. Dimostrare che

$$\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$$
.

Provare che in generale l'inclusione è stretta, cioè che non vale l'inclusione contraria.

Esercizio 29. Siano A, B insiemi. Stabilire se è vero che

$$\mathcal{P}(A) \times \mathcal{P}(B) \subseteq \mathcal{P}(A \times B)$$