Università degli Studi Roma Tre Corso di laurea in Matematica GE210-Geometria 2 – A.A. 2014-2015 Seconda prova in itinere

Esercizio 1. Sia data una proiettività f del piano proiettivo reale $\mathbb{P}^2(\mathbb{R})$. Dimostrare che se P_1 e P_2 sono due punti distinti fissati da f, allora f fissa anche la retta r passante per P_1 e P_2 . Tale retta r è necessariamente fissata punto per punto? Sotto quale condizione aggiuntiva la retta r è fissata punto per punto?

Esercizio 2. Tra le trasformazioni del piano, si considerino la simmetria σ rispetto alla retta r: x-2y+1=0, la rotazione ρ attorno all'origine di 90° e la traslazione τ di vettore $\vec{v}=(-1,1)$.

- (a) Trovare le equazioni di ρ , σ e τ .
- (b) Trovare le equazioni della trasformazione $f := \rho \circ \tau \circ \sigma$.
- (c) Trovare i punti e le rette fissate da f.
- (d) Provare che f è una isometria e determinarne il tipo.
- (e) Sono dati i punti A, B e C nel piano di cui si sa che

$$f(A) = \left(\frac{1}{5}, -\frac{1}{2}\right), \qquad f(B) = \left(\frac{6}{5}, \frac{1}{2}\right), \qquad f(C) = \left(\frac{11}{5}, \frac{5}{2}\right).$$

Calcolare l'area del triangolo $\triangle(ABC)$.

Esercizio 3. Sia dato in \mathbb{R}^3 il vettore v=(1,-1,-2). Si consideri l'applicazione $F:\mathbb{R}^3\to\mathbb{R}^3$ che ad ogni $u\in\mathbb{R}^3$ associa $F(u)=u\wedge v$.

- (a) Dimostrare che F è un endomorfismo di \mathbb{R}^3 e stabilire se è simmetrico.
- (b) Dire se F è un automorfismo di \mathbb{R}^3 .
- (c) Provare che KerF ed ImF sono sottospazi tra loro ortogonali.
- (d) Trovare autovalori e autospazi di F e stabilire se esso è diagonalizzabile.

Esercizio 4. Siano dati nello spazio euclideo i punti

$$A(1,0,1)$$
 $B(0,1,-1)$ $C(-1,0,0)$.

- (a) Verificare che i punti $A, B \in C$ non sono allineati e calcolare l'area del triangolo $\triangle(ABC)$.
- (b) Determinare il piano π passante per i punti $A, B \in C$.

- (c) Trovare la retta r passante per $A \in B$.
- (d) Trovare la retta s perpendicolare a π passante per il punto P(0, -3, 0).
- (e) Verificare che r ed s sono sghembe, determinare la perpendicolare comune e calcolare la loro distanza.

Esercizio 5. Siano dati nello spazio affine $\mathbb{A}^3(\mathbb{R})$ l'origine O e le rette

$$r: \begin{cases} x=2\\ y=0\\ z=t \end{cases} \text{ ed} \qquad s: \begin{cases} x=0\\ y-z+1=0. \end{cases}$$

Siano poi \overline{O} , \overline{r} ed \overline{s} in $\mathbb{P}^3(\mathbb{R})$ rispettivamente le chiusure proiettive di O, r ed s rispetto ad X_0 .

- (a) Trovare in $\mathbb{A}^3(\mathbb{R})$ una retta passante per O e complanare con r ed s.
- (b) Verificare che \overline{r} ed \overline{s} sono sghembe.
- (c) Trovare in $\mathbb{P}^3(\mathbb{R})$ una retta passante per \overline{O} e incidente \overline{r} ed \overline{s} .

Esercizio 6. Sia data nel piano euclideo la conica

$$\mathscr{C}: \ 10x^2 - 20xy - 5y^2 - 12x + 6y - 6 = 0.$$

- (a) Classificare la conica $\mathscr C$ e trovare la sua equazione canonica.
- (b) Detta \mathscr{C}_0 la chiusura proiettiva di \mathscr{C} in $\mathbb{P}^2(\mathbb{R})$ rispetto ad X_0 , si determini, se esiste, una proiettività di $\mathbb{P}^2(\mathbb{R})$ che trasforma \mathscr{C}_0 nella conica

$$\mathcal{D}:\ X_0^2+X_1^2+X_2^2+2X_0X_1=0.$$