= = By writing out the first few terms of (4), you
can see that it is the same as (3). To obtain (4)
we replaced n by n + 2 and began the sum-
mation at 0 instead of 2.

Using Series to Solve Differential Equations

Many differential equations can’t be solved explicitly in terms of finite combinations of
simple familiar functions. This is true even for a simple-looking equation like

[T Y= 2xy' +y=0

But it is important to be able to solve equations such as Equation 1 because they arise from
physical problems and, in particular, in connection with the Schrédinger equation in quan-
tum mechanics. In such a case we use the method of power series; that is, we look for a
solution of the form

y=fx)= X cx"=cot+ c1x + x>+ e3xP + -
n=0

The method is to substitute this expression into the differential equation and determine the
values of the coefficients ¢y, ¢, ¢, . . . .

Before using power series to solve Equation 1, we illustrate the method on the simpler
equation y” + y = 0 in Example 1.

EXAMPLE 1 Use power series to solve the equation y” + y = 0.

SOLUTION We assume there is a solution of the form
(2] y=co+c1x+czx2+C3x3+---=Ec,1x”
n=0
We can differentiate power series term by term, so

Y =c 4 2cx + 3cx> 4 = D ne,x"!

n=1

%

[3] V' =2c+23cx+ o= X nn — e,x"?

n=2

In order to compare the expressions for y and y” more easily, we rewrite y” as follows:

(4] VY= (n+2)(n+ Deyax”
n=0

Substituting the expressions in Equations 2 and 4 into the differential equation, we
obtain

S+ 2)n+ Degax" + 2 cax" =0

n=0 n=0
or

5] S [0+ 2)n + Dewes + ealx" = 0

If two power series are equal, then the corresponding coefficients must be equal. There-
fore, the coefficients of x" in Equation 5 must be 0:

(n+2)n+ Degro t ¢, =0
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Cn

(6] 2™ n+ DHn+2)

n=20,1,2,3,...

Equation 6 is called a recursion relation. If ¢, and c, are known, this equation allows

us to determine the remaining coefficients recursively by putting n = 0, 1,2, 3, ... in
succession.
Co
Putn = 0: = —-——0
utn Co 1-2
Putn = 1 a
utn = 1: = -
! “T 23
Putn = 2: Cy = — e _ < _—
3.4 1-2:3-4 4!
C3 Ci Ci
Putn = 3: cs = — = = —
4.5 2:3-4-5 5!
Cy Co Co
Putn = 4: = — = - = ——
w “T 756 4s-6 6
Putn = 5: 7= — 5= a4

6-7 5167 70

By now we see the pattern:

For the even coefficients, ¢, = (—1)" <«
(2n)!
For the odd coefficients, ¢y,+1 = (—1)" ﬁ

Putting these values back into Equation 2, we write the solution as

y=cot+cax+cox’+aoax’+oxt+esx’+

x2 x4 x6 x2n
=cll—-=+——-=+--+ (-1 e

2! 4! 6! (2n)!
x* X X x2mt!
+cl<x—§+§—7+ +(—1)”m+~->
© e B 241
a2 (—1) 0 + ¢ EO (-1 o
Notice that there are two arbitrary constants, ¢ and c;. | §

NOTE 1 = We recognize the series obtained in Example 1 as being the Maclaurin series
for cos x and sin x. (See Equations 8.7.16 and 8.7.15.) Therefore, we could write the solu-
tion as

y(x) = cocos x + ¢; sin x

But we are not usually able to express power series solutions of differential equations in
terms of known functions.
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EXAMPLE 2 Solve y” — 2xy’ + y = 0.

SOLUTION We assume there is a solution of the form

y=2 cx"
n=0
Then y' = ne,x"!
n=1
and V' =X nn— Dex" 2= (n+ 2)(n + Depax”
n=2 n=0

as in Example 1. Substituting in the differential equation, we get

%

N (n+2)n+ Depax" — 2x 2 neax™ "+ D cx" =0

n=0 n=1 n=0

o

Y (n+2)n+ Depnx” — 2 2nex" + 2 cax” =0

n=0 n=1 n=0

n=1 n=0

> 2nc,x" = 2nc,x" S [(n+2)n+ Dewr — 2n — e, Jx" =
n=0

This equation is true if the coefficient of x" is 0:

n+2)n+ 1cps— 2n—1)c, =0

2n — 1
7 w2 = Cx =0,1,2,3,...
NI TP
We solve this recursion relation by putting n = 0, 1, 2, 3, ... successively in Equation 7:
-1
Putn = 0: Q=750
1
Putn = 1: c; = Ci
2-3
Put 5 3 3 3
utn = 2: Cy = = - c=———c
T 1-2:3-4°"° 41"
p _ 3. 5 _ l- 15
utn = 3: 05—4.56'3—2.3.4 561— 31 Cl
Put 4 7 3-7 3-7
utn = 4: Co = = — o= — C
5.6 415-6 6
p _s. 9 159 1:5-9
utn = J: 07_6-705_ 5!6-701 7 Ci
p S 11 _3-7-11
utn = 6: C3—7.8C(,— 8! Co
13 1:5:9-13
Putn = 7: Co = c7 = Ci
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In general, the even coefficients are given by

3:7-11- - - (4n—5)

= (2n)! .
and the odd coefficients are given by
159« -(4n —3)
Cont1 = c
2t 2n + 1! :
The solution is
y=co+cx+oxt+oax’+oxt+
1 3 3-7 3-7-11
=co<l——x2——x4— xﬁ——xg—--->
2! 4! 6! 8!
N +_%4_1 5 ,1-5-9  1-5-9-13 54
ol x X 5 * T ol X
or
B 1_L2_§3.7..(4n_5) -
A G TRt 2n)! *
301.59.(4’1_3)
+ + 2n+1
C'<x p) @n + 1)! ! ) mm

NOTE2 - In Example 2 we had to assume that the differential equation had a series solu-
tion. But now we could verify directly that the function given by Equation 8 is indeed a
solution.

NOTE 3 - Unlike the situation of Example 1, the power series that arise in the solution of
Example 2 do not define elementary functions. The functions

1 S 3T (4n—5)
1 — — 2 _ 2n
() TR (2n)!
B 5159 -(@4n—3) ,
5 T\? and yax) = x + Zl on + 1! X
2 : - 2 are perfectly good functions but they can’t be expressed in terms of familiar functions. We

can use these power series expressions for y; and y, to compute approximate values of the
functions and even to graph them. Figure 1 shows the first few partial sums 7, 75, T4, . . .
T, (Taylor polynomials) for y;(x), and we see how they converge to y;. In this way we can
graph both y, and y, in Figure 2.

-8
NOTE 4 o If we were asked to solve the initial-value problem
FIGURE 1
YV'=2xy' +y=0 y(0) =0 y'(0) =1
15
we would observe that
Y2
c=y0)=0 a=y0) =1
—2.5 2.5
B This would simplify the calculations in Example 2, since all of the even coefficients would
be 0. The solution to the initial-value problem is
—15 9----+(4n—3)

2n+1

S 15
(x) =x+
FIGURE 2 Y ngl 2n + 1)
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Exercises

10. y' +x’y =0, y(0)=1, y(0)=0
1Ly + X%y +xy=0, y0)=0, y(0)=1

[A] Click here for answers. [s] Click here for solutions.

1-11 m Use power series to solve the differential equation.
12. The solution of the initial-value problem

Ly —y=0 2.y =xy
2. ’ 2., — ! =
3y =x%y 4. (x —3)y' +2y=0 Xy tay +xfy =0 yO) =1 y(0) =0
is called a Bessel function of order 0.
50" +xy  +y=0 6. y'=1y

(a) Solve the initial-value problem to find a power series

7. (x> + Dy +xy —y=0 expansion for the Bessel function.

33 (b) Graph several Taylor polynomials until you reach one that
looks like a good approximation to the Bessel function on

9.y —xy ' —y=0, y0O)=1, y(0)=0 the interval [—35, 5].

8. y' =xy
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Answers

[s] Click here for solutions.

= cpe*

w n
X
1. c02f=coe‘ 3. COE -
n=0 n! n=0 3"n!

S (=1 S (=2)'n!
5 -~ 7 2n+ N =T U 2n+d
COEO T A+ 1)

—1@2n -3,
X

2 o

X (
7. cot+ cx + co— + ¢ s
oo L) 0,22 2221 (n — 2)!

® (_1)112252 e e e (3}1 _ 1)2
I]. + 3n+1
2 Gn + 1)1 !
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Solutions: Using Series to Solve Differential Equations

18

1. Lety(z) = z™. Then y'(z) = 3 nc,z™ ' and the given equation, 3y’ — y = 0, becomes
n=1

3
Il
<)

neax™ ' — 3 cpa™ = 0. Replacing n by n + 1 in the first sum gives > (n + 1)cpr12™ — 3. caz™ =0,
1 n=0 n=0 n=

18

n

18

SO [(n 4 1)ent1 — cn]z™ = 0. Equating coefficients gives (n + 1)cn41 — ¢n = 0, so the recursion relation is
n=0
1 Co 1 1 1 Co 1
c ,m=0,1,2,.... Thenc :c,c:—c:—,c:—c:—-—c:—,c:—C*—,and
ntl = +1 1 =0C0,C2 = 35C1 = 7,03 =30 =350 =g, 0= 7C3= 7
. ¢ L
in general, ¢, = —0'. Thus, the solution is
n!
oo oo e e an
_ n o__ 0 n _ T _ x
B SLTLD S P L
n=0 n=0 n=0
oo oo oo
3. Assuming y(z) = > cpz”, wehavey'(z) = 3 nc,z" ' = Y (n+ 1)cpq12™ and
n=0 n=1 n=0
o0 oo
—z?y = — 3 cpx™? = — 3 c,_22™. Hence, the equation 3y’ = x?y becomes
n=0 n=2

(4 1)epg12™ — > cn—2z” =00rc1 +2c2z+ Y, [(n+ 1)cnt1 — cn—2] 2™ = 0. Equating coefficients

n=20 n=2 n=22
givesci = c2 = 0and cp1 = 0;21 forn =2,3,....Butc; =0, s0cs =0and c7 = 0 and in general
n
.. . co c3 co co
n+1 = 0. Similarl =0 n+2 = 0. Finall = —,6= — = —— R
C3n+1 milarly c2 SO C3n+2 mally c3 3 Ce 6 6.3 32 2
cg = %6 = 9.6(?.3 336 3',...,and C3n = ﬁ Thus, the solution is

oo oo o oo 3n oo 3/9\™
= E cnz” = E C3nz>" = €0 _g8n_g E z __. E M—cem3/3
" an 3n - n! 0 3nn! 0 n! 0

n=0 n=20 n=0 n=0 n=0
5. Lety (z) =Y 0% jeaz™ = y' () =32 ncpz™ tandy” (z) = Z;’lozo(n+2)(n+l)cn+2x". The

differential equation becomes 3°°°  (n + 2)(n + 1)cnt2z™ + x> 00 nenz™ ' + 300 jenz™ = 0or
> ol +2)(n+ 1)cnta + nen + cplz™ (since Y07 | nepa™ =07 nenz™). Equating coefficients gives

. .. —(n+1)cn Cn

2 1)cn 1)e, = 0, thus th lat by = - _ ,
(n+2)(n+1)cat2 + (n+ 1)c us the recursion relation is ¢y, 12 CETICESY p—
n =0,1,2,.... Then the even coefficients are given by co = 7%0, Cc4 = —%2 = %, 6 = 7%4 — -3 .sz. 5

. _(_1\n Co o <_1)nC0 . B _C_l . _E _a
and in general, ca, = (—1) A S vy I The odd coefficients are c3 = 3 ,C5 = = =35
=" ___9 and in general, ¢ = (-~ a )i The solution is
TTTT T35 generdl, cant1 = 3.5-7----(2ntl) @il

_ - _l)n 2n S (_Q)nn! 2n+1
y@ = Grre e X Gt

7
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1. Lety(z) = 3% ycaz™ Theny” =3 0° in(n—1)cpz™ %, 2y’ = 300  neaz™ and

(2 +1)y" =22 gn(n—1)caz™ + 327 (n+2) (n+ 1) cay2x™. The differential equation becomes

. . —1)ecn

Yool +2)(n+1)cnre + [n(n—1)+n —1]ca] 2™ = 0. The recursion relation is cny2 = f(nT)Qc,

n
n=0,1,2 Given coand c1, 3 = 2, ¢ = —2 = — 2 c:fsﬂ:(f)2 3co
gLy Ly 0 1, C2 274 4 22.2!,6 6 23.3!""9
31-3---- (2n —3) co 1 (2n=3)leo 1 (2n—=3)!e

n:—lnl :—1" —:-1" — f

czn = (=1) 27l D" sy - Y oy O
0- .
n=23....c= 301 =0 = cony1 =0forn =1,2,.... Thus the solution is

(:IJ)—C + iz + ¢ $_2+c iM:EQ”

VI m o mar Ty T L w2 ©
L Lety(z) = 3 cuz™ Then —zy/(z) = —z Y neaz™ ' = — 3 ne,z™ = — Y nepz®,
n=0 n=1 n=1 n=0
y'(xz) = > (n+2)(n+ 1)cpt22™, and the equation ¥’ — 2y’ — y = 0 becomes
n=0

> [(n+2)(n+ 1)cnt2 — nen — cn]z™ = 0. Thus, the recursion relation is

n=0
ncn + Cn cn(n+1) Cn . o
Cnio = = = forn =0,1,2,.... One of the given conditions is

2T mt2)m+l) (m+2)m+l) n+2 ’ &

(0) = 1. But (0):§:c (0)" = co+0+0+ - = co,s0co = 1. Hence, 3 = 2 = = ¢y = 2 = L
y . Yy 2 n 0 0,80 co = 1. 02 = = o0 == o
6= 2 = 1 Con = L The other given condition is y'(0) = 0. But
7% T 2.4.6 T 2l £ via=s
/ — n—1 . . C1
y'(0) = chn(o) =c1+0+0+---=ci1,s0c1 = 0. By the recursion relation, c3 = 3= 0,c5=0,...,

n=1
can+1 = 0forn =0, 1, 2, .... Thus, the solution to the initial-value problem is
oo oo e’ 2n (e’ 2 n
_ n o__ 2n __ z _ ($ /2) _ z2 /2

11. Assuming that y(z) = > cpz”, wehavezy = > cpz” = Y. cpa™T,

n=0 0 n=0

oo oo
2 2 1 1
iy =x° Y nepx Tt = ) nepr™
n=1 n=0

y'(@)= 3 nn—Decz™ 2= 3 (n+3)(n+2)cnraz™  [replace n with n + 3]
n=2 n=-—1

o]

=2co+ > (n+3)(n+2)catraz™

n=0
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and the equation 3’ + 2%y’ 4 zy = 0 becomes 2c2 + > [(n + 3)(n + 2)cnt3 + ncn + ] 2™ = 0.

n=0

. Lo —NCp — Cn (n+1)ecn
So c2 = 0 and the recursion relation is ¢p43 = =— ,n=0,1,2,....
: BT 3 n+2)  (n+3)(n+2)

But ¢g = y(0) = 0 = ¢ and by the recursion relation, ¢, = czn42 =0forn=10,1,2, ... .

Also, c1 = 4'(0) = 1, s0

2c1 2 5¢4 s 245 52252
== c=——=(-1) ——7—=(-1
“a=—T3- 137" 76 Wigaz- U
2252 . ..., —1)2
Cany1 = (=17 > Gn +<317)l' ) . Thus, the solution is






