Sapienza Università di Roma - Corso di Laurea in Ingegneria Energetica Analisi Matematica II - A.A. 2016-2017 – prof. Cigliola Foglio n.1 – Successioni di funzioni

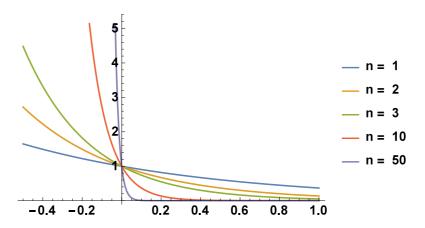
Esercizio 1. Per ciascuna delle seguenti successioni di funzioni studiare la convergenza puntuale ed uniforme:

(i)
$$f_n(x) = e^{-nx}$$

[Il limite puntuale è la funzione discontinua
$$f(x) = \begin{cases} 1 & x = 0 \\ 0 & x > 0 \end{cases}$$
 definita

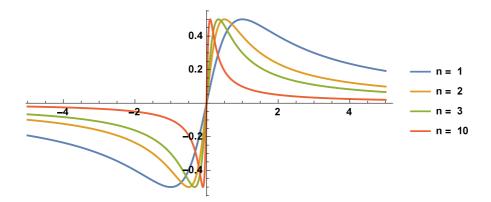
sull'intervallo $[0, +\infty)$. Si noti che per x < 0 la successione diverge positivamente. Si ha convergenza uniforme su tutti gli intervalli di tipo $(a, +\infty)$, con a > 0. In tali intervalli si ha che $\sup_{x \in (a, +\infty)} |f_n(x) - 0| = e^{-na} \to 0$ per $n \to +\infty$. In figura vi sono alcuni

dei grafici delle f_n :



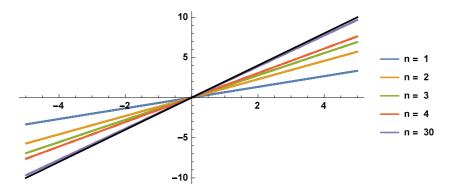
(ii)
$$f_n(x) = \frac{nx}{n^2x^2 + 1}$$

[Per x=0 la successione $f_n(0)$ è costantemente nulla. Fissato $x\neq 0$, la successione numerica $\{f_n(x)\}_{n\in\mathbb{N}}$ si comporta asintoticamente come $\{\frac{1}{nx}\}_{n\in\mathbb{N}}$ che converge a 0 per $n\to +\infty$. Il limite puntuale è quindi la funzione nulla definita su \mathbb{R} . Ci chiediamo ora se la convergenza sia uniforme. Per ogni n calcoliamo l'estremo superiore della funzione $g_n\stackrel{\mathrm{def}}{=}|f_n-0|=|f_n|$. Abbiamo che $f'_n(x)=\frac{n-n^3x^2}{(n^2x^2+1)^2}\geqslant 0$ per $-\frac{1}{n}\leqslant x\leqslant \frac{1}{n}$. Sicché l'estremo superiore di g_n è anche massimo assoluto e vale costantemente $g_n(\frac{1}{n})=\frac{1}{2}$. Siccome sup $|g_n|=\frac{1}{2}\not\to 0$, la convergenza non è uniforme. Sugli insiemi di tipo $(-\infty,-a)$ o $(a,+\infty)$, con a>0, la convergenza è invece uniforme. Infatti, su insiemi di tal tipo il massimo assoluto di $g_n=|f_n|$ è definitivamente assunto in corrispondenza di $x=\pm a$ e vale $g_n(\pm a)=\frac{na}{n^2a^2+1}\sim\frac{1}{na}\to 0$. In figura sono illustrati i grafici di alcune delle f_n , si noti che i valori massimi e minimi da esse assunti sono uguali in valore assoluto a $\frac{1}{2}$.



(iii)
$$f_n(x) = \frac{2n^2x}{n^2 + n + 1}$$

[Il limite puntuale della successione è la funzione f(x) = 2x definita su tutto l'insieme \mathbb{R} . La convergenza non è ivi uniforme. Per vedere ciò, consideriamo la funzione $g_n(x) = |f_n(x) - f(x)| = |\frac{2n^2x}{n^2+n+1} - 2x| = |\frac{-2(n+1)x}{n^2+n+1}| = \frac{2(n+1)|x|}{n^2+n+1}$. Poiché la funzione è pari (rispetto ad x s'intende), basta cercare il suo \sup in $(0, +\infty)$ (il valore assoluto è così superfluo). Siccome $g'_n(x) = \frac{2(n+1)}{n^2+n+1} \geqslant 0$ definitivamente, abbiamo che le g_n non sono limitate superiormente in \mathbb{R} , pertanto la convergenza non è uniforme. Se prendiamo invece domini del tipo (-a,a), con a>0, la convergenza è uniforme. Infatti le g_n assumono il proprio estremo superiore in corrispondenza di x=a, esso vale $g_n(a) = \frac{2(n+1)a}{n^2+n+1}$ che è un infinitesimo per $n\to +\infty$.

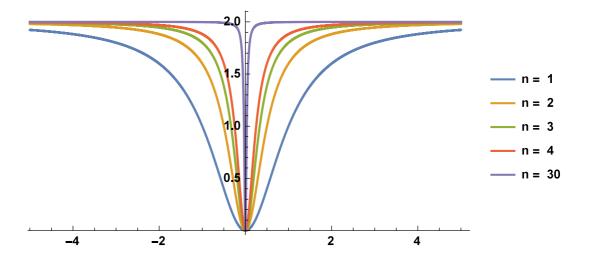


(iv)
$$f_n(x) = \frac{2n^2x^2}{n^2x^2+1}$$

 $f(x) = \begin{cases} 0 & x = 0 \\ 2 & x \neq 0. \end{cases}$ Poiché la funzione limite non è continua, la convergenza non è uniforme su \mathbb{R} . Infatti, detta $g_n(x) = |f_n(x) - f(x)| = \frac{2}{n^2 x^2 + 1}$, abbiamo che $g'_n(x) = \frac{-4n^2x}{(n^2x^2+1)^2}$. Ne discende che le g_n definite su \mathbb{R} hanno un punto di massimo assoluto in x = 0. Siccome $g_n(0) = 2 \longrightarrow 0$, per $n \to +\infty$, la convergenza non è uniforme su \mathbb{R} come ci aspettavamo. La discontinuità di f in x = 0, ci suggerisce di escludere lo zero dagli insiemi di convergenza. Su insiemi della forma $(-\infty, a)$ o

[La successione converge puntualmente su $\mathbb R$ alla funzione costante

 $(a, +\infty)$, con a > 0 la convergenza delle f_n ad f è uniforme. Per vedere ciò, dall'analisi precedente, troviamo che le g_n assumono il loro massimo per x = a o x = -a rispettivamente. Si ha infine che $g_n(a) = g_n(-a) = \frac{2}{n^2a^2+1} \to 0$ per $n \to +\infty$.



(v) $f_n(x) = \log \frac{nx^2}{n^2 + 1}$

[non converge in alcun punto di \mathbb{R}]

(vi)
$$f_n(x) = e^{-nx^2}$$

(vii)
$$f_n(x) = e^{-n|x|}$$

(viii)
$$f_n(x) = e^{\frac{x}{n}}$$

(ix)
$$f_n(x) = e^{\frac{|x|}{n}}$$

$$(x) f_n(x) = e^{\frac{x^2}{n}}$$

(xi)
$$f_n(x) = \frac{x^n}{n}$$

Esercizio 2. Studiare la convergenza puntuale ed uniforme della successione di funzioni $\{f_n\}_{n\in\mathbb{N}}$ definite su \mathbb{R} come

$$f_n(x) = \begin{cases} 1 & n \le x < n+1 \\ 0 & \text{altrimenti.} \end{cases}$$

[La successione converge puntualmente a 0 su \mathbb{R} . La convergenza è uniforme sugli intervalli di tipo $(-\infty, a)$, per ogni a > 0. Infatti, preso \overline{n} il minimo intero naturale maggiore di a, si ha che per ogni $n \ge \overline{n}$, $\sup_{x \in (-\infty - a)} \{|f_n(x) - 0|\} = 0$ che converge banalmente a 0.]

Esercizio 3. È data la successione di funzioni $\{f_n\}_{n\in\mathbb{N}}$ definite su [0,1] come

$$f_n(x) = \begin{cases} \sqrt{n} & \frac{1}{2n} \leqslant x < \frac{1}{n} \\ 0 & \text{altrimenti.} \end{cases}$$

(i) Determinare il limite puntuale della successione $\{f_n\}$.

[Preso $x \in [0,1]$, sia ν il più piccolo intero positivo per cui $\frac{1}{\nu} < x$. Sicché per ogni $n \ge \nu$ si ha che $f_n(x) = 0$. Allora il limite puntuale della successione è la funzione costantemente nulla.]

(ii) Stabilire se la convergenza è uniforme ed in caso contrario determinare insiemi massimali contenuti in [0,1] su cui la convergenza è uniforme.

[La convergenza non è uniforme su [0,1] poiché $\sup_{x \in [0,1]} \{|f_n(x) - 0|\} = \sqrt{n} \rightarrow 0$. Presi invece intervalli di tipo (a,1], con a > 0, la convergenza delle f_n alla funzione nulla è uniforme. Sia ν il più piccolo intero positivo per cui $\frac{1}{\nu} < a$. Allora per ogni $n \ge \nu$ si ha che $f_n(x) = 0$. Banalmente si ha che $\sup_{x \in [a,1]} \{|f_n(x) - 0|\} = 0 \rightarrow 0$.]

(iii) Calcolare $\lim_{n\to+\infty} \int_0^1 f_n(x) dx$.

[Si ha che $\int_0^1 f_n(x) dx = \int_{\frac{1}{2n}}^{\frac{1}{n}} \sqrt{n} dx = \sqrt{n} (\frac{1}{n} - \frac{1}{2n}) = \frac{1}{2\sqrt{n}} \to 0$. Si osservi che esso coincide con $\int_0^1 f(x) dx$ sebbene la convergenza non sia uniforme.]

Esercizio 4. Studiare la convergenza puntuale ed uniforme della successione delle funzioni $\{f_n\}_{n\in\mathbb{N}}$ definite come $f_n(x)=(x^2-x)^n$, con $x\in[0,1]$. Studiare poi la convergenza delle derivate prime e degli integrali delle f_n sull'intervallo [0,1].

Esercizio 5. Provare che l'insieme di convergenza della successione di funzioni

$$f_n(x) = \log(nx^2 + 1)$$

ha insieme di convergenza puntuale ridotto ad un solo punto.

Esercizio 6. È data la successione di funzioni $\{f_n\}_{n\in\mathbb{N}}$ definite su [0,1] come

$$f_n(x) = x^n(1 - x^n).$$

(i) Determinare il limite puntuale della successione $\{f_n\}$.

[Il limite puntuale è la funzione f(x) costantemente nulla.]

(ii) Stabilire se la convergenza è uniforme ed in caso contrario determinare insiemi massimali contenuti in [0,1] su cui la convergenza è uniforme.

[La convergenza non è uniforme su [0,1]. Le f_n hanno un massimo assoluto per $x_n = \frac{1}{\sqrt[n]{2}}$ che vale costantemente $f_n(x_n) = \frac{1}{4}$. Sicché $\sup_{x \in [0,1]} \{|f_n(x) - 0|\} = \frac{1}{4} \longrightarrow 0$.

Presi invece intervalli di tipo [0,a], con 0 < a < 1, la convergenza delle f_n alla funzione nulla è uniforme. Infatti le f_n assumono definitivamente il loro estremo superiore in corrispondenza di x = a e tale estremo superiore converge a zero per $n \to +\infty$.

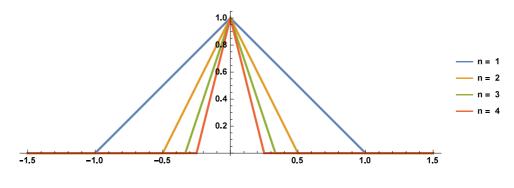
(iii) Calcolare $\lim_{n\to+\infty} \int_0^1 f_n(x) dx$.

[Si ha che $\int_0^1 f_n(x) dx = \frac{1}{n+1} - \frac{1}{2n+1} \to 0$. Si osservi che esso coincide con $\int_0^1 f(x) dx$ sebbene la convergenza non sia uniforme.]

Esercizio 7. Studiare la convergenza puntuale ed uniforme della successione di funzioni definite su \mathbb{R} come

$$f_n(x) = \begin{cases} 1 - n|x| & |x| \leqslant \frac{1}{n} \\ 0 & |x| > \frac{1}{n} \end{cases}$$

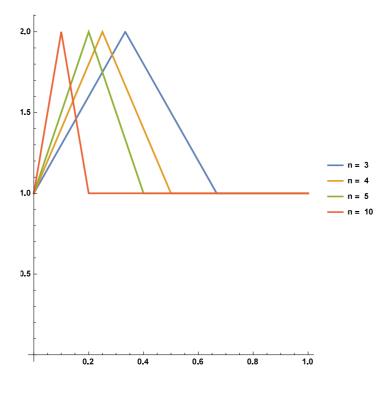
[Il limite puntuale è la funzione discontinua $f(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases}$ La convergenza non è uniforme su $\mathbb R$ ma su intervalli del tipo $(-\infty, -a)$ o $(a, +\infty)$, con a > 0.



Esercizio 8. Studiare la convergenza puntuale ed uniforme della successione delle funzioni $\{f_n\}_{n\geqslant 3}$ definite su $\mathbb R$ come

$$f_n(x) = \begin{cases} 1 - n|x| & 0 \le x < \frac{1}{n} \\ 0 & \frac{1}{n} \le x < \frac{2}{n} \\ 1 & \frac{2}{n} \le x \le 1 \end{cases}$$

Stabilire inoltre se vale la formula dello scambio tra limite ed integrale esteso a [0,1]. [Il limite puntuale è la funzione costante f(x) = 1, per ogni $x \in [0,1]$. La convergenza non è uniforme su [0,1] ma su intervalli del tipo (a,1].



Esercizio 9. Stabilire se è possibile applicare il teorema di passaggio al limite sotto il segno di derivata alla successione di funzioni $f_n(x) = x^2 + \frac{x}{n}$.