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Abstract

Motivated by the problem of long time stability vs. instability of KAM tori of the
Nonlinear cubic Schrödinger equation (NLS) on the two dimensional torus T2 := (R/2πZ)2,
we consider a quasi-periodically forced NLS equation on T2 arising from the linearization of
the NLS at a KAM torus. We prove a reducibility result as well as long time stability of the
origin. The main novelty is to obtain the precise asymptotic expansion of the frequencies
which allows us to impose Melnikov conditions at arbitrary order.

1 Introduction and main results
The nonlinear cubic Schrödinger equation on the two dimensional torus T2 := (R/2πZ)2

i∂tv = −∆v + |v|2v, x ∈ T2 (1.1)

is one of the fundamental equations in mathematical physics. The pioneering work by Bourgain
[11] ensures that the equation is locally well-posed for any data in Hs(T2) for all s > 0, where

∥u∥Hs :=

(∑
n∈Z2

(1 + |n|)2s|ûn|2
) 1

2

.

Much less is known on the long time behaviour of the solutions, and in the last ten years a rich and
diverse dynamics has been discovered for (1.1). Such dynamics comprise both “regular” dynamics,
such as periodic [25], quasiperiodic [16, 26, 38], almost-periodic [13, 10] trajectories contained in
invariant tori, and more “irregular” one, such as weakly turbulent trajectories undergoing energy
cascade phenomena [14, 24, 22, 27, 21].
A particularly interesting long term goal is to understand the interplay of these two behaviours,
in particular whether there are weakly turbulent trajectories connecting distinct invariant tori.
An important intermediate step is to understand the local dynamics close to these invariant
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sets, namely if one takes an initial datum close to an invariant torus, for how long does its
trajectory stay close to the torus? The next step is to show that, beyond the stability times,
unstable phenomena occur, and one may explicitly construct orbits which start δ-close to an
invariant torus and then slowly drift away by a finite but arbitrarily large factor. A convenient
way of ensuring that trajectories do not stay close to a given torus is to show that they exhibit
a Sobolev norm explosion, namely that after some (very long) time their Sobolev norm, in some
fixed Hs(T2) with s ̸= 0, 1, becomes larger than an arbitrary number K (recall that on a given
invariant torus the Sobolev norms are essentially constant).

The simplest invariant object is clearly the fixed point v = 0. In this case stability results
were proved for example in [5, 17, 9, 4, 6], while instability results in [12, 32, 33, 34], the landmark
result in [14] and subsequent generalizations [24, 28, 22]. For these problems a fundamental role
is played by the linearized frequencies at v = 0 of (1.1), namely

Ωj = |j|2, j ∈ Z2, (1.2)

and the interest is either to avoid resonances between them to prove stability results or to exploit
them to create instability phenomena.

A much more challenging problem is to study stability/instability of more complicated invari-
ant objects. The simplest nontrivial invariant objects are the invariant tori of dimension 1 filled
with plane wave solutions of the form u(t, x) = ρei(jx−ωt), ω = |j|2+ρ2. Their long time stability
was proved in [18], whereas their instability in Hs, s ∈ (0, 1), in [27]. Again a fundamental role is
played by the resonance properties of the linearized frequencies at plane waves solutions, which
are easily computed to be

Ωj =
√
|j|4 + 2|j|2ρ2 = |j|2 + cj(ρ)

|j|2
, j ∈ Z \ {0} . (1.3)

Here it is important to notice how the correction to the unperturbed frequencies (1.2) decays in
|j|, namely whatever is the direction of the vector j ∈ Z2.

The next studied invariant objects have been the so-called finite gap solutions, which are
solutions for the integrable 1d cubic NLS. In particular, they are solutions of (1.1) depending only
on 1 variable, say x1, but they are quasi-periodic in time and fill invariant tori of finite dimension
d ∈ N. Their long time stability has been studied in [35] (see also [29]) whereas their instability,
again in Hs with s ∈ (0, 1) in [21]. As the reader might guess, again a fundamental role is played
by the linearized frequencies at finite gap solutions. In this case it is quite involved to compute
their expression, and it requires partial Birkhoff normal form, a sort of “1d pseudodifferential
normal form” and KAM reducibility techniques. The final result is that they expand as

Ωj = |j|2 + µ(j) +
a(m)

⟨m⟩2
+

Rj

⟨j⟩2
, j = (m,n) ∈ Z2 \ {0} , (1.4)

where µ(j) has a finite number of possible values while a, R are of size ε. Note the first difference
with (1.2) and (1.3): the correction to the unperturbed frequencies depends on the direction of
the vector j = (m,n) ∈ Z2.

Towards stability/instability of KAM tori. The next natural step is to study the long time
stability vs instability of more general (truly bidimensional) quasiperiodic tori of Procesi-Procesi
[38]. There are a number of very serious difficulties to overcome in order to deal with this more
general case. Again the main challenge is to obtain the correct asymptotic expansion of the
linearized frequencies at KAM tori, namely the analogous of formulas (1.3), (1.4). This is a very
hard problem which requires new ideas with respect to the finite gap case.
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The goal of this paper is to settle the machinery to obtain such asymptotics and to apply
them to study a simplified NLS-like equation which, despite not having a particular physical
interest, contains the main difficulties to be overcome in order to tackle the full problem of
stability/instability of KAM tori.

In order to justify the model and the simplifications that we will introduce, let us first give
a brief description of how the KAM-solutions appear. The first step is to choose an appropriate
approximate solution, typically a solution of the linearized equation at v = 0, which is the starting
point of a quadratic algorithm which converges to a true solution. The idea in [26, 37, 43] is to
fix a finite set S = {k(1), . . . ,k(d)} ⊂ Z2 (of maximal rank), look for solutions of (1.1) close to

vlin(t, x) =
∑
j∈S

√
ξj e

ij·x+i|j|2t ,

and show that for most choices of S and many choices of ξ ∈ Rd
+ (in some small ball of radius ε)

there exists a true solution qqp of (1.1) essentially supported on the Fourier modes in S which is
quasi-periodic in time with frequency

ω = (ωi)
d
i=1, ωi = |k(i)|2 +O(ε) .

Since the NLS equation is Gauge and translation invariant it turns out that the solutions in [38]
have the form of covariant quasi-periodic traveling waves, according to the following definition:

Definition 1.1 (Quasi-periodic traveling waves). Let K ∈ Matd×2(Z) (of maximal rank) with

KT =

(
k
(1)
1 . . . k

(d)
1

k
(1)
2 . . . k

(d)
2

)
. (1.5)

A function q(φ, x) is called a quasi-periodic traveling wave if it has the form

q(φ, x) := Q(φ+Kx)

where Q : Td → C is a real analytic function.
We say that a traveling wave is Gauge covariant if Q is a function with Fourier coefficients
supported in the set {ℓ : ℓ · 1⃗ = 1}, i.e.

Q(φ+ t⃗1) = eitQ(φ), 1⃗ = (1, . . . , 1) ∈ Zd . (1.6)

We say it is Gauge invariant if supported in the set {ℓ : ℓ · 1⃗ = 0}. Finally we set

∥Q∥2a,p :=
∑
ℓ

e2a|ℓ||Q(ℓ)|2⟨ℓ⟩2p < ∞ , for a > 0, p >
d

2
. (1.7)

Note that Gauge covariant, quasi-periodic traveling waves satisfy

q(φ+Kζ, ·) = τζq(φ, ·) , ∀ζ ∈ R2 (1.8)

q(φ+ t⃗1, ·) = eitq(φ, ·) , ∀t ∈ R , (1.9)

where τζ is the translation operator (τζu)(x) := u(x+ ζ). In this sense, the solutions in [38] are
covariant quasiperiodic traveling waves of the form

qqp(ωt, x) = qqp(φ, x)|φ=ωt = Q(ωt+Kx) (1.10)
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where ω ∈ Rd belongs to a Cantor-like set of positive measure and K as in (1.5).
Linearizing (1.1) at qqp, one gets the equation

i∂tu = −∆u+A(ωt)u+N (ωt, u) (1.11)

with
A(φ)u := 2|qqp(φ, ·)|2u+ qqp(φ, ·)2ū ,

N (φ, u) := 2qqp(φ, ·)|u|2 + q̄qp(φ, ·)u2 + |u|2u .
(1.12)

As the original equation (1.1) is gauge and translation covariant and qqp(φ, x) is a gauge covariant
quasi-periodic traveling wave, the linear operator A(φ) and the nonlinearity N (φ, u) fulfill the
following covariant properties, as we show in Appendix C: for any (φ, ζ, t) ∈ Td × R2 × R

A(φ+ t⃗1) ◦ eit = eit ◦A(φ), A(φ+Kζ) ◦ τζ = τζ ◦A(φ), (1.13)

N (φ+ t⃗1, eitu) = eit ◦ N (φ, u), N (φ+Kζ, τζu) = τζ ◦ N (φ, u) . (1.14)

The fact that one may reduce to constant coefficients the operator A(φ) was already discussed
in [37, 38] (and is actually simpler to prove than in the case of finite gap solutions [35]). On
the other hand the methods of [37, 38] do not give any information on the asymptotics of the
frequencies, and actually one can prove that an expansion as the one in (1.4) cannot hold. Then
one is not able to prove that the non-resonance conditions hold and one may not prove neither
the stability result nor the successive instability one.

The results. As we already mentioned, the goal is this paper is to initiate the analysis of
stability/instability of the general case by studying the nonlinear stability problem for a simplified
non-resonant model, which contains only the difficulties related to the Melnikov conditions and
avoids the further algebraic complications (which one expects to deal with exactly as in [37] and
[35]). To this purpose we study the following simplified model:

iut −∆u+ V (ωt, x)u+ ∂ūP(t, x, u, ū) = 0 , x ∈ T2 . (1.15)

We make the following assumptions on V and P:

(HV ) V (ωt, x) is the multiplication operator by an analytic gauge invariant traveling wave (see
Definition 1.1), namely

V (ωt, x) = V (ωt+Kx) , V (φ) =
∑
ℓ∈Zd

V (ℓ)eiℓ·φ , (1.16)

with the constraint that

V (ℓ) = 0 ∀ℓ : π(ℓ) = 0 , or
d∑

i=1

ℓi ̸= 0 . (1.17)

(HP) The non linear term P(t, x, y1, y2) = P (ωt + Kx, y1, y2) with P an analytic function on
Td ×Br0(0),

P (φ, y1, y2) =
∑

ℓ,d1,d2

Pℓ,d1,d2
eiℓ·φyd1

1 yd2
2 , ∥P∥a,r0 =

∑
ℓ,d1,d2

|Pℓ,d1,d2
|ea|ℓ|rd1+d2

0 < ∞ ,

with a zero of order at least two and satisfying the invariance property

P (φ+ t⃗1, eity1, e
−ity2) = P (φ, y1, y2) .
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Remark 1.2. We model V on the first term of the operator A(φ) in (1.12), namely the multipli-
cation operator by |qqp(ωt, x)|2, which is a gauge invariant traveling wave with

∫
T |q

qp(ωt, x)|2dx
constant in time. So we assume that the same applies to V .

Remark 1.3. The operator V (φ, ·) and the nonlinearity P(φ, ·) fulfill (1.13), (1.14).

For any p ≥ 0 we introduce the space Hp = Hp(Z2) := ℓ1(Z2) ∩ hp(Z2) endowed with the
norm

∥u∥p := ∥u∥ℓ1(Z2) + ∥u∥hp(Z2).

Note that, by Young inequality, the space Hp is an algebra with respect to the convolution
product, i.e.

∥u ∗ v∥p ≤ 22p+1∥u∥p ∥v∥p (1.18)

We are now ready to state our stability result.

Theorem 1.4. Fix p > 0 and consider the equation (1.15). Assume (HV ) and (HP). Let
R := [−1, 1]d. There exist γ∗, ϵ∗ > 0 and for any γ ∈ (0, γ∗), and any potential V satisfying

ϵ := γ−1 ∥V ∥a,p < ϵ∗ , (1.19)

there exist a Cantor-like set C with measure meas(R \ C) ≤ Cγ , and r∗, T∗ > 0 such that for
any ω ∈ C, r ∈ (0, r∗) the following holds true. For any u ∈ Hp, with ∥u(0)∥p ≤ r, the solution
u(t) ∈ Hp of (1.15) fulfills

∥u(t)∥p ≤ 2r, ∀|t| ≤ T∗

r2
. (1.20)

As already mentioned, the proof of Theorem 1.4 follows the same general scheme of [35] based
on the three steps: 1. Reducibility, 2. Non-resonance conditions, 3. Order three Birkhoff Normal
Form. Since the last step is standard (it is briefly discussed in Section 6) we concentrate on the
first two.
We start by studying the reducibility for the Schrödinger operator

A = iL , L = −∆+ V , (1.21)

in the space Hp := ℓ1(Z2) ∩ hp(Z2), where p > 0 is given, which amounts to prove that the
following property holds:

Definition 1.5 (Reducibility). We say that a time dependent Schrödinger operator L is reducible
on Hp if there exists a quasi-periodic in time bounded and invertible linear operator G such that

G∗L := −iG−1Ġ+G−1LG = diag(Ωj) , Ωj ∈ R . (1.22)

In [15], Eliasson and Kuksin have proven in the analytic setting the existence of an invertible
and time quasi-periodic linear operator G such that G∗L as in (1.22) is reduced to a time
independent, block diagonal operator Q, under smallness assumptions on ϵ as in (1.19) and for
a Borel set of frequencies ω of asymptotically full measure in ϵ, without the constraint that V
is a quasi-periodic traveling wave. Furthermore, it is well known (see for instance [41]) that if
L is covariant in the sense of (1.13), then Q is diagonal. However, the reducibility result of [15]
does not provide an asymptotic expansion of the frequencies {Ωj}j∈Z2 . Thus here we proceed to
prove a more refined result, from which we obtain an asymptotic expansion for {Ωj}j∈Z2 that
generalizes the one found in [21] in the finite gap case (see (1.4)). To state our result we first
need two definitions.
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Definition 1.6 (Generators). A vector v = (v1, v2) ∈ Z2 \ {0} shall be called a generator if

gcd(v1, v2) = 1 and v1 > 0 or v = (0, 1) . (1.23)

We shall denote by V ⊂ Z2 \ {0} the set of generators.

From now on, we fix
0 < δ ≪ 1, and µ := 1− 2δ . (1.24)

Definition 1.7. Given j ∈ Z2 \{0}, we define v(j) ∈ V as the first vector w.r.t. the lexicographic
ordering that attains the minimum in

min
v∈V:|v|≤|j|δ

|v · j| (1.25)

and set b(j) := j · v(j). This means that |b(j)| = min {|v · j| | v ∈ V : |v| ≤ |j|δ}.

With these notations, we prove the following:

Theorem 1.8. There exist γ∗, ϵ∗ > 0 and for any γ ∈ (0, γ∗), any potential V satisfying (1.19),
there exist a Cantor-like set C with measure meas(R \ C) ≤ Cγ , a sequence of Lipschitz functions
R ∋ ω 7→ Ωj(ω) and a bounded linear operator G, close to the identity and with quasi-periodic
dependence on time, such that for any ω ∈ C

G∗L = diag(Ωj) , (1.26)

with

Ωj(ω) := Ωj = |j|2 + ϖ(v(j), b(j), ω)

⟨b(j)⟩2
e−κ|v(j)| +

Θ(1)(j, ω)

⟨b(j)⟩⟨j⟩µ
+

Θ(2)(j, ω)

⟨j⟩2µ
∀j ,

sup
ω∈R

sup
j∈Z2

(
|ϖ(b(j), v(j), ω)|+ |Θ(1)(j, ω)|+ |Θ(2)(j, ω)|

)
< 2∥V ∥a,p ,

(1.27)

with κ > 0 depending on a and on the matrix K only. Moreover, for any integer N ≥ 3, there
exist τN > 0, c∗N > 0 and a Cantor set CN ⊆ C, such that meas(R\CN ) ≤ c∗Nγ , and ∀ω ∈ CN ,
∀(ℓ, L) ∈ GN , where

GN :=
{
(ℓ, L) ∈ Zd × ZZ2

: if ℓ = 0 , then
∑
j∈Z2

|j|2Lj ̸= 0

|L| :=
∑
j∈Z2

|Lj | ≤ N ,

d∑
i=1

ℓi +
∑
j∈Z2

Lj = 0 ,

d∑
i=1

ℓik
(i) +

∑
j∈Z2

jLj = 0
}
, (1.28)

one has
|ω · ℓ+Ω · L| ≥ γ⟨ℓ⟩−τN . (1.29)

The major step in proving non-resonance conditions (1.29) is to show that the final frequencies
{Ωj}j∈Z2 satisfy the asymptotic expansions (1.27). Actually the problem of exhibiting asymptotic
expansions for the eigenvalues of a linear Schrödinger operator

L̃ = −∆+W

on Tn, n ≥ 1, has been widely investigated already in the case of a time independent W (see for
instance [19, 20, 42, 30, 31, 39, 40, 7, 8]). Roughly speaking, in such works one partitions the
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spectrum of L into two subsets: the stable spectrum, which is composed by the eigenvalues such
that

Ωj = |j|2 +O

(
1

⟨j⟩2µ

)
, (1.30)

and the unstable one, namely the set of eigenvalues for which (1.30) does not hold. We point
out that with our notations, stable eigenvalues correspond to those such that

⟨b(j)⟩ ≥ ⟨j⟩µ . (1.31)

Refined asymptotic expansions were available in the time independent case also for eigenvalues
in the unstable spectrum, and in [8] it was proven that all the eigenvalues of L̃ on T2 are of the
form

Ωj = |j|2 +
N∑

n=1

ϖ∗
n(j)

⟨b(j)⟩2n
+

N∑
n=1

Θ∗
n(j)

⟨j⟩2nµ
+O

(
1

⟨b(j)⟩2N

)
, (1.32)

using techniques based on pseudo-differential calculus and a geometric decomposition of the space
of indexes j à la Nekhoroshev (see [36, 23]). However, an expansion of the form (1.32) would
not suffice in order to show non-resonance conditions (1.29) at any order N : this is the reason
why we use a slightly different approach, based on a structure which we refer to as quasi-Töplitz
(see Definition 2.16 below), and prove expansions (1.27). Remark that the major difference with
respect to the expansions (1.32) is represented by the functions ϖ(b(j), v(j)), namely by the fact
that the terms which decay with ⟨b(j)⟩ depend on the vector j through v(j) and b(j) only and
decay exponentially in v(j). This is the key to proving the non-resonance conditions (1.29).

Indeed, rewriting
ω · ℓ+Ω · L = ω · ℓ± Ωj1 ± Ωj2 ± · · · ± Ωjk

the asymptotic expansion guarantees that if all the |ji| ≫ |ℓ|a1 , and either all the |b(ji)| ≫ |ℓ|a2

or |v(ji)| ≫ |ℓ|, then (1.29) follows by imposing Diophantine conditions on ω of the form

|ω · ℓ+K| ≳ |ℓ|−τ ∀ℓ ̸= 0 , ∀K ∈ Z

(and it is well known that such conditions hold for a positive measure set of ω provided that τ
is small enough).
Following this line of reasoning in (1.29) we can ignore all the terms Θ(1)(ji)

⟨b(ji)⟩⟨ji⟩µ , Θ(2)(ji)
⟨ji⟩2µ where

the |ji| are sufficiently large. Similarly we can ignore all the terms ϖ(v(ji),b(ji)
⟨b(ji)⟩2 e−κ|v(ji)| where

either v(ji) or b(ji) is large. This means that, for |L| ≤ N , the expression ω · ℓ+ Ω · L assumes
(up to a negligible error) only a finite number of distinct values (of cardinality bounded only by
ℓ) which are small.
In turn this means that one can surely impose conditions of the type (1.29) provided that τN is
sufficiently large.

2 Functional setting

2.1 Time-dependent momentum preserving operators.
We shall consider quasi-periodic time dependent operators t 7→ M(ωt) ∈ L(Hp) with frequency
ω ∈ Rd, where

M(φ) =
∑
ℓ∈Zd

M(ℓ)eiφ·ℓ , M(ℓ) ∈ L(Hp), (2.1)

that are analytic and momentum preserving according to the following definition:
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Definition 2.1 (Momentum preserving operators). Here and in the following we shall define
the linear map π : Zd → Z2

π(ℓ) :=

d∑
i=1

ℓik
(i) , c−1 := sup

ℓ ̸=0

|π(ℓ)|
|ℓ|

. (2.2)

We say that a time dependent linear operator M(ωt) is momentum preserving if

j − j′ ̸= π(ℓ) ⇒ M j′

j (ℓ) := ⟨M(ℓ)eij
′·x, eij·x⟩ = 0 . (2.3)

For any a > 0 we define the norm

|M |a := sup
∥u∥p≤1

∥Mau∥p , (Ma)
j′

j :=
∑

ℓ:π(ℓ)=j−j′

ea|ℓ||M j′

j (ℓ)|.

We denote the space of time dependent momentum preserving operators with finite norm as
La(H

p).

Definition 2.2 (Gauge covariant operators). We say that M as above is Gauge covariant if∑d
i=1 ℓi ̸= 0 implies M j′

j (ℓ) = 0 .

A convienent way of envisioning such operators is as normally analytic maps from a thickened
torus

Td
a := {φ ∈ Cd : Re(φ) ∈ Rd/(2πZ)d , |Im(φ)| ≤ a} → L(Hp) . (2.4)

Remark 2.3. If M ∈ La(H
p), then M(φ) ∈ L(Hp) for all φ ∈ Td

a and the operator norm satisfies
∥M(φ)∥L(Hp) ≤ |M |a.

One may easily verify (see Lemma 2.14) that La(H
p) is in fact an algebra with respect to

composition. Then it is standard to define the commutator and the adjoint action as follows:

Definition 2.4. For M,S ∈ La(H
p), we set adS[M ](φ) := [M(φ), S(φ)] := M(φ)S(φ) −

S(φ)M(φ), which in matrix form reads

([M,S])
j−π(ℓ)
j (ℓ) =

∑
ℓ1+ℓ2=ℓ

M
j−π(ℓ1)
j (ℓ1)S

j−π(ℓ)
j−π(ℓ1)

(ℓ2)− S
j−π(ℓ1)
j (ℓ1)M

j−π(ℓ)
j−π(ℓ1)

(ℓ2) .

Definition 2.5. We say that M ∈ La(H
p) is self-adjoint if it satisfies

M
j−π(ℓ)
j (ℓ) = M j

j−π(ℓ)(−ℓ) (2.5)

so that M(φ) is self-adjoint for all φ ∈ Td. As is standard, we say that a bounded operator
G ∈ La(H

p) is symplectic if G = eiA with A ∈ La(H
p) self-adjoint.

Remark 2.6. If A,B are self-adjoint, then so is i[A,B]. Consequently, anti self-adjoint operators
form a Lie algebra. Moreover, if M is self-adjoint and G = eS is symplectic (i.e., iS is self-
adjoint) then G−1MG = exp(ad(S))M is self-adjoint. Similarly Gauge covariant operators form
a Lie algebra, so if S,M are Gauge covariant, so is G and G−1MG.
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Time-dependent changes of variables Given the linear PDE ut = iLu, where L is a time
dependent Schrödinger operator as in (1.21) with P ∈ La(H

p), let G ∈ La(H
p) be a quasi-

periodic in time bounded invertible change of variables of the form G = eS with S ∈ La(H
p).

Then, defining u =: Gv, one has vt = i(G∗L)v , with G∗L as in (1.22). The Lie exponentiation
formula gives a nice representation of G∗L in terms of the adjoint actions:

L1 := G∗L = eadSL− i

∞∑
k=1

(adS)k−1

k!
Ṡ , eadSL :=

∞∑
k=0

(adS)k

k!
L . (2.6)

Remark 2.7. Note that, by Remark 2.6, if L is self-adjoint and G is symplectic (or equivalently
iS is self-adjoint) then L1 is self-adjoint. The same holds for the Gauge covariance.

Symplectic structure As we have already explained in the introduction, time dependent
Schrödinger operators have a natural Hamiltonian structure on the phase space Td × Rd × Hp,
equipped with the symplectic form dY ∧ dφ+ i

∑
j duj ∧ dūj . To this purpose we associate to L

as in (1.21), with P self-adjoint, the Hamiltonian

HL := ω · Y +
∑
j

|j|2|uj |2 +
∑
j,ℓ

P
j−π(ℓ)
j (ℓ)eiℓ·φuj−π(ℓ)ūj , (2.7)

with Hamilton equations φ̇ = ω, u̇ = iLu , Ẏ = −(u, Pφu)ℓ2(C). Accordingly, to a symplectic map
G = eiA we associate the generating function

A(φ, u) :=
∑
j,ℓ

A
j−π(ℓ)
j (ℓ)eiℓ·φuj−π(ℓ)ūj ,

whose time one flow Φ1
A gives the symplectic change of variables (u, φ,Y) = G(v, φ′,Y ′) =

Φ1
A(v, φ

′,Y ′)
φ = φ′ , Y = Y ′ + i(Gv,Gφv)ℓ2(C) , u = G(φ)v . (2.8)

Note that (by the Lie exponentiation formula) Φ1
A conjugates (Φ1

A)∗HL = e{A,·}HL = HL1
, with

L1 defined in (2.6). Finally if P,A are Gauge covariant then so is L1.

Basic properties of La(H
p). We now list some useful properties of the space La(H

p).

Remark 2.8. We shall systematically use the fact that the norm | · |a of Definition 2.1 is ordered.
Indeed, if M(φ), N(φ) are such that (Ma)

j′

j ≤ (Na′)
j′

j for any j, j′, then |M |a ≤ |N |a′ .

Lemma 2.9. Let M be a momentum preserving operator according to Definition 2.1. If there
exist θ,A > 0 such that

(Ma)
j′

j ≤ Ae−θ|j−j′| , ∀j, j′ ∈ Z2,

then there exists C(p) > 0 such that

|M |a ≤ C(p)Aθ−p−2 .

Proof. We remark that ∥Mau∥p ≤ ∥f ∗ u∥p where f = (fj)j∈Z2 has components fj := e−θ|j|.
Then one uses (1.18) and the bound follows.

Lemma 2.10. Let V be a traveling wave as in Definition 1.1 with ∥V ∥a,p < ∞. Then the
multiplication operator MV : u 7→ V u belongs to La(H

p) for any a ∈ [0, a) and

|MV |a ≤ C(p, p) (a− a)−(p−2) ∥V ∥a,p .

9



Proof. The multiplication operator is represented by the matrix

(MV )
j′

j (ℓ) = Vℓ,j−j′ =

{
V (ℓ) if j − j′ = π(ℓ)

0 otherwise
, (2.9)

where we used the fact that V is a traveling wave, see (1.16). Hence MV is momentum preserving.
To compute its norm, remark that |j − j′| = |π(ℓ)| ≤ c−1|ℓ| hence, setting θ = c(a− a),

(MV a
)j

′

j =
∑

ℓ:j−j′=π(ℓ)

ea|ℓ||V (ℓ)| ≤ e−θ|j−j′|
∑
ℓ

ea|ℓ||V (ℓ)|

≤ e−θ|j−j′|
√∑

ℓ

1

⟨ℓ⟩2p

√∑
ℓ

e2a|ℓ||V (ℓ)|2⟨ℓ⟩2p ≤ A(p)e−θ|j−j′|∥V ∥a,p .

Then use Lemma 2.9.

We now want to define the "order" of a momentum preserving operator (see Definition 2.13
below). On the one hand, an operator of order −m is standardly defined as a linear map
Hp → Hp+m ∀p; on the other hand, if Hp represents a space of functions of two variables,
Hp(Z2) = Hp(Z) ⊗ Hp(Z), one can define a "vectorial order" such that an operator of order
−(n1, n2) maps

Hp(Z)⊗ Hp(Z) → Hp+n1(Z)⊗ Hp+n2(Z)

(see for instance [35]). Here actually the main novelty is that we use a "non standard" set of
coordinates, which we define in the following.

2.2 A non-linear coordinate set on Z2

In this section we prove some properties of the quantities b(j), v(j) defined for all j ∈ Z2 in
Definitions 1.6, 1.7.

Lemma 2.11. Let v, w ∈ V be distinct generators with max(|v|, |w|) < R. If x ∈ Z2 satisfies
max(|x · v|, |x · w|) < A, then |x| < 2AR.

Proof. Denoting by a := (x · v, x · w)T , x is the solution of the linear system Mx = a where M
is the matrix with rows vT and wT . Then one estimates M−1 by Cramer’s rule.

We shall denote by BK(0) the ball of radius K and center 0 in Z2.

Lemma 2.12. There exists Jδ > 0 with the following property. For any j /∈ BJδ(0) such that
|b(j)| < 2|j|µ (see (1.24)), the following holds true:

(i) For all w ∈ V with |w| ≤ |j|δ and w ̸= v(j)

|w · j| ≥ 2⟨j⟩µ > |v(j) · j| ,

namely v(j) is the unique vector attaining the minimum in (1.25).

(ii) If there exists h ∈ Z2 with |j − h| < 2max(|j|, |h|)δ and v(h) ̸= v(j), then

|v(j)| > 1

2
|j|δ.
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Proof. (i) Assume by contradiction that there exists another generator w ∈ V such that |w · j| =
|v(j) · j| = |b(j)| < 2|j|µ. Then, we apply Lemma 2.11 with A = 2|j|µ, R = |j|δ and we deduce

|j| < 4|j|1−δ ⇒ |j| < 4
1
δ

and item (i) follows provided Jδ ≥ 4
1
δ .

(ii) We claim that, by taking Jδ large enough, one has

1

2
|j| < |h| < 2|j|. (2.10)

Indeed if |h| ≥ 2|j|, then by triangular inequality one deduces that |h| ≤ 4|h|δ, so in particular,
being δ ≪ 1, one has |h| ≤ Rδ, same for |j|. Then just take Jδ > Rδ to get a contradiction. The
other inequality is analogous.

By the definition of v(·) we have |v(j)| < |j|δ, |v(h)| < |h|δ. We distinguish two cases. If
|v(j)| > |h|δ then the thesis follows by (2.10). If |v(j)| ≤ |h|δ, then using the bounds on b(j),
|j − h| and again (2.10) we get

|v(h) · h| ≤ |v(j) · h| = |v(j) · (j + h− j)| ≤ 2|j|µ + 2|j|δ max(|j|, |h|)δ < 4|h|µ

provided Jδ is sufficiently large and δ sufficiently small.
Then we apply Lemma 2.11 with x = h, v = v(j), w = v(h) R = |h|δ and A = 4|h|µ. We

deduce |h| < 8|h|1−δ, which leads to a contradiction for Jδ large.

Next we define the order of a momentum preserving operator.

Definition 2.13 (Order). Given N = (n,m) with n,m ≥ 0 and an operator M ∈ La(H
p), we

define the following norm:

|M |a;−N := sup
∥u∥p≤1

∥Ma;−Nu∥p ,
(
Ma;−N

)j′
j
:=

∑
ℓ : j−j′=π(ℓ)

ea|ℓ| |M j′

j (ℓ)| ⟨j⟩µn ⟨b(j)⟩m , (2.11)

where ∀j ∈ Z2, b(j) is the quantity in Definition 1.7 and µ in (1.24). We denote by La,−N the
subspace of La with finite | · |a,−N norm.

These operators form an algebra, as the next lemma shows. Let

C(p, σ) := c−p sup
k∈N

e−σkkp ∼ σ−p . (2.12)

Lemma 2.14 (Algebra property). Given two operators M,N , with |M |a;−N1 , |N |a;−N2 < ∞ ,
we have

|MN |a;−N1
≤ |M |a;−N1

|N |a;⃗0 . (2.13)

Moreover, let N1 = (n1,m1) and N2 = (n2,m2); then we have for any a′ < a

|MN |a′;−(n1+n2,0) ≤ 2µn2 |M |a′;−N1 |N |a′;−N2 + C(µ(n1 + n2)/δ, a− a′)|M |a;−N1 |N |a′;−N2 .
(2.14)

The proof, being quite technical, is postponed to Appendix A.

Remark 2.15. We note that if M ∈ La(H
p) is time independent, then (by formula (2.3), and

recalling that π(0) = 0) it is necessarily diagonal, namely there exists a sequence {Mj}j∈Z2 ,
Mj ∈ C, with M = diag(Mj)j∈Z2 . Moreover one has supj∈Z2 |Mj | = |M |a , ∀a .
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2.3 Quasi-Töplitz norm
The purpose of this section is to define, for a fixed m > 0, a decomposition of operators in La(H

p)
into a sum of terms of order −N = −(m− k, k) for all k = 0, . . . ,m. We shall further require an
invariance property on the term of order −(0,m), which we will refer to as line-Töplitz.

Definition 2.16. An operator M ∈ La(H
p) is said to be:

• Line-Töplitz if there exists a map Zd × V × Z → C , (ℓ, v, b) 7→ M(ℓ, v, b) , such that

M j′

j (ℓ) = M(ℓ, v(j), b(j)), ∀ℓ ∈ Zd, j, j′ ∈ Z2 .

We denote by Ta := Ta(Hp) the set of line-Töplitz operators in La(H
p).

• Line-Töplitz of order −m, m ≥ 0, if

|M |Ta,−m := sup
v∈V , b∈Z

∑
ℓ∈Zd

eac|v|+a|ℓ||M(ℓ, v, b)|⟨b⟩m < +∞ (2.15)

where c is defined in (2.2). We denote by Ta,−m, m ≥ 0, the set of line-Töplitz operators
of order m.

• Quasi-Töplitz of order −m, m ∈ N, if there exist a line-Töplitz operator MT ∈ Ta,−m and
m operators M (i) ∈ L a

2
(Hp), i = 1, . . . ,m such that

M = MT +

m∑
i=1

M (i) , M (i) ∈ L a
2 ;−(i,m−i) . (2.16)

We denote by LqT
a,−m the set of quasi-Töplitz operators of order m of La(H

p) , which we
endow with the norm

|M |qTa,−m := inf

{
|MT|Ta,−m +

m∑
i=1

|M (i)| a
2 ;−(i,m−i)

∣∣∣∣∣ M = MT +

m∑
i=1

M (i)

}
.

Lemma 2.17. The line-Töplitz operators are bounded, more precisely for all a′ ∈ (0, a) one has

|M |a′;−(0,m) ≤ C(c, p)(a− a′)−p−2|M |Ta,−m

Proof. We have1

(Ma′;−(0,m))
j′

j =
∑

ℓ:j−j′=π(ℓ)

ea|ℓ|⟨b(j)⟩m|M(ℓ, v(j), b(j))|e−(a−a′)|ℓ| ≲ |M |Ta,−me−c(a−a′)|j−j′|.

Let gj := e−c(a−a′)|j| and g := {gj}j∈Z2 ∈ Hp. We have

|g|p :=

√∑
j

e−2c(a−a′)|j|⟨j⟩2p +
∑
j

e−c(a−a′)|j| ≲c,p (a− a′)−p−2

It follows from the algebra property of Hp w.r.t. convolution that

|M |a′;−(0,m) ≲ |g|p|M |Ta,−m ≲c,p (a− a′)−p−2|M |Ta,−m .

1As is conventional we write A ≲ B if there exists a universal constant C > 0 such that A ≤ CB. Similarly
we write A ≲c,p B if there exists C > 0 depending only on c, p such that A ≤ CB.
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We shall need to keep track of Lipschitz dependence on the parameter ω ∈ Rd. To this
purpose, given a compact set O ⊂ Rd, we fix γ > 0 and define the following norm on the space
of Lipschitz maps f : O → E (E a Banach space)

|f |OE := sup
ω∈O

|f(ω)|E + γ sup
ω ̸=ω′∈O

|∆ω,ω′f |E , ∆ω,ω′f :=
f(ω)− f(ω′)

|ω − ω′|
.

Definition 2.18. Let O ⊂ Rd be compact. We denote by LqT,O
a,−m the set of Lipschitz maps

M : O → LqT
a;−m with the | · |qT,Oa,−m norm.

|M |qT,Oa,−m := sup
ω∈O

|M(ω)|qTa,−m + γ sup
ω ̸=ω′∈O

|∆ω,ω′M |qTa,−m

Given a momentum preserving operator M ∈ La(H
p) and K > 0, we define the projections

Π|ℓ|≤KM , Π|ℓ|>KM by

Π|ℓ|≤KM =

{
M

j−π(ℓ)
j (ℓ) if |ℓ| ≤ K

0 otherwise
, Π|ℓ|>KM := M −Π|ℓ|≤KM. (2.17)

These projections obviously map the space La(H
p) to itself. Moreover, since the symbol M(ℓ, v(j), b(j))

of a line-Töplitz operator has no conditions on ℓ, they are also well-behaved with respect to the
line-Töplitz structure. By direct inspection one then gets the following Lemmata.

Lemma 2.19. The projections Π|ℓ|≤K (and Π|ℓ|>K) preserve the spaces T O
a,m, LqT,O

a,−m, and they
are continuous. In particular, if M is quasi-Töplitz then so is its time average ⟨M⟩Td := Πℓ=0M .
For all a′ < a, one has the bounds:

|Π|ℓ|≤KM |T,Oa,−m ≤ |M |T,Oa,−m, |Π|ℓ|≤KM |qT,Oa,−m ≤ |M |qT,Oa,−m ,

|Π|ℓ|>KM |T,Oa′,−m ≤ e−(a−a′)K |M |T,Oa,−m, |Π|ℓ|>KM |qT,Oa′,−m ≤ e−
a−a′

2 K |M |qT,Oa,−m.

Lemma 2.20. Given a time independent (and hence diagonal) operator A = diag(Aj) ∈ LqT,O
a,−m,

there exists a decomposition of the eigenvalues

Aj = a(v(j), b(j)) +

m∑
k=1

r
(k)
j

so that

sup
v∈V,b∈Z

|a(v, b)|Oeac|v|⟨b⟩m +

m∑
k=1

sup
j

|r(k)j |O⟨j⟩kµ⟨b(j)⟩m−k ≤ 2|A|qT,Oa,−m (2.18)

Moreover, if Aj ∈ R, then also a, r
(k)
j ∈ R for k = 1, . . .m.

Proof. Since A ∈ LqT,O
a,−m there exists a decomposition

A = AT +

m∑
k=1

A(k) , such that |AT|T,Oa,−m +

m∑
i=1

|A(i)|Oa
2 ;−(i,m−i) ≤ 2|A|qT,Oa,−m.

Recalling that A is time-independent, we have

A = ⟨A⟩Td = ⟨AT⟩Td +

m∑
k=1

⟨A(k)⟩Td .
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Now, the operators ⟨AT⟩Td , ⟨A(k)⟩Td are all time-independent and hence diagonal; moreover,
⟨AT⟩Td is still line Töplitz. The bounds follow from Remark 2.8. The reality condition follows
by taking the real part in both sides of the equality above.

We now discuss the algebra properties of LqT,O
a,−m. Our purpose is to get a result analogous to

the one in Lemma 2.14. With this in mind, we give two propositions on the product of operators
in LqT,O

a,−m.

Proposition 2.21. Let M1 ∈ LqT,O
a,−m1

and M2 ∈ LqT,O
a,−m2

, and set m = min{m1,m2}. Then we
have M1M2 ∈ LqT,O

a,−m, with the bound

|M1M2|qT,Oa,−m ≤ Ca−q0 |M1|qT,Oa,−m1
|M2|qT,Oa,−m2

. (2.19)

Moreover, setting m1 = m2 = 1, one also has ∀0 < a′ < a that M1M2 ∈ LqT,O
a′,−2, with

|M1M2|qT,Oa′,−2 ≤ C(a− a′)−q1 |M1|qT,Oa,−1 |M2|qT,Oa,−1 . (2.20)

Here C, q0, q1 are positive constants depending only on m1,m2, µ, δ, c, p.

The proof, being quite technical, is postponed to Appendix B.

Corollary 2.22 (Exponentials). Given a,m > 0 and A ∈ LqT,O
a,−m such that (the constants C, γ

are defined in Proposition 2.21)

|A|qT,Oa,−m ≤ δ :=
aq0

4C
(2.21)

one has for any sequence ck ∈ ℓ∞, and for all M ∈ LqT,O
a,−m

|
∞∑
k=d

ckad(A)kM |qT,Oa,−m ≤ 2|c|∞
( |A|qT,Oa,−m

2δ

)d
(2.22)

Proof. It follows directly by iterating the bounds in Proposition 2.21.

Remark 2.23. Estimate (2.19) of Proposition 2.21 and Corollary 2.22 ensure that the well
known fact that smoothing operators generate bounded changes of variables holds also in the
quasi-Töplitz context. On the other hand, estimate (2.20) shows that the product of two operators
of order −1 is actually of order −2, up to a small loss of analyticity.

3 The homological equation
We consider a diagonal operator

D = diag(Ωj)j∈Z2 , Ωj = |j|2 + Ω̃j , Ω̃ := diag(Ω̃j) ∈ LqT,R
a,−2 . (3.1)

Recalling Lemma 2.20, we have Ω̃j = a(v(j), b(j))+r
(1)
j +r

(2)
j , with a(v, b), r(1), r(2) satisfying

(2.18) for m = 2. For all 0 < |ℓ| ≤ K, all j ∈ Z2 and all v ∈ V such that π(ℓ) ∥ v we define

d(ℓ, j) := ω · ℓ+Ωj − Ωj−π(ℓ) (3.2)

d(ℓ, v, b) := ω · ℓ+ 2
|π(ℓ)|
|v|

b− |π(ℓ)|2 + a(v, b)− a(v, b− v · π(ℓ)) (3.3)
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We define the (possibly empty) sets for γ ≥ 0, K ∈ N

C(1) ≡ C(1)
D,K(γ) :=

{
ω ∈ O : |d(ℓ, j)| ≥ γ|ℓ|−τ , ∀ 0 < |ℓ| ≤ K, j ∈ Z2

}
(3.4)

C(2) ≡ C(2)
D,K(γ) :=

{
ω ∈ O : |d(ℓ, v, b)| ≥ 2γ|ℓ|−τ , ∀ 0 < |ℓ| ≤ K, v ∈ V s.t. π(ℓ) ∥ v

}
, (3.5)

OD,K(γ) := C(1)
D,K(γ) ∩ C(2)

D,K(γ). (3.6)

Proposition 3.1. Fix γ, a > 0, K ∈ N and a compact set O ⊆ O0 ⊂ R. Consider a diagonal
operator D as in (3.1) with 16|Ω̃|qT,Ra,−2 ≤ γ . Consider the sets C(1), C(2) defined in (3.4), (3.5)
and set

O+ = OD,K(γ) . (3.7)

For all P ∈ LqT,O
a,−2, there exists S ∈ LqT,O+

a,−2 solving the homological equation

−iṠ + [D,S] = Π0<|ℓ|≤KP, (3.8)

fulfilling the estimate

|S|qT,O+

a,−2 ≤ C(p, µ, δ, c) a−2/δ γ−1 K3τ+1 |P |qT,Oa,−2. (3.9)

If P is self-adjoint, then so is iS; if P is Gauge covariant, then so is S.

The solution S of the homological equation (3.8) is given, in components, by

S
j−π(ℓ)
j (ℓ) =

P
j−π(ℓ)
j (ℓ)

ω · ℓ+Ωj − Ωj−π(ℓ)
if 0 < |ℓ| ≤ K, S

j−π(ℓ)
j (ℓ) = 0 otherwise. (3.10)

Note that S is well defined for ω ∈ C(1)
D and it is well known that S ∈ La(H

p). Moreover if P
is self-adjoint, one verifies that iS is so (just use the characterization (2.5)), same for the Gauge
covariance.
Next we show that S ∈ LqT,O+

a,−2 , namely it has a decomposition (cfr. (2.16))

S = ST + S(1) + S(2) with ST ∈ T O+

a,−2, S(1) ∈ LO+
a
2 ;−(1,1), S(2) ∈ LO+

a
2 ;−(2,0) .

By assumption also P is admissible of order −2, hence it has the same decomposition. In
particular we shall denote the line-Töplitz part of P by

[P T]
j−π(ℓ)
j = P(ℓ, v(j), b(j)) . (3.11)

We then decompose S as follows

S
j−π(ℓ)
j (ℓ) =

[P T]
j−π(ℓ)
j (ℓ)

ω · ℓ+Ωj − Ωj−π(ℓ)
+

[P (1)]
j−π(ℓ)
j (ℓ)

ω · ℓ+Ωj − Ωj−π(ℓ)︸ ︷︷ ︸
=:[S̃(1)]

j−π(ℓ)
j

+
[P (2)]

j−π(ℓ)
j (ℓ)

ω · ℓ+Ωj − Ωj−π(ℓ)︸ ︷︷ ︸
=:[S̃(2)]

j−π(ℓ)
j

. (3.12)

We further need to decompose the first term in the r.h.s. above, which is the most delicate one
because of the divisor. We introduce the following sets

A0 := {(ℓ, j) ∈ Zd \ {0} × Z2 : π(ℓ) = 0, |ℓ| < K}
A1 := {(ℓ, j) ∈ Zd \ {0} × Z2 : π(ℓ) ̸= 0, |ℓ| < K, v(j) ∥ π(ℓ)}

A2 := {(ℓ, j) ∈ Zd \ {0} × Z2 : π(ℓ) ̸= 0, |ℓ| < K, v(j) ̸∥ π(ℓ), |ℓ| < c ⟨j⟩δ}

A3 := {(ℓ, j) ∈ Zd \ {0} × Z2 : π(ℓ) ̸= 0, v(j) ̸∥ π(ℓ), c ⟨j⟩δ ≤ |ℓ| < K}

(3.13)
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and note that {(ℓ, j) : 0 < |ℓ| < K} = ∪3
i=0Ai. Further denote by δA := δA(ℓ, j) = 1 if (ℓ, j) ∈ A,

δA(ℓ, j) = 0 otherwise. Starting from (3.12) we further decompose

S
j−π(ℓ)
j (ℓ) =

[P T]
j−π(ℓ)
j (ℓ)

d(ℓ, j)
δA0

+
[P T]

j−π(ℓ)
j (ℓ)

d(ℓ, v(j), b(j))
δA1

(3.14)

+ [P T]
j−π(ℓ)
j (ℓ)

(
1

d(ℓ, j)
− 1

d(ℓ, v(j), b(j))

)
δA1 +

[P T]
j−π(ℓ)
j (ℓ)

d(ℓ, j)
δA2 + [S̃(1)]

j−π(ℓ)
j

(3.15)

+
[P T]

j−π(ℓ)
j (ℓ)

d(ℓ, j)
δA3 + [S̃(2)]

j−π(ℓ)
j . (3.16)

In the next lemmata we shall prove the line (3.14) gives a line-Töplitz operator, line (3.15) gives
an operator in LO+

a
2 ;−(1,1) and line (3.16) one in LO+

a
2 ;−(2,0).

Lemma 3.2. The operator in the r.h.s. of line (3.14), which we denote by ST, is line-Töplitz
and

|ST|T,O+

a,−2 ≤ 1

2γ
K2τ+1|P T|T,Oa,−2. (3.17)

Proof. Recalling (3.11), (3.3), one checks that the elements of ST are actually given by (ST)
j−π(ℓ)
j (ℓ) :=

S(ℓ, v(j), b(j)) with

S(ℓ, v, b) :=


P(ℓ, v, b)

ω · ℓ
if π(ℓ) = 0 , ℓ ̸= 0 , |ℓ| < K

P(ℓ, v, b)

d(ℓ, v, b)
if π(ℓ) ̸= 0 , |ℓ| < K , v ∥ π(ℓ)

0 otherwise

so ST is line-Töplitz. To study the Lipschitz variation we remark that, since

|∆ω,ω′d(ℓ, v, b)| ≤ |ℓ|+ 2|Ω̃|qT,Oa,−2 ≤ 2K ∀ω ̸= ω′ ∈ O+,

one has ∣∣∣∣∆ω,ω′
1

d(ℓ, v, b)

∣∣∣∣ = ∣∣∣∣ ∆ω,ω′d(ℓ, v, b)

d(ℓ, v, b)(ω) d(ℓ, v, b)(ω′)

∣∣∣∣ ≤ 2γ−2K2τ+1 .

It follows that |∆ω,ω′ST|Ta,−2 ≤ γ−1Kτ |∆ω,ω′P T|Ta,−2 + 2γ−2K2τ+1|P T|Ta,−2. Estimate (3.17) fol-
lows using the small divisor estimates in (3.4), (3.5).

Lemma 3.3. The operator in line (3.15), which we denote by S(1), belongs to LO+
a
2 ;−(1,1) and

there exists C = C(p, µ, δ, c) > 0 such that

|S(1)|O+

a/2;−(1,1) ≤ C γ−1K3τ+1 |P |qT,Oa,−2 . (3.18)

Proof. We bound first the operator S̃(1), defined in (3.12). Using ω ∈ C(1)
D , we know that

|(S̃(1))
j−π(ℓ)
j (ℓ)| ≤ γ−1Kτ |(P (1))

j−π(ℓ)
j (ℓ)|. Thus, by Remark 2.8, we get |S̃(1)|a/2;−(1,1) ≤

γ−1Kτ |P (1)|a/2;−(1,1). To study the Lipschitz norm we proceed as in the previous Lemma and
we conclude that

|S̃(1)|O+

a/2;−(1,1) ≤ 2γ−1K2τ+1|P (1)|Oa/2;−(1,1) . (3.19)

Regarding the remaining operator in line (3.15), which we denote by Ŝ(1), it has matrix elements
given explicitly by
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(Ŝ(1))
j−π(ℓ)
j (ℓ) :=


(P T)

j−π(ℓ)
j (ℓ)

d(ℓ, j)
, if π(ℓ) ̸= 0 , |ℓ| < min(K, c⟨j⟩δ) , v(j) ̸∥ π(ℓ)

(P T)
j−π(ℓ)
j (ℓ)(

1

d(ℓ, j)
− 1

d(ℓ, v(j), b(j))
) , if π(ℓ) ̸= 0 , |ℓ| < K , v(j) ∥ π(ℓ)

0 otherwise.

First line of Ŝ(1): We claim that there exists C = C(δ, µ, γ) such that

sup
j∈Z2,ℓ∈Zd:

|ℓ|<c⟨j⟩δ ,π(ℓ) ̸∥v(j)

∣∣∣∣ ⟨j⟩µ

ω · ℓ+Ωj − Ωj−π(ℓ)

∣∣∣∣O+

≤ Cγ−1K2τ+1 . (3.20)

Indeed if ⟨j⟩ ≤ Jδ (with Jδ the constant of Lemma 2.12), then the bound follows trivially using
also that ω ∈ C(1).
Consider now the case ⟨j⟩ > Jδ. Then by (3.3), in order for the denominator to gain the term
⟨j⟩µ, we need π(ℓ) · j to be large. This is what we show to happen. In particular we claim that

⟨j⟩ ≥ Jδ, |ℓ| < c⟨j⟩δ, π(ℓ) ̸∥ v(j) ⇒ |j · π(ℓ)| > 2⟨j⟩µ (3.21)

and then (3.20) still holds. To prove (3.21) we distinguish 2 cases.
Case 1: |b(j)| > 2⟨j⟩µ. Let w ∈ V be the direction parallel to π(ℓ), then (being w a generator),
|w| ≤ |π(ℓ)| ≤ c−1|ℓ| ≤ ⟨j⟩δ. As v(j) is the vector realizing min{|v · j| : v ∈ V, |v| ≤ |j|δ}, we
have

|π(ℓ) · j| ≥ |w · j| ≥ |v(j) · j| = |b(j)| > 2⟨j⟩µ

and in this case (3.21) follows.
Case 2: |b(j)| ≤ 2⟨j⟩µ. Then as |w| ≤ ⟨j⟩δ and w ̸= v(j), Lemma 2.12 (i) gives again |w · j| ≥
2 ⟨j⟩µ, proving (3.21) also in this case.
Now, recalling that

d(ℓ, j) = ω · ℓ+ 2π(ℓ) · j − |π(ℓ)|2 + Ω̃j − Ω̃j−π(ℓ) , (3.22)

and using (3.21) we obtain that |d(ℓ, j)| ≥ 2⟨j⟩µ − (|ω|c+ 1)⟨j⟩2δ − 1 ≥ C ⟨j⟩µ. Hence (3.20) is
proved in case of the sup norm. The Lipschitz norm is estimated by the same case analysis.
We deduce that

|Ŝ(1)δA2
|O+

a/2;−(1,1) ≤ Cγ−1K2τ+1|P T|Oa/2;−(0,2) ≤
(a
2

)−p−2

Cγ−1K2τ+1|P T|T,Oa,−2 , (3.23)

where in the last inequality we used Lemma 2.17.
Second line of Ŝ(1): Again we consider two cases.
Case 1: |b(j)| > 2⟨j⟩µ or ⟨v(j)⟩ > 1

2 ⟨j⟩
δ or |ℓ| > c⟨j⟩δ. In this case we exploit the decay of (P T)

j−π(ℓ)
j

and get that for ω ∈ OD,K(γ)

|b(j)| ⟨j⟩µ |(P T)
j−π(ℓ)
j (ℓ)(

1

d(ℓ, j)
− 1

d(ℓ, v(j), b(j))
)|

≤ |b(j)| ⟨j⟩µ |(P T)
j−π(ℓ)
j (ℓ)|

(
| 1

d(ℓ, j)
|+ | 1

d(ℓ, v(j), b(j))
)|
)

≤ C a−
µ
δ γ−1Kτ e−

ac
2 |v(j)|− 3a

4 |ℓ| |P T|T,Oa,−2 . (3.24)
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Case 2: |b(j)| ≤ 2⟨j⟩µ and ⟨v(j)⟩ ≤ 1
2 ⟨j⟩

δ and |ℓ| ≤ c⟨j⟩δ. In this case we exploit the decay of
d(ℓ, j)−1 − d(ℓ, v(j), b(j))−1. Precisely we note that

d(ℓ, j) := ω · ℓ+ |j|2 − |j − π(ℓ)|2 + Ω̃j − Ω̃j−π(ℓ) = ω · ℓ+ 2π(ℓ) · j − |π(ℓ)|2 + Ω̃j − Ω̃j−π(ℓ) ,

so decomposing Ω̃ as in Lemma 2.20, and using that v(j) ∥ π(ℓ) we arrive at

d(ℓ, j) =ω · ℓ+ 2
|π(ℓ)|
|v(j)|

b(j)− |π(ℓ)|2 + a(v(j), b(j))− a(v(j − π(ℓ)), b(j − π(ℓ)))

+ r
(1)
j − r

(1)
j−π(ℓ) + r

(2)
j − r

(2)
j−π(ℓ) .

Since |b(j)| ≤ 2⟨j⟩µ, ⟨v(j)⟩ ≤ 1
2 ⟨j⟩

δ and also |π(ℓ)| ≤ ⟨j⟩δ, Lemma 2.12 (ii) implies that v(j) =
v(j − π(ℓ)) and then one has also b(j − π(ℓ)) = b(j)− v(j) · π(ℓ). We deduce that

d(ℓ, j) = d(ℓ, v(j), b(j)) + r
(1)
j − r

(1)
j−π(ℓ) + r

(2)
j − r

(2)
j−π(ℓ)

and thus we estimate

|⟨j⟩µ( 1

d(ℓ, j)
− 1

d(ℓ, v(j), b(j))
)| = |

⟨j⟩µ(r(1)j − r
(1)
j−π(ℓ) + r

(2)
j − r

(2)
j−π(ℓ))

d(ℓ, j)d(ℓ, v(j), b(j))
|

≤ |Ω̃|qT,O0

a,−2 γ−2K2τ≤γ−1K2τ

We reason in the same way for the Lipschitz variation and obtain the bound

sup
j∈Z2,ℓ∈Zd:

|ℓ|<K, π(ℓ)∥v(j)

∣∣∣∣⟨j⟩µ( 1

d(ℓ, j)
− 1

d(ℓ, v(j), b(j))

)∣∣∣∣O+

≤ Cγ−1K3τ+1 . (3.25)

Thus we obtain the same kind of estimate as in (3.24), with τ ⇝ 3τ + 1.
In both cases, using Lemma 2.9, we finally get

|Ŝ(1)δA1
|O+

a/2;−(1,1) ≤ Cγ−1K3τ+1|P T|T,Oa,−2 . (3.26)

Then estimate (3.18) follows from (3.19), (3.23), (3.26).

Lemma 3.4. The operator in line (3.16), which we denote by S(2), belongs to LO+
a
2 ;−(2,0) and

there exists C = C(p, µ, δ, c) > 0 such that

|S(2)|O+

a/2;−(2,0) ≤ Cγ−1K2τ+1
(
|P (2)|Oa/2;−(2,0) + a−2µ/δ|P T|Oa

)
(3.27)

Proof. We need to estimate two contributions. The operator S̃(2), given in (3.12), is estimated
similarly as S̃(1) in the previous lemma, obtaining the estimate

|S̃(2)|O+

a/2;−(2,0) ≤ γ−1K2τ+1|P (2)|Oa/2;−(2,0) . (3.28)

Regarding the first operator in (3.16), which we denote by Ŝ(2), it has elements only supported in
the region |ℓ| ≥ c ⟨j⟩δ. Then the small divisor estimate in (3.4) and Lemma A.1 give the bound

|Ŝ(2)|O+

a/2,−(2,0) ≤ C(p, µ, δ, c) a−2µ/δ|Ŝ(2)|O+
a ≤ γ−1C(p, δ) a−2µ/δK2τ+1|P T|Oa .

Proof of Proposition 3.1. Estimate (3.9) follows from Lemmata 3.2, 3.3 and 3.4.
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4 The KAM reduction scheme
In this section we shall study the linear Schrödinger operator in (1.21) and prove that, pro-
vided that V in (1.16) is sufficiently small, then L is reducible with sufficient knowledge on the
asymptotics of the eigenvalues. As explained in the introduction, the reducibility of Schrödinger
operators is by now well-known, the novelties in this result are the fact that the reducing change
of variables is quasi-Töplitz of order −1 and the asymptotics of the eigenvalues.

Theorem 4.1 (Reducibility). Consider a Schrödinger operator as in (1.21) with a travelling
wave potential V as in (1.16). There exist ϵ∗, γ∗ > 0 such that the following holds. For all
γ ∈ (0, γ∗) and for any potential satisfying the smallness condition (1.19) there exist:
a sequence of Lipschitz functions R := [−1, 1]d ∋ ω 7→ Ωj(ω), a positive measure set O∞ ⊂ R and
a sympletic change of variables G such that

G∗L = diag(Ωj) , G− Id ∈ LqT,O∞
a′,−1 , with a′ = a/8 . (4.1)

Moreover
Ωj = |j|2 + a(v(j), b(j)) + r

(1)
j + r

(2)
j (4.2)

with the bounds

sup
v∈V,b∈Z

|a(v, b)|Rea
′c|v|⟨b⟩2 + sup

j
|r(1)j |R⟨j⟩µ⟨b(j)⟩+ sup

j
|r(2)j |R⟨j⟩2µ ≤ 2∥V ∥a,p .

Finally if V is Gauge invariant then G is Gauge covariant.

We can be more explicit regarding the set O∞. For ℓ ∈ Zd, j ∈ Z2 and all v ∈ V such that
π(ℓ) ∥ v we consider d(ℓ, j), d(ℓ, v, b) defined as in (3.2) with Ωj defined in (4.2).

Proposition 4.2. Under the Hypotheses of Theorem 4.1, there exists τ > 0 such that the set
O∞ contains the set Ofin := O0(γ) ∩ C(1)(γ, τ) ∩ C(2)(γ, τ) where

O0 = O0(γ) := {ω ∈ R : |ω · ℓ+ k| ≥ 2γ|ℓ|−(d+1) ∀(ℓ, k) ∈ Zd+1 : ℓ ̸= 0} , (4.3)

C(1) = C(1)(γ, τ) :=
{
ω ∈ R : |d(ℓ, j)| ≥ 2γ|ℓ|−τ , ∀ ℓ ̸= 0, j ∈ Z2

}
, (4.4)

C(2) := C(2)(γ, τ) :=
{
ω ∈ R : |d(ℓ, v, b)| ≥ 4γ|ℓ|−τ , ∀ ℓ ̸= 0, v ∈ V s.t. π(ℓ) ∥ v

}
. (4.5)

We defer the proof of this proposition to the end of the section.

The first step. In the first step in the reduction scheme we exploit the structure of the
Schrödinger operator in (1.21) and perform a change of variables G0 = eS0 which conjugates L
to −∆+ P0, with P0 quasi-Töplitz of order −2.

Lemma 4.3. Fix a0 = a/4 , γ > 0 and consider a Schrödinger operator as in (1.21) satisfying
(1.19). Then there exist positive constants C, q2, q4, depending on δ, µ, τ, c, p only, and operators
S0 ∈ LqT,O0

a
3 ,−1 and P0 ∈ LqT,O0

a0,−2 (with O0 defined in (4.3)) satisfying the bounds

|S0|qT,O0
a
3 ,−1 ≤ Cγ−1a−q2∥V ∥a,p , |P0|qT,O0

a0,−2 ≤ Cγ−1a−q4∥V ∥2a,p ,

such that L0 := (G0)∗L = −∆+ P0.
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The proof is performed in several steps. We start by defining S0 as the solution of the
homological equation (see (2.9))

i Ṡ0 + [∆, S0] = MV ⇐⇒ (S0)
j−π(ℓ)
j (ℓ) =

− V (ℓ)

ω · ℓ+ |j|2 − |j − π(ℓ)|2
if π(ℓ) ̸= 0

0 otherwise
(4.6)

(recall that, by (1.17), V (ℓ) = 0 if π(ℓ) = 0).
Note that S0 is well defined for ω ∈ O0 and

(G0)∗(−∆+MV ) = eadS0(−∆+MV )− i

∞∑
h=1

(adS0)
h−1

h!
Ṡ0 (4.7)

= −∆+MV +

∞∑
h=1

(adS0)
h−1

h!
([−∆+MV , S0]− iṠ0) (4.8)

= −∆+ [MV , S0] +

∞∑
h=2

(adS0)
h−1

h!
([MV , S0]−MV ),

so for ω ∈ O0

P0 := [MV , S0] +

∞∑
h=2

(adS0)
h−1

h!
([MV , S0]−MV ) =

∞∑
h=1

h(adS0)
h

(h+ 1)!
MV .

In Appendix B we prove that there exist positive constants C, q2, q3, depending on δ, µ, τ, c, p
only, such that the following holds.

Lemma 4.4. Let S0 be the solution of the homological equation (4.6). Then for 2a′ < a we have

|S0|qT,O0

a′,−1 ≤ C

γ(a− 2a′)q2
∥V ∥a,p . (4.9)

Moreover the commutator [S0,MV ] is quasi-Töplitz of order −2 with the bounds

|[S0,MV ]|qT,O0

a′,−2 ≤ Cγ−1(a− 2a′)−q3∥V ∥2a,p (4.10)

Proof of Lemma 4.3. We need to bound |(adS0)
hMV |qT,O0

a0,−2 for all h ≥ 1. If h = 1, this is achieved
through (4.10) with a′ = a0.
If h = 2, then by (2.20) of Proposition 2.21 (and recalling that | · |qT,O0

a,−1 ≤ | · |qT,O0

a,−2 )

|[[S0, [S0,MV ]]|qT,O0

a0,−2 ≤ Ca−q1 |S0|qT,O0
a
3 ,−1 |[S0,MV ]|qT,O0

a
3 ,−2 ≤ C3a−q1−q2−q3γ−2∥V ∥3a,p .

Otherwise if h ≥ 3, then we set A = (adS0)
h−2[S0,MV ] so that, by (2.19) and possibly taking C

larger,
|A|qT,O0

a
3 ,−1 ≤ (Ca−q0 |S0|qT,O0

a
3 ,−1 )

h−2|[S0,MV ]|qT,O0
a
3 ,−2 .

Then we apply (2.20), which reads

|[S0, A]|qT,O0

a0,−2 ≤ Ca−q1(Ca−q0 |S0|qT,O0
a
3 ,−1 )

h−1|[S0,MV ]|qT,O0
a
3 ,−2 ≤ γ(Cγ−1a−

q4
2 ∥V ∥a,p)h+1

with q4 = 2(q0 + q1 + q2 + q3). We deduce that

|P0|qT,O0

a0,−2 ≤ γ
∑
h≥1

h(Cγ−1a−
q4
2 ∥V ∥a,p)h+1

(h+ 1)!
≤ C ′γ−1a−q4∥V ∥2a,p,

provided that Cγ−1a−q4∥V ∥a,p ≤ 1
2 . This amounts to fixing ϵ∗ ≤ 2C−1aq4 in (1.19).
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The iterative scheme. After the first step we have conjugated L to an operator of the form
−∆ + P0 where P0 ∈ LqT,O

a0,−2 is appropriately small. Now we apply a slight modification of a
standard KAM scheme in order to reduce to constant coefficients. As before the main novelty is
that through the iteration we are able to control the quasi-Töplitz norm. The KAM reduction
scheme is based on the iteration of the following lemma.

Lemma 4.5 (KAM step). Fix γ > 0 and K ∈ N. Consider a Schrödinger operator D + P with
D defined in (3.1) and P ∈ LqT,O

a,−2 satisfying

16|Ω̃|qT,Ra,−2 ≤ γ, 16|P |qT,Oa,−2 ≤ γK−3τ−1 . (4.11)

Let O+ be the set defined in (3.7). There exists S ∈ LqT,O+

a,−2 and a time independent operator
Ω̃+ ∈ LqT,R

a,−2 such that, setting G = eS, for all ω ∈ O+ one has

G∗(D + P ) = D+ + P+ , D+ = diag(|j|2 + Ω̃+
j )j∈Z2

where P+ ∈ LqT,O+

a′,−2 for all 0 < a′ < a with the estimate

|P+|qT,O+

a′,−2 ≤ C(p, δ)a−2/δγ−1K3τ+1(|P |qT,Oa,−2)
2 + e−

a−a′
2 K |P |qT,Oa,−2 , (4.12)

and
|Ω̃− Ω̃+|qT,Ra,−2 ≤ |P |qT,Oa,−2 . (4.13)

Proof. We start by defining S as the solution of the homological equation

−i Ṡ + [D,S] = −Π0<|ℓ|≤KP ⇐⇒ S
j−π(ℓ)
j (ℓ) =

−
P

j−π(ℓ)
j (ℓ)

d(ℓ, j)
if 0 < |ℓ| ≤ K

0 otherwise
(4.14)

Note that S is well defined for ω ∈ C(1) (defined in (3.4)) and, by Proposition 3.1, one has
S ∈ LqT,O+

a,−2 , with the bound (3.9). Then

G∗(D + P ) = eadS(D + P )− i

∞∑
h=1

(adS)h−1

h!
Ṡ (4.15)

= (D + P ) +

∞∑
h=1

(adS)h−1

h!
([D + P, S]− iṠ)

= D + diag(P j
j (0)) + Π>KP + [P, S] +

∞∑
h=2

(adS)h−1

h!
([P, S]−Π0<|ℓ|≤KP ) ;

so for ω ∈ C(1) we put

P+ := Π>KP + [P, S] +

∞∑
h=2

(adS)h−1

h!
([P, S]−Π0<|ℓ|≤KP ) , D+ := D + diag(P j

j (0))j∈Z2 .

By construction P = P T + P (1) + P (2) as in (2.16). Now by Lemmas 2.19 and 2.20

P j
j (0) = P(0, v(j), b(j)) + (P (1))jj(0) + (P (2))jj(0) .

So in order to define D+ on all of R we just extend each P(0, v, b), (P (i))jj(0) by Kirszbraun
theorem preserving its weighted Lipschitz norm | · |γ . The bound (4.13) follows. The bound
(4.12) follows by Corollary 2.22 and Lemma 2.19.
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Proposition 4.6 (Iteration). Let L0 be a Schrödinger operator of the form

−∆+ P0 , −∆ = diag(|j|2) , P0 ∈ LqT,O0

a0,−2 , ε0 := γ−1|P0|qT,O0

a0,−2 < K−3τ−2
0 (4.16)

where K0 is large enough. Set

an = a0(1−
n−1∑
k=0

2−k−2) , Kn := K04
n , εn = ε0e

−( 3
2 )

n+1. (4.17)

For all n ≥ 1, there exist

(i)n A sequence of time-independent operators

Dn = −∆+ Ω̃(n) , where Ω̃(n) ∈ LqT,R
an,−2 with |Ω̃(n) − Ω̃(n−1)|qT,Ran,−2 ≤ γεn−1 (4.18)

(we have set Ω(0) := 0).
Following Lemma 2.20 we denote the eigenvalues as

Ω̃
(n)
j = a(n)(v(j), b(j)) + r

(n,1)
j + r

(n,2)
j (4.19)

and define the nested sequence of compact sets (recall (3.4), (3.5))

On := On−1 ∩ C(1)
Dn−1,Kn−1

(γ) ∩ C(2)
Dn−1,Kn−1

(γ) . (4.20)

(ii)n A sequence of operators Pn ∈ LqT,On

an,−2, Sn ∈ LqT,On

an−1,−2 such that(
eSn
)
∗ (Dn−1 + Pn−1) = Dn + Pn , ∀ω ∈ On, (4.21)

γ−1|Pn|qT,On

an,−2 ≤ εn , |Sn|qT,On

an−1,−2 ≤ K3τ+2
n−1 εn−1. (4.22)

Proof. The lemma is proved by standard iterative estimates.

Corollary 4.7. Given a Schrödinger operator L0 satisfying (4.16) there exist a time independent
operator Ω̃ ∈ LqT,R

a0/2,−2, a Cantor-like set O∞ and a symplectic change of variables G with G−Id ∈
LqT,O∞
a0/2,−2 such that

G∗L0 = −∆+ Ω̃ , ∀ω ∈ O∞. (4.23)

Proof. The proof of this lemma is also standard and follows from the fast convergence of the
Ω̃(n) in Proposition 4.6. We put O∞ := ∩nOn.

Proof of Theorem 4.1. The thesis follows from Lemma 4.3 and Corollary 4.7, except from the
fact that O∞ has positive measure. In order to show this, we shall prove Proposition 4.2, which
gives a cleaner characterization of the set O∞. Then, the measure estimates are deferred to the
next section.

Proof of Proposition 4.2. We need to show that Ofin ⊂ ∩∞
n=0On, i.e. we have to verify conditions

(3.4)-(3.5) for ω ∈ Ofin. Proving (3.4) is standard (see for instance [1]). Regarding (3.5), by (4.5)
one has, for ω ∈ Ofin,∣∣ω · ℓ+ 2

|π(ℓ)|
|v|

b− |π(ℓ)|2 + a(n)(v, b)− a(n)(v, b− v · π(ℓ))
∣∣ ≥

4γ|ℓ|−τ − |a(n)(v, b)− a(v, b)| − |a(n)(v, b− v · π(ℓ))− a(v, b− v · π(ℓ))|.

The estimate follows by recalling that |ℓ| < Kn, using (2.18) to bound |a(n)(v, b) − a(v, b)| in
terms of |Ω̃(n) − Ω̃|qT,Ran,−2 and then exploiting the bounds (4.18) (see e.g. the proof of Lemma 7.6
of [35] for details).
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5 Measure estimates
The purpose of this section is to prove that the set of frequencies ω for which the non-resonance
conditions (1.29) hold up to order N has positive measure.
Recalling the notations of Theorem 4.1 and denoting

Ωj = |j|2 + a(v(j), b(j)) +R(j) , R(j) = r
(1)
j + r

(2)
j ,

we have
sup
v,b

ea
′c|v|⟨b⟩2|a(v, b)|R + sup

j
|R(j)|R⟨j⟩µ ≤ 2ϵγ . (5.1)

Denote by

v := (vh)h=1,...,N ∈ VN b := (bh)h=1,...,N ∈ ZN , ηηη := (ηab) a=1,2
b=1,...,N

∈ {−1, 0, 1}2N

and for (ℓ,K,v,b, ηηη) ∈ AN := Zd × Z× VN × ZN × {−1, 0, 1}2N , consider an expression of the
form

d(ℓ,K,v,b, ηηη) := ω · ℓ+K +

N∑
h=1

η1h a(vh, bh) +

N∑
k=1

η2k R(jk) (5.2)

We shall prove the following result:

Lemma 5.1. Given N ∈ N, N ≥ 2, there exist γ∗, ϵ∗, τN > 0 such that for any 0 < γ < γ∗ and
ϵ < ϵ∗ the set

C∗(N, γ, τN ) := C∗ :=

{
ω ∈ R : |d(ℓ,K,v,b, ηηη)| ≥ γ

⟨ℓ⟩τN
, ∀(ℓ,K,v,b, ηηη) ∈ AN : (ℓ,K) ̸= (0, 0)

}
(5.3)

has positive measure. More precisely there exists a constant c∗ > 0 such that

meas(R \ C∗) ≤ c∗γ .

Proof. We first notice that for all L > 0, we can ensure that

|(5.2)| ≥ γ

⟨ℓ⟩d+1
, ∀(ℓ,K) ̸= (0, 0), |ℓ| ≤ L

just by taking ϵ∗ = ϵ∗(L) small enough. So we choose L > 0 (to be fixed later). Next we note
that, for ℓ ̸= 0, if |K| > 2|ℓ| then (for ϵ∗ small enough) one has |d(ℓ,K,v,b, ηηη)| ≥ 1

2 > γ.
So from now on we restrict to |ℓ| ≥ L and |K| ≤ 2|ℓ|.

We prove the claim by finite induction on the number of ηr1,r2 different from 0. More precisely
for every 0 ≤ n ≤ 2N we shall show that for γ small enough, there exist a sequence of increasing
τn and a sequence of nested sets Cn = Cn(γ, τn) such that, provided

|η11|+ · · ·+ |η23| = n ,

then for any ω ∈ Cn one has

|(5.2)| ≥ γ

⟨ℓ⟩τn
, ∀(ℓ,K) ̸= (0, 0) (5.4)

and moreover
meas(R \ C0) ≤ Cγ , meas(Cn \ Cn+1) ≤ Cγ (5.5)

23



for some C > 0. Then the lemma follows by taking C∗ := C2N and c∗ := (2N + 1)C. Then γ∗ is
fixed so that (2N + 1)Cγ∗ < meas(R), and the measure of C∗ results positive.

Case n = 0. In this case (5.2) reduces to ω · ℓ +K, so the set C0 coincides with the set O0

defined in (4.3), with τ0 := d+ 1. It is well known that meas(R \ O0) ≤ Cγ for some C > 0.

Case n⇝ n+1. Assume that (5.4) holds for any possible choice of (ηab) s.t. |η11|+· · ·+|η23| =
n, 1 ≤ n ≤ 2N−1, for some (τa)a=1,...,n. We can assume that |ℓ| ≥ L and |η11|+· · ·+|η23| = n+1.
We further divide two subcases.

Case I: At least one of the following conditions holds:

I.a There exists h = 1, . . . , N such that η1h ̸= 0 and either ca′|vh| ≥ |ℓ| or |bh| ≥ |ℓ|τn/2.

I.b There exists h = 1, . . . , N such that η2h ̸= 0 and ⟨jh⟩ ≥ |ℓ|τn/µ.

In Case I.a, assume w.l.o.g. that η1N ̸= 0 then

|(5.2)| ≥ |ω · ℓ+K +

N−1∑
a=1

η1aa(va, ba) +

N∑
a=1

η2aR(ja)| − |a(vN , bN )|

≥ γ

⟨ℓ⟩τn
− 2γϵ⟨bN ⟩−2e−ca′|vN | ≥ γ

⟨ℓ⟩τn+1

which is true provided ϵ∗ is small enough and L sufficiently large. In Case I.b, assume w.l.o.g.
that η2N ̸= 0 then

|(5.2)| ≥ |ω · ℓ+K +

N∑
a=1

η1aa(va, ba) +

N−1∑
a=1

η2aR(ja)| − |R(jN )|

≥ γ

⟨ℓ⟩τn
− γϵ

1

⟨jN ⟩µ
≥ γ

⟨ℓ⟩τn+1

Case II: For all k = 1, 2 and h = 1, . . . , N such that ηkh ̸= 0 one has ca′|vh| < |ℓ| and
|bh| < |ℓ|τn/2 if k = 1 and one has ⟨jh⟩ < |ℓ|τn/µ if k = 2. Now for |ℓ| ≥ L, |K| ≤ 2|ℓ| and v,b, ηηη
as in Case II we define

Rℓ,K,v,b,ηηη(τn+1, γ) := {ω ∈ R : |d(ℓ,K,v,b, ηηη)| ≤ γ|ℓ|−τn+1} .

Now (recall |ℓ| ≥ L and the Lipschitz estimates on a(v, b) and R(j))

| d

d|ω|
d(ℓ,K,v,b, ηηη)| ≥ |ℓ| − 2Nϵ ≥ 1

so meas (Rℓ,K,v,b,ηηη) ≤ 2γ|ℓ|−τn+1 and

meas

 ⋃
|ℓ|≥L, |K|≤2|ℓ|
v,b,ηηη∈Case II

Rℓ,K,v,b,ηηη

 ≤
∑
|ℓ|≥L

∑
|K|≤2|ℓ|, |vh|≤|ℓ|

|bh|≤|ℓ|τn/2, ⟨jh⟩≤|ℓ|τn/µ

γ

|ℓ|τn+1
≤ Cγ

∑
|ℓ|≥L

|ℓ|2N+1+( 1
2+

2
µ )Nτn−τn+1

which is finite provided

τn+1 > (
5

2
+

2

µ
)Nτn + d+ 1.
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Then we put
Cn+1 := Cn \

⋃
|ℓ|≥L, |K|≤2|ℓ|
v,b,ηηη∈Case II

Rℓ,K,v,b,ηηη

and clearly it fulfills (5.5). This concludes the proof of the inductive step.

We are now ready to discuss the measure of the non-resonant ω. Let us start by discussing
the set Ofin of Proposition 4.2.

Proposition 5.2. There exist γ∗, ϵ∗, τ > 0 such that for any 0 < γ < γ∗ and ϵ < ϵ∗, the set Ofin

of Proposition 4.2 has positive measure, in particular

meas(R \ Ofin) ≤ Cγ .

Proof. We show that the set C∗ defined in (5.3) with N = 2 is contained in Ofin. Indeed C(1)

defined in (4.4) contains C∗, just taking j1 = j, j2 = j − π(ℓ), (vi, bi) = (v(ji), b(ji)) for i = 1, 2,
K = |j1|2 − |j2|2, η11 = η21 = 1, η12 = η22 = −1.
Also C(2) defined in (4.5) contains C∗, setting v1 = v2 = v, b1 = b, b2 = b − v · π(ℓ), K =

2 |π(ℓ)|
|v| b− |π(ℓ)|2 (note that |π(ℓ)|

|v| b ∈ Z as π(ℓ) ∥ v) and taking η11 = −η12, η21 = η22 = 0.

We finally prove Theorem 1.8:

Proof of Theorem 1.8. Reducibility is a consequence of Theorem 4.1. It only remains to prove
that ∀N ∈ N Melnikov conditions of order N are satisfied, namely that C∗ ⊆ GN , with GN as in
(1.28) and C∗ as in (5.3). First we observe that, since L as in (1.28) satisfies |L| ≤ N , it has at
most N non vanishing components Lj1 , . . . , LjN . Then it is sufficient to set

v = (v(j1), . . . , v(j1)︸ ︷︷ ︸
|Lj1

| times

, . . . , v(jN ), . . . , v(jN )︸ ︷︷ ︸
|LjN

| times

) , b = (b(j1), . . . , b(j1)︸ ︷︷ ︸
|Lj1

| times

, . . . , b(jN ), . . . , b(jN )︸ ︷︷ ︸
|LjN

| times

) ,

η = (sign(Lj1), . . . , sign(Lj1)︸ ︷︷ ︸
|Lj1

| times

, . . . , sign(LjN ), . . . , sign(LjN )︸ ︷︷ ︸
|LjN

| times

) , K =
∑
j∈Z2

|j|2Lj . (5.6)

Then the result follows by Lemma 5.1, observing that the set GN is defined in such a way that,
with K as in (5.6), one always has (ℓ,K) ̸= (0, 0).

6 Nonlinear stability results
In order to prove stability we apply a classical Birkhoff normal form procedure, see for instance
Theorem 8.1 of [35]. We start by recalling some standard notions on time dependent Hamiltoni-
ans.
One works in the extended phase space (φ,Y, u) ∈ Td × Rd × Hp with the symplectic form
dY ∧ dφ+ idu ∧ dū.
In this context we shall consider real on real analytic functions on the complex domain

D(a, r) := Td
a ×D(r) , D(r) :=

{
Y ∈ Cd : |Y|1 :=

d∑
i=1

|Yi| < r2 , u ∈ Hp : ∥u∥p < r

}
,

25



with Td
a defined in (2.4). Given a real analytic function F (φ,Y, u) we consider its Taylor-Fourier

series

F (φ,Y, u) =
∑

α,β∈NZ2

ℓ∈Zd,l∈Nd

Fα,β,l,ℓ e
iℓ·φ Y l uα ūβ , Fα,β,l,ℓ = F̄β,α,l,−ℓ , uαūβ = Πj∈Z2u

αj

j ū
βj

j

Correspondingly we expand vector fields in Taylor Fourier series (again well defined and pointwise
absolutely convergent):

X(w)(φ,Y, u) =
∑

α,β∈NZ2 ,ℓ∈Zd,l∈Nd

X
(w)
α,β,l,ℓ e

iℓ·φ Y l uα ūβ ,

where w denotes the components φi,Yi or uj , ūj . To a vector field we associate its majorant

X(w)
a [Y, u] :=

∑
ℓ∈Zd,l∈Nd,α,β∈NZ2

|X(w)
α,β,l,ℓ| e

a |ℓ| Y l uα ūβ . (6.1)

Then we have the following

Definition 6.1. A vector field X : D(a, r) → Cd ×Cd ×Hp will be said to be majorant analytic
in D(a, r) if Xa defines an analytic vector field D(r) → Cd × Cd × Hp.

Since Hamiltonian functions are defined modulo constants, we give the following definition of
regular Hamiltonian and its norm:

Definition 6.2. A real valued Hamiltonian H will be said to be regular in D(a, r) if its Hamil-
tonian vector field XH is majorant analytic in D(a, r). We define its norm by

|H|a,r := sup
(Y,u)∈D(r)

||| (XH)
a
(Y, u) |||

r
, |||X |||r := |X(φ)|∞ +

|X(Y)|1
r2

+
∥X(u)∥

r
+

∥X(ū)∥
r

. (6.2)

Note that the norm |F |a,r controls the norm |||XF |||r in D(a, r).
If F (ω;φ,Y, u) ≡ F (ω) depends on the frequency ω ∈ O, where O is some compact set, we

define the weighted Lipschitz norm:

|F |Oa,r := sup
ω∈O

|F (ω, ·)|a,r + γ sup
ω1 ̸=ω2∈O

|F (ω1, ·)− F (ω2, ·)|a,r
|ω1 − ω2|

. (6.3)

Definition 6.3. We say that a regular Hamiltonian H is Gauge and Momentum preserving if

π(ℓ) +
∑
j∈Z2

j(αj − βj) ̸= 0 or
d∑

i=1

ℓi +
∑
j∈Z2

(αj − βj) ̸= 0 ⇒ Hα,β,l,ℓ = 0

By convention we define the scaling degree of a monomial eiℓ·φ Y l uα ūβ as deg(l, α, β) := 2|l|+
|α|+ |β| − 2 , and define the projection on the homogeneous components of scaling degree d as

H(d) :=
∑

ℓ∈Zd,l∈Nd,α,β∈NZ2

2|l|+|α|+|β|=d+2

Hα,β,l,ℓ e
iℓ·φY luα ūβ ,

similarly for H(≤d) and H(≥d). One easily verifies that {H(d1), H(d2)} has scaling degree d1+d2.
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Proof of Theorem 1.4. A direct computation ensures that the NLS equation (1.15) is Hamil-
tonian

H = ω ·Y+
∑
j

|j|2|uj |2+(u, V (φ)u)ℓ2(Z2)+P (φ, u) , P =

∫
T2

P (φ+Kx, u(x), ū(x))dx . (6.4)

By assumptions P is a Gauge and Momentum preserving regular Hamiltonian of scaling ≥ 1,
with norm

|P |a,r ≤ Cr , ∀r ≤ r∗ .

We now fix 0 < γ < γ∗ and assume that ∥V ∥a,pγ−1 < ϵ∗ so that we may apply Theorem
4.1. The time dependent symplectic change of variables G defined in Theorem 4.1 gives rise
to the simplectic trasformation G defined in (2.8) on the extended phase space. By definition,
G preserves the scaling degree and maps D(a/8, r) → D(a/8, ρr) for all r > 0, where ρ − 1 ≲
∥V ∥a,pγ−1. Thus for all regular F of scaling ≥ 1 one has that F ◦ G is still regular, of scaling
≥ 1, and satisfies

|F ◦ G|a,ρr ≤ 2|F |a,r , ∀a ≤ a/8.

Finally, since V is Gauge invariant then G is Gauge covariant. By construction G reduces the
Hamiltonian H to the diagonal form

H1 = H ◦ G = ω · Y +
∑
j

Ωj |uj |2 +K(φ, u) , |K|a/8,r ≤ Cr , ∀r ≤ r∗ ,

where K is a Gauge and Momentum preserving regular Hamiltonian of scaling ≥ 1. We note
that, thanks to Theorem 1.8 with N = 3, we can impose third order Melnikov conditions of
the formula (1.29) for any (ℓ, L) ∈ G3. Since K is a regular Gauge and momentum preserving
Hamiltonian, we can eliminate all of its monomials of scaling degree 1. Precisely, as H1 fits the
hypotheses of Theorem 8.1 of [35] (with ε = 1), there exists a symplectic change of variables
which cancels the terms of scaling degree one in K and conjugates H1 to

H2 = ω · Y +
∑
j

Ωj |uj |2 + K̃(φ, u) , |K̃|a/8,r ≤ Cr2 , ∀r ≤ r∗ ,

where K̃ has scaling ≥ 2. Then the stability times in Theorem 1.4 follow by a standard contraction
mapping Lemma argument, see for instance Corollary 5.1 of [9].

A Technical lemmas
Lemma A.1 (Bony). Given M ∈ La(H

p) and setting

(M (B))j
′

j (ℓ) :=

{
0 if |ℓ| > c⟨j⟩δ

M j′

j (ℓ) otherwise
, M (R) = M −M (B) (A.1)

we have that M (R) ∈ La′,−n for any n > 0 and any 0 ≤ a′ < a with the quantitative estimate

|M (R)|a′,−n ≲p,δ
|M |a

(a− a′)µn/δ
(A.2)
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Proof. Exploiting the definition (2.11) we have

(M
(R)
a′,−n)

j′

j :=
∑

ℓ:j−j′=π(ℓ)

|ℓ|>c⟨j⟩δ

ea
′|ℓ||M j′

j (ℓ)|⟨j⟩µn ≤ c−µn/δ
∑

ℓ:j−j′=π(ℓ)

ea|ℓ|e−(a−a′)|ℓ||ℓ|nµ/δ|M j′

j (ℓ)|

≤ C(µn/δ, a− a′)(Ma)
j′

j ,

with C(p, σ) defined as in (2.12) for p, σ > 0.

Proof of Lemma 2.14. To prove (2.13), we just use the fact that one has

(MNa,−N1
)j

′

j :=
∑

ℓ1,ℓ2:j−j′=π(ℓ1+ℓ2)

ea|ℓ1+ℓ2| |M j−π(ℓ1)
j (ℓ1)| ⟨j⟩µn1 |b(j)|m1 |N j′

j−π(ℓ1)
(ℓ2)|

≤
∑
j1

(Ma,−N1
)j1j (Na,⃗0)

j′

j1
.

For the second statement we divide M = M (B) +M (R) as in (A.1), then

(M (B)Na;−(n1+n2,0)
)j

′

j :=
∑

ℓ1,ℓ2:j−j′=π(ℓ1+ℓ2),

|ℓ1|<c⟨j⟩δ

ea|ℓ1+ℓ2| |M j−π(ℓ1)
j (ℓ1)| ⟨j⟩µ(n1+n2) |N j′

j−π(ℓ1)
(ℓ2)|

≤
∑

ℓ1,ℓ2:j−j′=π(ℓ1+ℓ2),

|ℓ1|<c⟨j⟩δ

(
ea|ℓ1||M j−π(ℓ1)

j (ℓ1)|⟨j⟩µn1 ea|ℓ2|⟨j − π(ℓ1)⟩µn2 |N j′

j−π(ℓ1)
(ℓ2)|

)( ⟨j⟩
⟨j − π(ℓ1)⟩

)µn2

≤ 2µn2

∑
j1

(M (B)
a;−N1

)j1j (Na;−N2
)j

′

j1
.

Moreover by (2.13) with M ⇝M (R) and estimate (A.2) we have

|M (R)N |a′;−(n1+n2,0) ≤ |M (R)|a′;−(n1+n2,0)|N |a′ ;⃗0 ≲
|M |a|N |a′

(a− a′)
µ(n1+n2)

δ

.

B Proof of Proposition 2.21 and Lemma 4.4
Before proving Proposition 2.21, we give the following auxiliary result:

Lemma B.1. Given n1,m1,m2 ∈ N, let N1 = (n1,m1), R ∈ L a
2 ;−N1

and T ∈ Ta,−m2
. Then

RT ∈ L a
2 ;−N1 , and TR ∈ L a

2 ;−(n1,m2), with the bounds

|RT | a
2 ;−N1

≲ a−p−2|R| a
2 ;−N1

|T |Ta,0 , (B.1)
|TR| a

2 ;−(n1,m2) ≲µ,n1
a−µn1 |R| a

2 ;−(n1,0)|T |Ta,−m2
. (B.2)

Proof. Bound (B.1) follows directly from Lemma 2.14 and Lemma 2.17. Analogously, to prove
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(B.2) one observes that

(TR a
2 ;−(n1,m2))

j′

j :=
∑
ℓ1,ℓ2:

j−j′=π(ℓ1+ℓ2)

e
a
2 |ℓ1+ℓ2||T j−π(ℓ1)

j (ℓ1)| |Rj′

j−π(ℓ1)
(ℓ2)| ⟨j⟩µn1 |b(j)|m2

≲n1,µ a−µn1

∑
ℓ1,ℓ2:

j−j′=π(ℓ1+ℓ2)

e
3
4a|ℓ1||T j−π(ℓ1)

j (ℓ1)||b(j)|m2e
a
2 |ℓ2|⟨j − π(ℓ1)⟩µn1 |Rj′

j−π(ℓ1)
(ℓ2)|

≲µ,n1 a−µn1

∑
j1

(T 3
4a,0,−m2

)j1j (R a
2 ,−n1,0

)j
′

j1
,

and the result follows by Lemma 2.14, by Remark 2.8, and by Lemma 2.17.

Proof of Proposition 2.21. We start by proving estimate (2.19).
As Mι ∈ Aa,−mι

, ι = 1, 2, there exist operators MT
ι ,M

(1)
ι , . . . ,M

(mι)
ι such that Mι = MT

ι +∑mι

i=1 M
(i)
ι and

|MT
ι |Ta,−mi

+

mι∑
i=1

|M (i)
ι | a

2 ;−(i,mι−i) ≤ 2|Mι|qTa,−mι
. (B.3)

To each MT
ι we may associate the symbol Tι(ℓ, v, b) . First of all we define the line-Töplitz part

of M1M2 by setting (M1M2)
T := T with

(T )j
′

j (ℓ) := T(ℓ, v(j), b(j)) , T(ℓ, v, b) :=
∑

ℓ1+ℓ2=ℓ

T1(ℓ1, v, b) T2(ℓ2, v, b− v · π(ℓ1)) .

We estimate its |T |Ta,−m norm, given by (2.15), with m = min(m1,m2):

|T |Ta,−m ≤ sup
v∈V ,b∈Z

∑
ℓ∈Zd

ea(c|v|+|ℓ|)|T(ℓ, v, b)|⟨b⟩m

≤ sup
v∈V ,b∈Z

∑
ℓ1∈Zd

ea|ℓ1||T1(ℓ1, v, b)|⟨b⟩m1 sup
v′∈V ,b′∈Z

∑
ℓ2∈Zd

ea(c|v
′|+|ℓ2|)|T2(ℓ2, v

′, b′)| ≤ |MT
1 |Ta,−m1

|MT
2 |Ta,0 .

Then we set

R := M1M2 − T =

m1∑
i=1

M
(i)
1 MT

2 +

m2∑
i=1

MT
1M

(i)
2 +

m1∑
i1=1

m2∑
i2=1

M
(i1)
1 M

(i2)
2 + (MT

1 M
T
2 − T ) . (B.4)

We start with estimating the first summand. To each term in the sum we apply Lemma B.1
with R = M

(i)
1 ∈ L a

2 ;−(i,m1−i) and T = MT
2 ∈ Ta,−m2

, deducing that

|M (i)
1 MT

2 | a2 ;−(i,m1−i)≲ a−p−2|M (i)
1 | a

2 ;−(i,m1−i) |MT
2 |Ta,⃗0

(B.3)
≲ a−p−2|M1|qTa,−m1

|M2|qTa,−m2
.

The second summand in (B.4) is estimated analogously using Lemma B.1 with R = M
(i)
2 ∈

L a
2 ;−(i,m2−i) and T = MT

1 ∈ Ta,−m1
, getting

|MT
1 M

(i)
2 | a

2 ;−(i,m1) ≲j,m1
a−µi|M (i)

2 | a
2 ,−(i,0) |MT

2 |Ta,−m1

(B.3)
≲m1,m2

a−µm2 |M1|qTa,−m1
|M2|qTa,−m2

.

Furthermore, by Lemma 2.14 one has that ∀i1 = 1, . . . ,m1 and ∀i2 = 1, . . . ,m2

|M (i1)
1 M

(i2)
2 | a

2 ;−(i1,m1−i1) ≤ |M (i1)
1 | a

2 ;−(i1,m1−i1) |M
(i2)
2 | a

2 ;(0,0)

(B.3)
≤ 4|M1|qTa,−m1

|M2|qTa,−m2
.
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Remark that, since m = min{m1,m2}, in particular ∀i1 = 1, . . . ,m1, ∀i2 = 1, . . . ,m2

M
(i1)
1 MT

2 ∈ L a
2 ;−(i1,m−i1) , MT

1 M
(i2)
2 ∈ L a

2 ;−(i2,m), M
(i1)
1 M

(i2)
2 ∈ L a

2 ;−(i1,m−i1) .

Thus it only remains to estimate the last summand in (B.4). In particular, we are going to prove
that MT

1 M
T
2 − T ∈ L a

2 ;−(m,0).
Recalling that j − j′ = π(ℓ), we have:

(MT
1 M

T
2−T )j

′

j (ℓ) =
∑

ℓ1+ℓ2=ℓ

j1=j−π(ℓ1)

T1(ℓ1, v(j), b(j))
(
T2(ℓ2, v(j1), b(j1))−T2(ℓ2, v(j), b(j)−v(j)·π(ℓ1))

)

Now if v(j) = v(j1) then b(j1) := v(j1) · j1 = v(j) · (j − π(ℓ1)) = b(j)− v(j) · π(ℓ1), and thus the
term in the parenthesis above disappears. Consequently we can restrict the sum to the indexes
j1 fulfilling v(j1) ̸= v(j).

For these remaining terms, using that |j − j′| = |π(ℓ)| ≤ c−1|ℓ|, we set m′ ≤ m1 +m2 and
estimate(
MT

1 M
T
2 − T a

2 ;−(m′,0)

)j′
j
≤ e−c a

4 |j−j′|
∑
ℓ1,ℓ2

j1=j−π(ℓ1),
v(j)̸=v(j1)

e
3
4a|ℓ1+ℓ2| |T1(ℓ1, v(j), b(j))| |T2(ℓ2, v(j1), b(j1))| ⟨j⟩µm

′

+ e−c a
4 |j−j′|

∑
ℓ1,ℓ2

j1=j−π(ℓ1),
v(j)̸=v(j1)

e
3
4a|ℓ1+ℓ2||T1(ℓ1, v(j), b(j))||T2(ℓ2, v(j), b(j)− v(j) · π(ℓ1))|⟨j⟩µm

′
.

(B.5)

If we show that the two sums above are uniformly bounded, then Lemma 2.9 will give us the
needed boundedness. Let us start with the first sum. We distinguish two cases.
Case 1: ⟨j⟩ ≤ Jδ (given by Lemma 2.12). Then trivially∑

ℓ1,ℓ2
j1=j−π(ℓ1),
v(j) ̸=v(j1)

e
3
4a|ℓ1+ℓ2| |T1(ℓ1, v(j), b(j))| |T2(ℓ2, v(j1), b(j1))| ⟨j⟩µm

′
≲δ |MT

1 |Ta,0 |MT
2 |Ta,0 .

Case 2: ⟨j⟩ > Jδ. We further distinguish 4 subcases:
(A) |ℓ1| > c⟨j⟩δ; (B) |ℓ1| ≤ c⟨j⟩δ and |v(j1)| > 1

2 ⟨j⟩
δ; (C) |ℓ1| ≤ c⟨j⟩δ, |v(j1)| ≤ 1

2 ⟨j⟩
δ and

|b(j)| > ⟨j⟩µ; (D) |ℓ1| ≤ c⟨j⟩δ, |v(j1)| ≤ 1
2 ⟨j⟩

δ and |b(j)| ≤ ⟨j⟩µ.

In case (A) we have

(A)∑
ℓ1,ℓ2

j1=j−π(ℓ1),
v(j)̸=v(j1)

e
3
4a|ℓ1+ℓ2| |T1(ℓ1, v(j), b(j))| |T2(ℓ2, v(j1), b(j1))| ⟨j⟩µm

′

≲c,µ

∑
ℓ1

e
3
4a|ℓ1||ℓ1|

µm′
δ |T1(ℓ1, v(j), b(j))||MT

2 |Ta,0 ≲c,µ,δ a−
µm′
δ |MT

1 |Ta,0 |MT
2 |Ta,0 .
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In case (B) we get

(B)∑
ℓ1,ℓ2

j1=j−π(ℓ1),
v(j)̸=v(j1)

e
3
4a|ℓ1+ℓ2| |T1(ℓ1, v(j), b(j))| |T2(ℓ2, v(j1), b(j1))| ⟨j⟩µm

′

≲µ,δ |MT
1 |Ta,0

∑
ℓ2

e
3
4a|ℓ2||T2(ℓ2, v(j1), b(j1))| |v(j1)|

µm′
δ ≲µ,δ,c a

−µm′
δ |MT

1 |Ta,0 |MT
2 |Ta,0 .

In case (C) we start by remarking that |b(j1)| > 1
2 ⟨j⟩

µ provided Jδ is large enough. Indeed
assume by contradiction that |b(j1)| ≤ 1

2 ⟨j⟩
µ. Then, by the definition of b(j), we have that

|b(j)| ≤ |v(j1) · j| ≤ |v(j1) · j1|+ |v(j1) · π(ℓ1)| ≤ |b(j1)|+ ⟨j⟩2δ ≤ 1

2
⟨j⟩µ + ⟨j⟩2δ ≤ ⟨j⟩µ ,

where in the last inequality we have used ⟨j⟩ > 2
1

1−4δ , contradicting the hypotheses. Now, as
µ ≤ 1, we bound

(C)∑
ℓ1,ℓ2

j1=j−π(ℓ1),
v(j)̸=v(j1)

e
3
4a|ℓ1+ℓ2| |T1(ℓ1, v(j), b(j))| |T2(ℓ2, v(j1), b(j1))| ⟨j⟩m1µ ⟨j⟩m2µ

≲
∑
ℓ1

e
3
4a|ℓ1||T1(ℓ1, v(j), b(j))|⟨b(j)⟩m1

∑
ℓ2

e
a
2 |ℓ2| |T2(ℓ2, v(j1), b(j1))| ⟨b(j1)⟩m2

≲µ,δ a−
µ(m1+m2)

δ |MT
2 |Ta,−m1

|MT
1 |Ta,−m2

.

Concerning (D), we claim that in this case v(j) = v(j1), so there is no contribution to the sum.
Indeed if v(j1) ̸= v(j), Lemma 2.12 (ii) (which we can apply as |j − j1| ≤ ⟨j⟩δ) would imply
|v(j1)| > 1

2 ⟨j⟩
δ, getting a contradiction. This concludes the proof of (2.19).

Proof of (2.20): Let MT
i ∈ Ta,−1 and M

(1)
i ∈ La;−(1,0) be quasi-Töplitz decompositions of the

Mi.
|MT

i |Ta,−1 + |M (1)
i |a;(−1,0) ≤ (1 + ε)|Mi|qTa,−1 .

Arguing as in the proof of Proposition 2.21, to each MT
i we associate the symbol Ti(ℓ, v, b). We

set

T(ℓ, v, b) :=
∑

ℓ1+ℓ2=ℓ

T1(ℓ1, v, b)T2(ℓ2, v, b− v · π(ℓ1)) , (T )j
′

j (ℓ) := T(ℓ, v(j), b(j)) ,

and we define the line-Toplitz part of M1M2 as (M1M2)
T = T . Then T is by definition line-

Töplitz, moreover to estimate |T |Ta′,−2 ∀a′ < a we only need to control:

sup
v∈V ,b∈Z

∑
ℓ∈Zd

ea
′(c|v|+|ℓ|)

∣∣∣∣∣ ∑
ℓ1+ℓ2=ℓ

T1(ℓ1, v, b)T2(ℓ2, v, b− v · π(ℓ1))

∣∣∣∣∣ ⟨b⟩2
≲ sup

v∈V ,b∈Z

∑
ℓ1∈Zd

ea
′(c|v|+|ℓ1|)|T1(ℓ1, v, b)|⟨b⟩⟨v · π(ℓ1)⟩ sup

v′∈V ,b′∈Z

∑
ℓ2∈Zd

ea
′(c|v′|+|ℓ2|)|T2(ℓ2, v

′, b′)|⟨b′⟩

≲ sup
v∈V ,b∈Z

∑
ℓ1∈Zd

ea(|ℓ1|+c|v|)|T1(ℓ1, v, b)|⟨b⟩e−(a−a′)c|v|−(a−a′)|ℓ1|⟨v⟩⟨ℓ1⟩|MT
2 |Ta′,−1

≲c (a− a′)−2|MT
1 |Ta,−1|MT

2 |Ta′,−1 .
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We are left with estimating

M1M2 − T = MT
1M

(1)
2 +M

(1)
1 MT

2 +M
(1)
1 M

(1)
2 + (MT

1M
T
2 − T ) . (B.6)

We will actually prove the following:

MT
1M

(1)
2 ∈ L a′

2 ;−(1,1) , M
(1)
1 MT

2 ∈ L a′
2 ;−(1,1)+L a′

2 ;−(2,0) , M
(1)
1 M

(1)
2 +(MT

1M
T
2−T ) ∈ L a′

2 ;−(2,0) .

The estimate of the last two terms in (B.6) is straightforward: by Formula (2.14) in Lemma 2.14
one has M

(1)
1 M

(1)
2 ∈ L a′

2 ;−(2,0), with

|M (1)
1 M

(1)
2 | a′

2 ;−(2,0) ≲µ,δ (a− a′)−
2µ
δ |M (1)

1 | a
2 ;−(1,0)|M

(1)
2 | a

2 ;−(1,0) ,

while arguing as in the proof of Proposition 2.21, formula (B.4) with m′ = 2, one obtains that
there exists γ = γ(µ, δ, p) > 0 such that T1T2 − T ∈ L a′

2 ;−(2,0), with

|MT
1M

T
2 − T | a′

2 ;(−2,0) ≲µ,δ,c,p a−γ |MT
1 |Ta,−1|MT

2 |Ta,−1 .

Concerning MT
1M

(1)
2 , one has:

(MT
1M

(1)
2 a′

2 ;−(1,1)
)j

′

j ≲µ

∑
ℓ1,ℓ2:

j−j′=π(ℓ1+ℓ2)

e
a′
2 |ℓ1+ℓ2||(MT

1 )
j−π(ℓ1)
j (ℓ1)|⟨j − π(ℓ1)⟩µ⟨π(ℓ1)⟩µ⟨b(j)⟩|(M (1)

2 )j
′

j−π(ℓ1)
(ℓ2)|

≲µ a−µ
∑
j1

((MT
1 ) 3

4a;−(0,1))
j1
j ((M

(1)
2 ) a′

2 ;−(1,0))
j′

j1
,

which implies
|MT

1M
(1)
2 | a′

2 ;−(1,1) ≲µ a−µ|MT
1 |Ta,−1|M

(1)
2 | a′

2 ;−(1,0) ,

by Lemma 2.14 and by Lemma 2.17.
In order to conclude the proof, we now estimate M

(1)
1 MT

2 . Recalling that one has

(M
(1)
1 MT

2 )
j′

j (ℓ) =
∑

ℓ1,ℓ2:ℓ1+ℓ2=ℓ

(M
(1)
1 )

j−π(ℓ1)
j (ℓ1)(M

T
2 )

j′

j−π(ℓ1)
(ℓ2) , (B.7)

with (M
(1)
1 MT

2 )
j′

j ̸= 0 only if j − j′ = π(ℓ), we decompose M
(1)
1 MT

2 as follows:

M
(1)
1 MT

2 = (M
(1)
1 MT

2 )
(A) +(M

(1)
1 MT

2 )
(B) +(M

(1)
1 MT

2 )
(C) +(M

(1)
1 MT

2 )
(D) +(M

(1)
1 MT

2 )
(E) , (B.8)

where the summands in (B.8) respectively corresponds to the cases:

(A) ⟨j − π(ℓ1)⟩ > Jδ, with Jδ given by Lemma 2.12, and |ℓ1| > c⟨j⟩δ;

(B) ⟨j − π(ℓ1)⟩ > Jδ, |ℓ1| ≤ c⟨j⟩δ and |v(j − π(ℓ1))| > 1
2 ⟨j − π(ℓ1)⟩δ;

(C) ⟨j−π(ℓ1)⟩ > Jδ, |ℓ1| ≤ c⟨j⟩δ, |v(j−π(ℓ1))| ≤ 1
2 ⟨j−π(ℓ1)⟩δ, and |b(j−π(ℓ1))| > ⟨j−π(ℓ1)⟩µ;

(D) ⟨j−π(ℓ1)⟩ > Jδ, |ℓ1| ≤ c⟨j⟩δ, |v(j−π(ℓ1))| ≤ 1
2 ⟨j−π(ℓ1)⟩δ and |b(j−π(ℓ1))| ≤ ⟨j−π(ℓ1)⟩µ;

(E) ⟨j − π(ℓ1)⟩ ≤ Jδ.
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Concerning (M
(1)
1 MT

2 )
(A), using |ℓ1| > c⟨j⟩δ one obtains

((M
(1)
1 MT

2 )
(A)
a′
2 ;−(2,0)

)j
′

j ≲c,µ,δ (a− a′)−
2µ
δ

∑
j1

((M
(1)
1 ) a

2 ,0,0
)j1j ((MT

2 ) a
2 ,0,0

)j
′

j1
.

For (M
(1)
1 MT

2 )
(B), we define θ := c−1(a− a′)/2 and we observe that

⟨j⟩δ ≲δ ⟨j − π(ℓ1)⟩δ + ⟨π(ℓ1)⟩δ ≲δ ⟨j − π(ℓ1)⟩δ ≲δ |v(j − π(ℓ1))| ,

from which one obtains

((M
(1)
1 MT

2 )
(B)
a′
2 ;−(2,0)

)j
′

j ≲c,µ,δ a−
2µ
δ e−θ|j−j′||M (1)

1 | a
2 ;(0,0)

|MT
2 |Ta2 ,0 .

Then the estimate on (M
(1)
1 MT

2 )
(B) follows by Lemma 2.9 . The estimate of (M (1)

1 MT
2 )

(C) simply
follows observing that, since

⟨j⟩µ ≲µ ⟨j − π(ℓ1)⟩µ + ⟨π(ℓ1)⟩µ ≲µ ⟨j − π(ℓ1)⟩µ ≲µ |b(j − π(ℓ1))| ,

one has

((M
(1)
1 MT

2 )
(C)
a′
2 ;−(2,0)

)j
′

j ≤
∑

ℓ1,ℓ2:j−j′=π(ℓ1+ℓ2) ,

|b(j−π(ℓ1))|≥⟨j⟩µ

ea
′|ℓ1+ℓ2|⟨j⟩2µ|(M (1)

1 )
j−π(ℓ1)
j (ℓ1)(M

T
2 )

j′

j−π(ℓ1)
(ℓ2)|

≤
∑

ℓ1,ℓ2:j−j′=π(ℓ1+ℓ2)

e
a′
2 |ℓ1+ℓ2|⟨j⟩µ⟨b(j − π(ℓ1))⟩|(M (1)

1 )
j−π(ℓ1)
j (ℓ1)(M

T
2 )

j′

j−π(ℓ1)
(ℓ2)|

≤
∑
j1

((M
(1)
1 ) a′

2 ,−(1,0))
j1
j ((MT

2 ) a′
2 ,−(0,1))

j1
j ,

and applying Lemma 2.14 and Lemma 2.17. In order to estimate (M
(1)
1 MT

2 )
(D), we start with

recalling that, by Item 2 of Lemma 2.12 with j replaced by j − π(ℓ1) and h replaced by j, one
has v(j − π(ℓ1)) = v(j). Then one has

|b(j)| = |j · v(j − π(ℓ1))| ≤ |(j − π(ℓ1)) · v(j − π(ℓ))|+ |π(ℓ1)||v(j − π(ℓ1)|
≤ ⟨b(j − π(ℓ1))⟩+ c−1|ℓ1||v(j − π(ℓ1))|
≲c ⟨b(j − π(ℓ1))⟩+ ⟨ℓ1⟩⟨v(j − π(ℓ1))⟩ .

This in turn, setting σ := (a− a′)/2 and θ := c−1σ, enables to deduce

((M
(1)
1 MT

2 )
(D)
a′
2 ;−(1,1)

)j
′

j

≲c

∑
ℓ1,ℓ2:

j−j′=π(ℓ1+ℓ2)

e
a′
2 |ℓ1+ℓ2||(M (1)

1 )
j−π(ℓ1)
j (ℓ1)|⟨j⟩µ⟨b(j − π(ℓ1))⟩|ℓ1||v(j − π(ℓ1))|(MT

2 )
j′

j−π(ℓ1)
(ℓ2)|

≲c (aσ)
−1e−

θ
2 |j−j′||M (1)

1 | a
2 ;−(1,0)|MT

2 |Ta,−1 .

Finally, using that ⟨j⟩2µ ≲µ ⟨j − π(ℓ1)⟩2µ + ⟨π(ℓ1)⟩2µ ≲ µ, δ, cJ2µδ |ℓ1|2µ , one obtains

((M
(1)
1 MT

2 )
(E)
a′
2 ;−(2,0)

)j
′

j ≲δ,c,µ (a− a′)−2µ
∑
j1

((M
(1)
1 ) a

2 ;(0,0)
)j1j ((MT

2 ) a′
2 ;(0,0))

j′

j1
.
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Proof of Lemma 4.4. We set (recall that V (ℓ) = 0 if π(ℓ) = 0) (ST
0)

j′

j (ℓ) = S(ℓ, v(j), b(j)) with

S(ℓ, v, b) =


−V (ℓ)

ω · ℓ+ 2 |π(ℓ)|
|v| b− |π(ℓ)|2

, if π(ℓ) ̸= 0 , v ∥ π(ℓ)

0 otherwise

. (B.9)

One has
|ST

0|Ta′,−1≤ sup
v∈V ,b∈Z

∑
ℓ∈Zd

ea
′c|v|+a′|ℓ||S(ℓ, v, b)|⟨b⟩1

= sup
v∈V ,b∈Z

∑
ℓ∈Zd

ea
′c|v|+a′|ℓ| |V (ℓ)|

|ω · ℓ+ 2 |π(ℓ)|
|v| b− |π(ℓ)|2|

⟨b⟩1 .

We estimate ∗ =
⟨b⟩

|ω · ℓ− |π(ℓ)|2 + 2 |π(ℓ)|
|v| b|

by distinguishing two cases. If |b| > |ω · ℓ − |π(ℓ)|2|

then (recalling that |π(ℓ)|
|v| is a non-zero integer) one has ∗ < 2. Otherwise if |b| ≤ |ω · ℓ− |π(ℓ)|2|

then, by (4.3) and recalling that |π(ℓ)| ≤ c−1|ℓ|,

∗ ≤ (|ω · ℓ− |π(ℓ)|2|+ 1)|ℓ|τγ−1 ≲ γ−1|ℓ|τ+2 .

In conclusion,

|ST
0|Ta′,−1 ≲ γ−1

∑
ℓ:j−j′=π(ℓ)̸=0

ea
′c|π(ℓ)|+a′|ℓ||V (ℓ)||ℓ|(τ+2)

≲ γ−1
∑

ℓ:j−j′=π(ℓ)̸=0

e2a
′|ℓ||V (ℓ)||ℓ|(τ+2) ≲c,γ (a− 2a′)−(τ+2)∥V ∥a,p .

(B.10)

Recalling that, if π(ℓ) ∥ v(j), j · π(ℓ) = |π(ℓ)|
|v(j)| b(j), we have

(S0 − ST
0)

j′

j (ℓ) =


−V (ℓ)

ω · ℓ+ 2j · π(ℓ)− |π(ℓ)|2
, j′ = j − π(ℓ) , π(ℓ) ̸= 0 , π(ℓ) ̸∥ v(j) ,

0 otherwise .

Accordingly, we divide the indexes j, ℓ which contribute to S0 −ST
0 following the two conditions:

i) One either has |ℓ| ≥ c⟨j⟩δ or ⟨j⟩ ≤ jmin := 2
1
2δ ; ii) One has |ℓ| < c⟨j⟩δ, ⟨j⟩ > jmin and

π(ℓ) ̸∥ v(j). We decompose accordingly S0 − ST
0 = R+ P .

First, by applying Lemma A.1 to S0 − ST
0 and setting R1 = (S0 − ST

0)
(R), we deduce

|R1| a′
2 ;−(2,0) ≲δ a

− 2µ
δ ∥V ∥a,p .

To deal with the case |j| ≤ jmin, we set (R2)
j′

j (ℓ) := (S0)
j′

j (ℓ) if j ≤ jmin .
Since if |j| ≤ jmin we have

⟨j⟩2µ

|ω · ℓ+ 2j · π(ℓ)− |π(ℓ)|2|
≤ γ−1⟨jmin⟩2µ|ℓ|τ , (B.11)

defining R := R1 +R2, we get that

|R| a′
2 ;−(2,0) ≲δ,τ a−max{τ, 2µδ }∥V ∥a,p . (B.12)
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To deal with case ii), we define

P j′

j (ℓ) :=


−V (ℓ)

ω · ℓ+ 2j · π(ℓ)− |π(ℓ)|2
if j > jmin, |ℓ| < c⟨j⟩δ and π(ℓ) ̸∥ v(j) ,

0 otherwise
.

Now we claim that if ⟨j⟩ ≥ 2
1
2δ , |ℓ| < c⟨j⟩δ and π(ℓ) ̸∥ v(j), then |j · π(ℓ)| > ⟨j⟩µ.

Indeed, |ℓ| < c⟨j⟩δ implies that |π(ℓ)| < ⟨j⟩δ. Fixing w ∈ V to be the direction parallel to π(ℓ)
one has |w| < ⟨j⟩δ hence

|π(ℓ) · j| ≥ |w · j| ≥ |b(j)| := min
v∈V:|v|<⟨j⟩δ

|j · v|

Then, if |b(j)| > ⟨j⟩µ our claim follows. Otherwise, we prove the claim by contradiction. Recall
that v(j) attains the minimum above and by ii) v(j) ̸∥ w. If |w · j| ≤ ⟨j⟩µ then, by Lemma 2.11
⟨j⟩ <

√
2⟨j⟩1−δ, which contradicts ⟨j⟩ ≥ 2

1
2δ .

As a consequence if ⟨j⟩ ≥ 2
1
2δ , |ℓ| < c⟨j⟩δ and π(ℓ) ̸∥ v(j), then

⟨j⟩µ

|ω · ℓ+ 2j · π(ℓ)− |π(ℓ)|2|
≤ ⟨j⟩µ

2|j · π(ℓ)| − |ω · ℓ− |π(ℓ)|2|
≤ ⟨j⟩µ

2⟨j⟩µ − (|ω|+ c−2)c2⟨j⟩2δ
≤ 1

provided that ⟨j⟩ ≥ jmin. Therefore we have

|P | a′
2 ;−(1,0) ≲ ∥V ∥a,p . (B.13)

Recalling that S0 = ST
0 + P + R, estimates (B.10), (B.12), (B.13) then imply that S is quasi-

Töplitz of order −1. We now prove estimate (4.10). We start with explicitly computing [S0,MV ].
Setting h = j − π(ℓ), one has

([S0,MV ])
h
j (ℓ) =

∑
ℓ1+ℓ2=ℓ

V (ℓ1)
(
(S0)

j−π(ℓ2)
j (ℓ2)− (S0)

j−π(ℓ)
j−π(ℓ1)

(ℓ2)
)

=
∑

ℓ1+ℓ2=ℓ

V (ℓ1)V (ℓ2)

(
1

ω · ℓ2 + 2(j − π(ℓ1)) · π(ℓ2)− |π(ℓ2)|2
− 1

ω · ℓ2 + 2j · π(ℓ2)− |π(ℓ2)|2

)
=

∑
ℓ1+ℓ2=ℓ

−2 (π(ℓ1) · π(ℓ2))V (ℓ1)V (ℓ2)

(ω · ℓ2 + 2j · π(ℓ2)− |π(ℓ2)|2)(ω · ℓ2 + 2(j − π(ℓ1)) · π(ℓ2)− |π(ℓ2)|2)
.

We then split the above sum into two terms, according to whether π(ℓ2) ∥ v(j) or not. In the
first case, we set

([S0,MV ]
T)

j−π(ℓ)
j (ℓ) :=

∑
ℓ1+ℓ2=ℓ

π(ℓ2)∥v(j)

− (2π(ℓ1) · π(ℓ2))V (ℓ1)V (ℓ2)

(ω · ℓ2 + 2j · π(ℓ2)− |π(ℓ2)|2)(ω · ℓ2 + 2(j − π(ℓ1)) · π(ℓ2)− |π(ℓ2)|2)

=
∑

ℓ1+ℓ2=ℓ

π(ℓ2)∥v(j)

− (2π(ℓ1) · π(ℓ2))V (ℓ1)V (ℓ2)

(ω · ℓ2 + 2b(j) |π(ℓ2)||v(j)| − |π(ℓ2)|2)(ω · ℓ2 + 2b(j) |π(ℓ2)||v(j)| − 2π(ℓ1) · π(ℓ2)− |π(ℓ2)|2)
,

(B.14)
and we are going to prove that its symbol

T(ℓ, b, v) :=
∑

ℓ1+ℓ2=ℓ

π(ℓ2)∥v

− (2π(ℓ1) · π(ℓ2))V (ℓ1)V (ℓ2)

(ω · ℓ2 + 2b(j) |π(ℓ2)||v| − |π(ℓ2)|2)(ω · ℓ2 + 2b |π(ℓ2)||v| − 2π(ℓ1) · π(ℓ2)− |π(ℓ2)|2)

35



is of order −2. In the second case, we set

Rh
j (ℓ) :=

∑
ℓ1+ℓ2=ℓ

π(ℓ2)∦v(j)

− (2π(ℓ1) · π(ℓ2))V (ℓ1)V (ℓ2)

(ω · ℓ2 + 2j · π(ℓ2)− |π(ℓ2)|2)(ω · ℓ2 + 2(j − π(ℓ1)) · π(ℓ2)− |π(ℓ2)|2)
, (B.15)

with h = j − π(ℓ), and we shall prove that R ∈ L a′
2 ;−(2,0) .

We start with exhibiting estimates on |[S0,MV ]
T|Ta′,−2. Let

f ϵ(ℓ1, ℓ2) := ω · ℓ2 − |π(ℓ2)|2 − 2ϵπ(ℓ1) · π(ℓ2) , ϵ ∈ {0, 1} , (B.16)

so that the denominators appearing in (B.15) have the form

(2j · π(ℓ2) + f0(ℓ1, ℓ2))(2j · π(ℓ2) + f1(ℓ1, ℓ2)) ;

arguing as to obtain estimates (B.10), we observe that ∀ϵ ∈ {0, 1}, if ⟨b⟩ ≥ |f ϵ(ℓ1, ℓ2)| , one has∣∣∣∣∣∣ 2⟨b⟩
(ω · ℓ2 + 2b(j) |π(ℓ2)||v(j)| − 2ϵπ(ℓ1) · π(ℓ2)− |π(ℓ2)|2)

∣∣∣∣∣∣ ≤ 2 , (B.17)

while if ⟨b⟩ < |f ϵ(ℓ1, ℓ2)| , one has∣∣∣∣∣∣ 2⟨b⟩
(ω · ℓ2 + 2b(j) |π(ℓ2)||v(j)| − 2ϵπ(ℓ1) · π(ℓ2)− |π(ℓ2)|2)

∣∣∣∣∣∣ ≤
2|f ϵ(ℓ1, ℓ2)|∣∣∣(ω · ℓ2 + 2b(j) |π(ℓ2)||v(j)| − 2ϵπ(ℓ1) · π(ℓ2)− |π(ℓ2)|2)

∣∣∣ ≲ |ℓ2|2|ℓ1|
γ|ℓ2|−τ

≲ γ−1|ℓ2|τ+2|ℓ1| .
(B.18)

Let now θ := (a − 2a′)/2. Combining (B.17) and (B.18) and recalling that, since π(ℓ2) ∥ v and
v is a generator, one has c|v| ≤ c|π(ℓ2)| ≤ |ℓ2|, one obtains

|[S0,MV ]
T|Ta′,−2 ≲

∑
ℓ

ea
′c|v|+a′|ℓ|

∑
ℓ1+ℓ2=ℓ

π(ℓ2)∥v

|V (ℓ1)V (ℓ2)||ℓ2|2(τ+2)+1|ℓ1|3

≲
∑
ℓ

ea
′|ℓ|

∑
ℓ1+ℓ2=ℓ

π(ℓ2)∥v

ea
′|ℓ2||V (ℓ1)V (ℓ2)||ℓ2|2(τ+2)+1|ℓ1|3

≲
∑
ℓ1,ℓ2

ea
′|ℓ1|+2a′|ℓ2||ℓ2|2(τ+2)+1|ℓ1|3|V (ℓ1)||V (ℓ2)| ≲c,τ (a− 2a′)

−2(τ+2)−4∥V ∥2a,p ,

provided 2a′ ≤ a.
We now turn to prove that R defined as in (B.15) belongs to L a′

2 ,−(2,0). Letting jmin := 2
1
2δ , we

decompose R = R1 +R2 +R3 as follows:

(R1)
h
j (ℓ) = Rh

j (ℓ) if max{|ℓ|, |ℓ1|, |ℓ2|} > c⟨j⟩δ , (R1)
h
j (ℓ) = 0 otherwise ;

(R2)
h
j (ℓ) = Rh

j (ℓ) if ⟨j⟩ ≤ jmin , (R2)
h
j (ℓ) = 0 otherwise ;

(R3)
h
j (ℓ) = Rh

j (ℓ) if max{|ℓ|, |ℓ1|, |ℓ2|} ≤ c⟨j⟩δ and ⟨j⟩ ≥ jmin , (R3)
h
j (ℓ) = 0 otherwise .

Arguing as to prove estimate (B.12), one easily sees that R1, R2 ∈ L a′
2 ,−(N,0) for any N ∈ N. We

now prove that R3 ∈ L a′
2 ,−(2,0).

First of all, we claim the following:

(R3)
h
j (ℓ) ̸= 0 =⇒ |j · π(ℓ2)| > ⟨j⟩µ . (B.19)
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Indeed, if (R3)
h
j (ℓ) ̸= 0, then by definition of R3 and R one has ⟨j⟩ ≥ jmin, |ℓ2| < c⟨j⟩δ and

π(ℓ2) ̸∥ v(j). But then |ℓ2| < c⟨j⟩δ implies that |π(ℓ2)| < ⟨j⟩δ. Fixing w ∈ V to be the direction
parallel to π(ℓ2) one has |w| < ⟨j⟩δ, hence

|π(ℓ2) · j| ≥ |w · j| ≥ |b(j)| := min
v∈V:|v|<⟨j⟩δ

|j · v|

Then, if |b(j)| > ⟨j⟩µ our claim follows. Otherwise, we prove the claim by contradiction. Recall
that v(j) attains the minimum above and, since π(ℓ2) ∦ v(j), v(j) ̸∥ w. If |w · j| ≤ ⟨j⟩µ then, by
Lemma 2.11

⟨j⟩ <
√
2⟨j⟩1−δ

which contradicts ⟨j⟩ ≥ 2
1
2δ . This proves that (B.19) holds.

As a consequence, taking f ϵ(ℓ1, ℓ2) as in (B.16), one has that, if (R3)
j
j(ℓ) ̸= 0, then ∀ϵ ∈ {0, 1}

⟨j⟩µ

|ω · ℓ2 + 2j · π(ℓ2)− ϵ2π(ℓ1) · π(ℓ2)− |π(ℓ2)|2|
=

⟨j⟩µ

|2j · π(ℓ2) + f ϵ(ℓ1, ℓ2)|

≤ ⟨j⟩µ

2⟨j⟩µ − |ω||ℓ2| − c−2|ℓ2|2 − 2c−2|ℓ1||ℓ2|
≤ ⟨j⟩µ

2⟨j⟩µ − (|ω|+ 2c−2)c2⟨j⟩2δ
≤ 1 ,

since ⟨j⟩ ≥ jmin. This proves that∣∣∣((R3) a′
2 ;−(2,0))

h
j

∣∣∣ := ∑
ℓ:j−h=π(ℓ)

e
a′
2 |ℓ||(R3)

j′

j (ℓ)|⟨j⟩
2µ

≲c

∑
ℓ:j−h=π(ℓ)

e
a′
2 |ℓ|

∑
ℓ1+ℓ2=ℓ

π(ℓ2)∦v(j)

|V (ℓ1)V (ℓ2)||π(ℓ1)||π(ℓ2)| ≲c a
−2e−(a− a′

2 )|j−h|∥V ∥2a,p ,

and thus estimate (4.10) follows.

C Covariant properties
Assume that H is an Hamiltonian function which is invariant by translation and gauge:

H ◦ τζ = H, H ◦ eit = H , ∀ς ∈ R, ∀t ∈ R . (C.1)

Its Hamiltonian vector field XH thus fulfill

τζXH(u) = XH(τζu), eitXH(u) = eitXH(u) , ∀ς ∈ R, ∀t ∈ R . (C.2)

Consider now a quasi-periodic traveling wave q(φ, x) fulfilling (1.8), (1.9). Denote by

A(φ)u := dXH

(
q(φ, ·)

)
u

and
N (φ, u) := XH

(
q(φ, ·) + u

)
−XH

(
q(φ, ·)

)
− dXH

(
q(φ, ·)

)
u

Following [2, 3, Section 3.4], now we prove the following lemma.

Lemma C.1. For any (φ, ζ, t) ∈ Td × R2 × R one has

A(φ+Kζ) ◦ τζ = τζ ◦A(φ), A(φ+ t⃗1) ◦ eit = eit ◦A(φ), (C.3)

N (φ+Kζ, τζu) = τζ ◦ N (φ, u), N (φ+ t⃗1, eitu) = eit ◦ N (φ, u) . (C.4)
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Proof. We prove just the first identities in both line, the second one being similar. We start with
the first identity of (C.3). Differentiating the first of (C.2) at q(φ, x) in direction w we get

τζ [dXH(q(φ, ·))w] = dXH(τζq(φ, ·))τζw . (C.5)

Then the covariance property (1.9) implies immediately

A(φ+Kζ) ◦ τζ = τζ ◦A(φ) (C.6)

To prove (C.4) just use again that, by (C.2), (C.5) and the covariance properties (1.9) of the
quasi-periodic traveling wave,

τζ ◦ N (φ, u) = XH(τζq(φ, ·) + τζu)−XH(τζq(φ, ·))− dXH(τζq(φ, ·))τζw
= XH(q(φ+Kζ, ·) + τζu)−XH(q(φ+Kζ, ·))− dXH(q(φ+Kζ, ·))τζw
= N (φ+Kζ, τζu) .
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