Longer lifespan for many solutions of the Kirchhoff equation
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Abstract. We consider the Kirchhoff equation

Ot — Au(l +/11*d \Vu|2) =0

on the d-dimensional torus T¢, and its Cauchy problem with initial data u(0,z), d;u(0,z) of size e in
Sobolev class. The effective equation for the dynamics at the quintic order, obtained in previous papers
by quasilinear normal form, contains resonances corresponding to nontrivial terms in the energy estimates.
Such resonances cannot be avoided by tuning external parameters (simply because the Kirchhoff equation
does not contain parameters).

In this paper we introduce nonresonance conditions on the initial data of the Cauchy problem and
prove a lower bound e =% for the lifespan of the corresponding solutions (the standard local theory gives
€72, and the normal form for the cubic terms gives 6_4). The proof relies on the fact that, under these
nonresonance conditions, the growth rate of the “superactions” of the effective equations on large time
intervals is smaller (by a factor £2) than its a priori estimate based on the normal form for the cubic terms.
The set of initial data satisfying such nonresonance conditions contains several nontrivial examples that
are discussed in the paper.
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1 Introduction

We consider the Cauchy problem for the Kirchhoff equation on the d-dimensional torus T¢, T :=
R/2nZ (periodic boundary conditions)

Oy — Au(l + /d |Vul? dm) =0, whereu=u(t,z), zcT? (1.1)
']I‘,

with initial data at time t =0

w(0,2) = a(x), Owu(0,z) = b(x). (1.2)



While it is known (Dickey [19], Arosio-Panizzi [I]) that such a Cauchy problem is locally wellposed
for initial data (a, b) in the Sobolev space H 2 (T4, R) x Hz (T%,R), it is a still open problem whether
the solutions of — of any given Sobolev regularity are global in time or not. In particular,
it is not even known if C'*° initial data of small amplitude produce solutions that are global in
time (for initial data in analytic class, instead, global wellposedness is known since the work of
Bernstein [§] in 1940).

As a consequence of the linear theory, one has a lower bound of ¢ =2 for the lifespan of solutions
corresponding to initial data of size €. Since is a quasilinear wave equation, it is not a
priori obvious that one can obtain better estimates. For instance, in the well-known example by
Klainerman and Majda [25] all space-periodic nontrivial solutions of size & blow up in a time of
order e~ 2. For the Kirchhoff equation, however, the situation is more favorable: as we proved in
[2], after one step of quasilinear normal form, the only cubic terms that cannot be erased give no
contribution to the time evolution of Sobolev norms; this allowed us to extend the lifespan of all
solutions of small amplitude to e~4.

In the recent paper [3], we computed the second step of quasilinear normal form for the Kirchhoff
equation and showed that there are resonant terms of degree five that cannot be erased and give a
nontrivial contribution to the time evolution of Sobolev norms. Here we show that for a suitable
set of “nonresonant” initial data the effect of these terms can be neglected on a longer timescale
and the lifespan of the corresponding solution is at least e ~¢ (Theorem below).

Equation (|1.1)), introduced by Kirchhoff [24] as a nonlinear model for vibrating strings and
membranes, belongs to the class of Hamiltonian PDEs, as it can be written as the system

Ou = Vo H(u,v) = v,
) (1.3)
O = -V, H(u,v) = Au(l + Jra VUl dw),
where the Hamiltonian is
1, ) 1 b \2
H(u,v)—2/EdU dx—|—2 Td|Vu| d:c+(2/1rd|Vu| dx) , (1.4)

and V,H, V,H are the gradients with respect to the real scalar product of L?(T¢,R).

When the Cauchy problem for a Hamiltonian PDE is set on a compact manifold (like T9),
dispersion mechanisms that hold on R? are not available, and the main tool to prove existence
beyond the time of the standard local theory is the normal form method. Important references
on normal forms of Hamiltonian PDEs on compact manifolds are the works of Kuksin, Kappeler,
Poschel [26], [23], Bourgain [13], Bambusi, Grébert, Delort, Szeftel [4], [0], [18], [6]. Some of the
difficulties and achievements in this active research field regard the extension of the theory

- to quasilinear PDEs (see e.g. the results of Delort [16], [I7] on quasilinear Klein-Gordon
equations, Craig-Sulem [I5], Ifrim-Tataru [22], Berti-Delort [9], Berti-Feola-Pusateri [10] on
water waves, Feola-Tandoli [20], [2I] on quasilinear NLS and abstract methods),

- to resonant equations without the help of external parameters (see e.g. Bourgain [13] and
Buckmaster-Germain-Hani-Shatah [14] on NLS with random data, Berti-Feola-Pusateri [10],
[11I] on pure gravity water waves, Bernier-Faou-Grébert [7] on resonant NLS with rational
normal forms).

The Kirchhoff equation (1.1]), despite its simple structure, contains these difficulties:

e it is a quasilinear PDE, because the nonlinear term Au [ |Vu|? has the same order of deriva-
tives as the linear part of the equation;

e it is a resonant equation: the linear frequencies of oscillation, namely the eigenvalues of the
linear wave 0y — A, are square roots |k| = \/kf +...+ k3, k € Z4, of natural numbers, and
therefore equations like |k| + [j| — |¢| = 0 and similar, which one encounters along a normal
form procedure, have infinitely many nontrivial solutions;



e there are no external parameters that could help to avoid the resonances;

e in dimension d > 2, after the first step of normal form, the dominant term of the remaining
resonant nonlinearity is not completely integrable, namely it does not depend only on actions
(therefore the method of rational normal forms of [7] does not directly apply to (1.1)).

The quasilinear normal form performed in [2]-[3] (summarized in the appendix below), which
is particularly simple because of the “already paralinearized” structure of the Kirchhoff equation,
overcomes the problem that the standard Birkhoff normal form construction, even at its first step,
gives unbounded transformations. However, employing the quasilinear normal form to deduce a
longer existence time for the Cauchy problem presents all the other mentioned difficulties. To
bypass them, in Theorem we impose some nonresonance conditions on the “superactions” (see
(1.13)) on the initial data. On the other hand, we are far from proving an existence time of order
€76 for all, or even almost all, small initial conditions.

We refer the reader to Section 1.2 of our previous paper [2] regarding other properties of the
Kirchhoff equation (reversibility, momenta, invariant subspaces), and to Section 1.3 of [2] for more
references to the related literature, including some rich surveys.

1.1 Main result

On the torus T?, it is not restrictive to assume that both the initial data a(x),b(x) and the
unknown function wu(t, z) have zero average in the space variable = (because the space average and
the zero-mean component of any a, b, u satisfy two uncoupled Cauchy problems; the problem for
the averages is elementary).

For any real s > 0, we consider the Sobolev space of zero-mean functions

HyT.0) = {u(@) = 3 weu e € fulo <o), Jul? = Y jug PP, (15)
jezi\{0} §#0
and its subspace of real-valued functions
HS(T% R) := {u € H3(T? C) : u(x) € R}.

Define
mp:=1ifd=1 my:=2 ifd>2 (1.6)
and
D= {|k|:keZ k+#0}C {Vn:neN}Cll00), (1.7)
where |k| = (k? +... + kﬁ)% is the usual Euclidean norm, and N := {1,2,...}. Given a pair (a,b)
of functions, with
a(z) = Z ape™* b(x) = Z et (1.8)
keZd\{0} kezd\{0}
for each A € I' we define

U)\ = UA(a7b) = Z ()\3|ak|2 + )‘|bk|2) (19)
|[k|=X

We denote

Ty :=Ty(a,b) :={A €T :Ux(a,b) =0},
Iy = I‘l(a7b) = {)\EFZ U)\(a,b) >0}:F\F0 (110)
Theorem 1.1. There exist universal constants 6 € (0,1), C, A > 0 with the following properties.

Let e, cq be real numbers with
0<e<dbeyg, 0O0<cp<1, (1.11)



and let . .
(a,b) € Hy" "2 (T4, R) x Hy" ™ *(T%,R), lallm, 11 + [bllm,—1 <e. (1.12)

Let Uy = Ux(a,b), A € T, be the sums defined in (1.9), and let Ty = T'1(a,b) be the set in ((1.10).
Assume that (a,b) satisfy
|Ua+UB—UA|ZCO(Ua+UB+U)\) (1.13)

for all a, B, A € Ty such that a4+ 8 = .
Then the solution (u,v) of system (1.3 with initial conditions (u(0),v(0)) = (a,b) is defined
on the time interval [0, T], where

. Ad

9

56
with (u,v) € C([0,T], H™ 3 (T4 R) x H" % (T% R)) and

[l 43 + 0@, -3 < Ce VE€[0,T].

3
While assumptions (1.11)), (1.12]) are rather standard, assumption ([1.13)) is specifically designed

to avoid the triple resonances of the Kirchhoff equation, and it deserves some comments, which we
collect in the next subsection.

1.2 Nonresonance condition

In the following remarks we show that the set of functions satisfying the nonresonance condition
(1.13) is nonempty, and in fact it contains several nontrivial examples; we discuss here some aspects
of that condition.

Remark 1.2. (Invariance by constant factors). The nonresonance condition is invariant for
multiplication by scalar constants: if (a,b) satisfies , then, for all constants u € R, (ua, ub)
also satisfies (with the same cg).

This means that the nonresonance condition and the smallness assumption in Theorem [L.1] are
compatible: if a pair (a, b) satisfies for some ¢ > 0, then (pa, ub) sastisfies both (1.13)) (with
the same ¢p) and if u is sufficiently small. O

Remark 1.3. (Decreasing sequences). Any decreasing sequence (oy)er of nonnegative real num-
bers satisfies 1
|70 + 05 —oal 2 5(0a + 05+ 01)

for all &, B, A € T with ao+ 8 = A. To prove it, observe that |0, + 0g — ox| = 0o + 05 — 04, and
ox <min{og, 05} < %(O‘a + o) because A > a, A > .
As a consequence, any pair (a,b) of functions such that A\ — Uy (a,b) is decreasing satisfies

(1.13) with ¢o = 1/3. O

Remark 1.4. (Fized power decay). The observation of Remark applies, for example, to the
sequence o) = A~29, which is decreasing for o > 0. Hence any pair (a,b) of functions such that
Ux(a,b) = A\72° with o > 0 satisfies with ¢g = 1/3.

The Sobolev regularity of such functions is the following. Since I' C {/n : n € N} (where
N:={1,2,...}), for any given s € R we have

||a||§+% + ||b||2 , = Z (|k|28+1|ak|2 + |k|28_1‘bk|2)

o kezd
=30 D (P a4+ X o)
XeT [k|=A
1 1
_ 25—2 .
=Y NN ) =Y sy <D e (1.14)
AeT xer neN
1 my— 1
which is finite for ¢ — s > 0. Thus (a,b) € H5n1+2 x Hy ' 2 for o > mj. O



Remark 1.5. (Sequential choice of o). Let 0 < ¢g < 1, and denote

71—00 0 .71+C0

01 := = .
! 1—}—607 2 1—cy

Let (ox)aer be a sequence of nonnegative real numbers, and let T'; be the set of A € T' such that
oy > 0. The condition

loa + 08 —0ox| > co(oa +og+0x) Vo,B8,Ae€l, a+f=2A (1.15)

(which corresponds to (1.13)) is equivalent to say that, for every A € I'1, the number o) does not
belong to the finite union
G)\ = U Ia5
a,Bel’y
a+B=\

of the open intervals
Iig:={z €R: (04 +08)b1 <z < (04 +03)02}.

For each A\, G is contained in an interval (z1, z2) with 0 < 27 < x5 < 00, hence, once o, has been
fixed for all o < A, there are at least two intervals [0, z1] and [z2,00) where one can choose 0.
For example, fix ¢y = é. Then 6, = %, 0y = %. Thus o7 has no restriction, oo must be outside
I = (%201, 1@0201); o3 must be outside I;5 = (1%(01 + 092), 1fso(al + 02)); 04 must avoid Iy, and
I3, and so on; moreover, o 5 has no restriction, o g must be outside I 5 3, etc. For each integer
p that is the product of distinct prime numbers, there is no restriction on the choice of o 5. U

Remark 1.6. (Absence of triplets: odd integers). If the set I'y does not contain any triplet (a, 8, A)
with @ + 8 = A, then (1.15) is trivially satisfied. For example, this holds if I'; C {n € N: n odd}.
Other examples can be constructed as lacunary subsets of N. O

Remark 1.7. (Arithmetic decomposition of T'). The set I' can be decomposed as the disjoint union

Up I'(y/p) of the sets
I'(yp) :={nyp:neN}NT,

where p is any product of distinct prime numbers.

Hence, as a slightly more general version of the observation in Remark is trivially
satisfied if 'y NI'(/p) C {n\/p : n odd} for all p.

This decomposition of I' also implies that, at least at the time scales we are concerned with
in this paper, the “effective system” of homogeneity < 5 (see (2.5)-(2.6)) that controls the time
evolution of Sobolev norms for the Kirchoff equation in dimension d > 2 contains infinitely many
copies of the same system in dimension d = 1. These copies are almost uncoupled, since the only
coupling comes from the factor P in , which is a function of time only and whose only effect
is to produce a slight time rescaling.

In other words, the solutions of such an effective system have essentially the same behavior
in dimension 1 or higher. (The only thing that changes substantially with the dimension regards

the regularity required by the normal forms, because denominators like |k| — ||, |k| + |j] — |4,
k,j,¢ € Z¢, accumulates to zero if d > 2, while they are nonzero integers in dimension d = 1; see
[2], [3] for more details). O

Remark 1.8. (Perturbations of (1.13)). Given two pairs (a,b), (f,g) of functions, from the
definition (|1.9]) of Uy one has

U)\((l-i- f7b+g) = U)\(aub) + U)\(fag) +M)\((l,b, fag>
where

My(a,b, f,9) = > (AB(akﬁ-i—@fk) + )‘(bkgik'kagk))'
Ik[=A



By Cauchy-Schwarz and Hoélder’s inequality,

Ma(a b, £,9) <2 7 (AFla)AFIl) + AF o) (A L))

[k|=A

<2 3 (Warf? + A02)” (015 + Nel?)
|k|=X

< 2\/U>\(a,b) \/U)\(f7g)

As a consequence, if (f, g) satisfies

N|=

Ux(f,9) < n?Ux(a,b) (1.16)
for some p > 0, then
Us(a+ £,b+g) — Ur(@,b)] < 20+ #)Ux(a,b). (1.17)

If, in addition, (a,b) satisfies the nonresonance condition (1.13)), then (a + f,b+ g) also satisfies
(1.13)) with ¢o replaced by a smaller constant: by (1.17) we obtain

\Ua(a+ f,b+9g)+Usla+ f,b+g) — Ux(a+ f,b+ g)|
> |Ua(a,b) + Ug(a,b) = Un(a,b)] = > |Uy(a+ f,b+g) — Uy(a,b)|

Y=a,8,A
>c Yy Uy(a,b)— > 2u+p*)U(a,b)
y=a,8,A y=a,8,\
S =2y S Uya+ fib+g)
> ——— y(a+ f,b+9).
Vh2p+p® 25
We also note that )
Co— 20—
— = >c—4 V>0, 0<cy<l1. O
1t2u+p2 = 0 — * Bz 0=

Remark 1.9. (Translation of a ball in Sobolev norm). We consider perturbations of the fixed
decay example of Remark [1.4] . Let (a,b) be a pair of functions such that Ux(a,b) = A\729 with

o > my. As observed in Remark (a,b) belongs to H, miti x Hy" ™ 3 and satisfies ) with
co =1/3. Let

(F9) € Hy F x Hy %, o= fI2, + ollPey,  si=o+1.
From the identities in (|1.14)), one has

N2 (fog) < 30 02 20a(fig) = Iy + ol = i, (1.18)
acl

whence we deduce that

I 1
Ux(f,g) < 55 = 3 = p?Ux(a,b)  VAET, (1.19)
Hence verified, and by Remark [1.§ . the pair (a + f,b + g) satisfies the nonresonance
condition 1_} with ¢g = 5 — 4pu. If we take, for example, pg := 2 1> then all pairs of functions in
the set
B(a,b) == {(a,b) + (f,9) : 1 fI2, 1 + llg2_1 < g =1/576}

satisfy the nonresonance condition (1.13) with constant ¢y = 1/6.

Note, however, that the set B(a,b) is not a ball in the Sobolev space HSJF% X Hgfé, because
(a,b) does not belong to that space (since s = o + 1, the last series in diverges). This
“gap of regularity” is due to the fact that we have used the sum of the series in to get the
“pointwise” bound (namely a bound that holds at each single \). O



Remark 1.10. (Other possible nonresonance conditions). The nonresonance conditions (1.13])
can be replaced by other assumptions. Another possibility is to assume the “Melnikov-like” or
“Diophantine-like” nonresonance conditions

Co

(min{e, 8, A})7

for all o, B, A € I'y such that a 4+ 8 = A, where ¢y, 7 are positive, fixed parameters. Inequalities
similar as (1.20]) are perhaps more common in literature than @ Both the fixed power decay
example of Remark[T-4]and its perturbations as in Remarks [[.9hold, after suitable adaptations,
for the nonresonance conditions (1.20). A result very similar to Theorem can be proved
assuming instead of . The proof is also similar, just slightly more complicated. O

Ua +Us = Un| > (1.20)

Remark 1.11. (Terms that are already small). For any given e, the nonresonance conditions
need not be really satisfied by all resonant triplets @ + 8 = X in I'y, because, using the
decay of Fourier coefficients of functions in Sobolev spaces (like in (L.19)), the terms fOT Dapa(t) dt
that we estimate by integrating by parts in time (see ) are in fact already small if o, 8, A are
sufficiently high (depending on €). On the other hand, assuming that holds for all triplets
a+ = X (and not only for, say, a smaller than some power of 1/¢) we directly obtain our result
uniformly in &. O

1.3 Strategy of the proof

As already said, evolution PDEs on compact manifolds in general have no mechanism of global
dispersion as time evolves. To obtain long-time existence for the solutions, an efficient strategy is
to suitably tune the parameters of the equation, avoiding their values corresponding to resonances;
recent examples are the work [I2] and, in the context of quasilinear PDEs, [9], [10], [20].

If the equation has no external parameter, to avoid the resonances one has, in general, nothing
to tune except the initial data of the Cauchy problem; recent examples are [14], [7]. Since the
Kirchhoff equation has no external parameter, we follow this approach, namely we select the
initial data to avoid resonances.

We start from the normal form of degree five, computed in the previous paper [3]. The first
remark is that the time evolution of the Sobolev norms of solutions of is fully described
by the evolution of the “superactions” Sy in . Such an evolution, in turn, is governed by
the “effective system” —. In particular, we focus on equation , which describes the
evolution of the superactions. In this equation a crucial réle is played by the complex factors Z,sx
(see ) The basic idea is that, if the time derivative of the Z,z,’s is bounded away from zero,
one benefits from an “averaging effect” that slows down the growth of the superactions. Since
the time evolution of Z,g, is given by , this is the reason for introducing the nonresonance
condition on the initial datum. Such a nonresonance condition is stable under the normal
form transformation (because of the very special structure of the Kirchhoff equation) and assumes
the form (|1.13)) in the original variables.

In Proposition we prove the key ingredient: assuming that the initial data satisfy the
nonresonance condition , the aforementioned averaging effect allows to improve the a priori
bound for the evolution of the superactions Sy. The energy estimates based on the first step of
normal form imply that the growth factor of the Sy, on a time interval of length O(s~%), is of order
O(1). Here, under the nonresonance condition (2.24), we improve the bound on the growth factor
of Sy from O(1) to 1+ O(g?) (see (2.26)). This improvement also guarantees that after a time of
order O(¢~*) the nonresonance condition is still satisfied (see (2.28)). Therefore, we are able to
iterate the estimates of Lemma [2.6/on a sequence of O(¢~2) time intervals of length O(¢=*). This
is done in Lemma 2.7 and Lemma [2.8] and allows us to reach an existence time of order O(e~°).

Acknowledgements. This research is supported by the INAAM-GNAMPA Project 2019.



2 Time evolution of the superactions

Notation. In this paper “a < 07 means “there exists a universal constant C' > 0 such that

a < Cb”. This notation is used in the proof of Lemma [2.2] Lemma [2.4 and Proposition [2.6

For any real s > 0 we define the Sobolev space of pairs of complex conjugate functions
Hy(T4 c.c.) := {(u,v) € Hy(T%,C) x Hy(T% C): v =1} (2.1)

with norm ||(u,v)||s := ||u|ls = ||v||s. The Fourier coefficients uy, vx of u, v satisfy vy, = (W) = U_g.

In [2)-[3] we proved that there exists a change of variable ® = ®® o ... 0 ®®) (a bounded
quasilinear normal form transformation) that transforms the Cauchy problem 7 for the
Kirchhoff equation into the problem

8t(u,v) - W(uav)a (u,v)(O) - (u03v0)7

which takes place in the spaces , where the vector field W is in normal form except for a
remainder W7 of homogeneity order > 7 and for harmless terms that give zero contribution to the
energy estimate of the flow. The relevant formulas and estimates of the normal form construction
are collected in the appendix, section

In [3] we also introduced a simplified formulation of the equation that puts together all the
Fourier coefficients uy, vy, of frequencies k on the same sphere |k| = A. The spheres in the Fourier
space naturally appear — spheres and not other geometrical objects — because they are the set of
all frequencies sharing the same eigenvalue of the Laplacian (and the Laplacian is the linear part
of the vector field). The very special structure of the Kirchhoff equation allows us to write down
an effective system (see (2.5)-(2.6)) involving only the global quantities Sy, By (see below)
on each sphere. The evolution of such quantities (which governs the evolution of Sobolev norms)
is independent from the (potentially much more complex) dynamics within each sphere.

In this section we consider the transformed equations on the Fourier spheres — as the
starting point of our analysis; we refer to section [3| for their derivation.

Recall the definition of T'. For each A € T", define

S,\ = Z |uk|2: Z ULUV—k, B,\ = Z UkU_—[- (2.2)

k:|k|=X k:|k|=X k:|k|=X

Hence (remember that v_j = uy)

E: Z VeV—k, ||’U,||§ = Z)\QSS/\. (23)

k:|k|=X xer

Note that Sy > 0, By € C, and
|Bal < S» (2.4)

(because |upu_g| < 2 (|upl? + [u—i|*)). We call S\ “superactions”.

By (2.3)), the Sobolev norm |||, is determined by the superactions Sy. To analyze the growth
in time of each single Sy, we first observe a property of the vector field W (u,v), which is a
consequence of the Fourier multiplier structure of the Kirchhoff equation and of the fact that all
the transformations ®1), ... ®®) preserve a similar structure on the transformed vector field.

Lemma 2.1. There exist universal constants § > 0, C > 0 such that for all (u,v) € HJ"* (T, c.c.)
in the ball |[ul|,, <6, for allk € Z2, the k-th Fourier coefficient of the first component (Ws7)1(u,v)
of Wsz(u,v) and the one of the second component (Ws7)2(u,v) both satisfy

(W1 (u, o)kl [[(War)2(u, v)]k] < Cllully,, (Jue] + [u|)-

Proof. In the Appendix, section O



2.1 Effective dynamics on Fourier spheres

By (2.2), (3.43), (3.44), for every A € I' we calculate the equations for the evolution of Sy, Bj,
which are

; [ —— 31 -
9,5y = 33 > (BaBsBx — BaBsBa)aBA + 6 > (BaBsBx — BaBgBy)aBA + Rs,, (2.5)

54%6:& c?i%ezr,\
8By = —2i(1+P) ()\+ i/\QSA)BA + R, (2.6)
where
Rgy = D [(Worhi(w,o)lsvis+ Y ur[(War)a(u,v)] 4, (2.7)
K|k =X k:|k|=A

RBA :

i 1 1—6>
v BQQB 2( _ Ot)
16QZGF| IR Gy Sl

S BaBaSraBA+ 1 Y SuSyBaNa(6+

! a(l—62)
a+)\+ a— A )

a,pel ael

a+pB=A

> BaBsSraBA+ > 2u[(Wer)i(u,v)] . (2.8)
a,%il‘)\ k:|k]=X

Lemma 2.2. Let (u,v) € H]"(T%, c.c.) with ||u||ml < 9, where 0 is the constant in Lemma .
Then for all X € T the remainders defined in — 2.8)) satisfy

|Rs, | < Cllull$,, Sx,  |Rp,| < Cllully, Sx, (2.9)
where C > 0 is a universal constant.

Proof. The estimate for Rg, follows from Lemmaand the elementary inequality (|ug|+|u_g|)?
2(|ug)? + |u—_g|?). To estimate Rp,, we note that
1
o = A
in any dimension d > 1; for d = 1 one has the stronger lower bound |a — A| > 1 for & # A. Bound

(2.10]) is not difficult to prove (see the proof of Lemma 4.1 in [2]). One also has the elementary
inequality

<3a Vo, eTl, a#A (2.10)

Sa0® <> 5pB8% = |ul} Va€eT, Vp=>0. (2.11)
Ber
Let 1°!,..., 5" denote the five sums in the r.h.s. of (2.8). By (2.10), ([2.4), one has

1 < ZIB ?Bala® < 252 IS ZS allulliSx < llullf lullSA

because, by ([2.11), Soa?® < |lul|?. Similarly, by (2.10), (2.4),

37 S Y Saa®SIN Y Saa®[ullfSx S ullf [lulF S
[e3 [}

because, by (2.11)), S\xA? < ||u/|?. In dimension d = 1, using the lower bound |a — A| > 1 instead

of (2.10), one also has [37¢| < ||lu|}Sx. By (2.10)),

2 S Y SaSpSaabla+B) Y SaSsSrabla+ ) S llullfllull}Sh,
a, a,B
a+B=A

and the same estimate also holds for [4*"| because A = a— 8 < a. By Lemma., |57 < [|ullS,, Sx.
Since [|ull8, < 62||ull},,, the sum of the five terms gives the estimate for Rp, . O



In Lemmawe observe that, in a time interval of order ||u(0)||;,?, each single Sy has a growth
factor of at most order 1. Before proving that, in Lemma we combine the main results of [2]

and [3].

Lemma 2.3. There exist universal positive constants 61,Cq, A1 such that, for every initial data
(up,v0) € HY' (T4, c.c.) in the ball ||ug||m, < 1, the Cauchy problem

O (u,v) = W(u,v), (u,v)(0) = (ug,vo) (2.12)
has a unique solution (u,v) € C([0,T1], H" (T%, c.c.)) on the time interval [0,T1], with
[u(@)llm, < Cilluollm, <0Vt e[0,T], (2.13)

where
Ty = Aslluoll;

and & is the constant in Lemma [21.

Proof. Let @M. ®® be the transformations in (3.2), (3.5), (3.9), (3-13). In [2] (see “Proof of

Theorem 1.17, just above the references in [2]) it is proved that the system
Oy (w, z) = X (w, 2),

namely the system obtained applying @) o ... 0 ®® to the original Kirchhoff equation, has local
existence and uniqueness for initial data (wg,@y) € Hy" (T4, c.c.) in the ball ||wpl/m, < do, and
the solution w(t) is well-defined on the time interval [0, 7], with Ty = Agllwo|;,t. Moreover
lw(®)]lme < Collwo|lme on [0, Tp], and if, in addition, wg € H*® for some s > my, then |[w(t)]s <
Collwol|s on [0, Tp]; do, Ao, Co are universal constants.

Then consider @) in (3.25). One has [|[2©®)(u,v)||m, < (14 CllullZ,,)||ullm, for all (u,v) €
H™ (T4, c.c.) (see Lemma|3.11), and the inverse map (®(*))~! is well-defined on the ball |[w||,,, <

8y, with
1(@®) 7 (w, 2)llmy < 2l|w]lmy

for all ||w||m, < d} (see Lemma ; C, 0 are universal constants. As a consequence, the system

Or(u,v) = W(u,v) in (3.39)), namely the system obtained applying the transformation (w,z) =
®®) (u, v), satisfies the property of the statement, taking d; sufficiently small. O

Lemma 2.4. Let (ug,v9) € HY"(T% c.c.), |lugllm, < 61, with 61 given in Lemma . Let
(u(t),v(t)) be the solution of the Cauchy problem (2.12)) on the time interval [0, T1], T1 = A;|Juo||;?,
given in Lemma[2.5. For every t € [0,T1], let Sx(t) be the sum defined by ([2.2). Then

10:Sx(1)] < Clluollm, Sx(1), (2.14)
C'57(0) < Sa(0)eClolmt < 5, (1) < S3(0)eCl™lmt < €75, (0), (2.15)

for all t € [0, T1], for all X € T, where C,C',C" are universal constants.
Proof. Since (u,v) solves , S satisfies equation for all ¢ € [0, T}]. Moreover, by ,

u(t) remains in the ball ||ul|;,, < § on the time interval [0,7}], and therefore the estimates of

previous lemmas apply. Then, with estimates similar to those in the proof of Lemma [2.2] one has

" (BaBaBx — BaBaBa)aBN S Y SaSsSrafla+8) < JulFllul Sy,

a,pel a,Bel
a+B=\
Z (BoBgBy —EB@B,QO@@A‘ N Z SaSgSra’B < ||U||%HU||2%SA,
a,BeT a,BeT
a—B=X\

|Bs, | < llullh, Sa-

Hence, by (12.5),
10:5x ()] < Cllu(®)[lm, SA () Yt € [0,T1],

and therefore, by (2.13)), we obtain (2.14). Then ([2.15)) follows by Gronwall’s inequality. O
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Our goal is to improve the growth factor of Sy, whose evolution is driven by equation ([2.5)).
Thus we analyze the terms in (2.5). Denote

Zaﬁ)\ = BaBgBi)\. (216)
Using (2.6]), we calculate
1 ~
8tZa5>\ = —22(1 + P) (Oé + 5 -+ Z(azsa + 625,3 — )\QS)\))Za,B)\ + RZ&B/\ (217)
where
Ry, = Rp,BsBx + BoRp, By + BoBsRp, . (2.18)

For a+ 8 = A, isolating the first nontrivial contribution from terms of higher homogeneity orders,
one has

i
01 Zapr = —5(0425& + 5255 — )\25,\)Zag>\ + Rz.4. (2.19)

where

Ry —%P(azSa + B2 — A25\) Zapx + Ra,n.- (2.20)

aBA T

Lemma 2.5. Let (u,v) € HJ"* (T4, c.c.) with ||u|m, < 0, where § is the constant in Lemma .

Then for all a, B, X € T with o + B = A the remainder defined in (2.20)) satisfies

[RZusx| < Cllull, SaSsSh, (2.21)

afBA

where C > 0 is a universal constant.

Proof. By ([2.4), (2.2), one has immediately |§Zam| < Cllully,, SaSsSx- By (8.20), (3.45)), for

lte]|m, <& one has
0 < P(@® (u,0)) < C2® (u,0) |3 < Cllull}.

Moreover
0280 + 8285 — A2Sx| <3428, =3|[ull},  [Zapal < SaSsSh, (2.22)
yel
and the first term in the r.h.s. of (2.20) is also bounded by C|lu||},, SaS3Sx. O

In the next proposition we prove that, if the term (a?S, + 8%2S5 — A2S)) in (2.19) is bounded
away from zero with a quantitative lower bound (“nonresonance condition”), the growth factor of
each single S is smaller than its a priori estimate.

Proposition 2.6. There exist universal constants A, K. > 0 with the following properties. Let
0<co<1. Let p>0, (ug,v0) € H"(T?, c.c.), with

l[uollm, <p < ér, (2.23)

where §1 is given in Lemma et (u,v) be the solution of the Cauchy problem (2.12)) on the

interval [0,T1] given by Lemma and let Sy (t) be its superactions at time t. Let
Tp:={AeT:5,(0)=0}, T1:={AeTl:5,(0)>0}=T\T,.
Assume that, at time t = 0, the datum ug satisfies the “nonresonance condition”

|a%54(0) + B285(0) — A2SX(0)| > co(a?Sa(0) + 82S5(0) + A25x(0))

(2.24)
Va,B, €Ty, a+p=A

Let
T, == A.p co. (2.25)

11



One has T, < T,

1Sx(t) — SA(0)| < Kyucy?p?Sx(0)  Vt€[0,T.], VAET, (2.26)
[u@llmy < 1+ Kecg®p*) [uollm, Yt € [0, T, (2.27)
and 2 2 2 2 2 2
|02 Sa(t) + B2S5(t) — N2SA(1)] = c1(a?Sa(t) + B2Sa(t) + A2Sx(1)) (2.28)
Vvt e[0,Ty], VYo,B,A€Ty, a+p=2 ’
where
e1 = co(1 = Kucy2p?). (2.29)
Proof. For a, B, A € " with a + 8 = A we denote
Wasx = 028, + 2S5 — A28},
” b 5 A (2.30)

Qaﬁ)\ = 042Sa + 5255 + )\2S)\.

Since (u,v) solves (2.12)) on [0,T1], all Sx(¢), and therefore all wqpa(t), Qapa(t), are defined for
t € [0,71]. From (2.15), for all ¢ € [0,T}] one has

Sa(t) >0 ifAeTly, S\(t)=0 ifAeTy (2.31)

(the Fourier support is invariant for the Kirchhoff equation). For «, 8, A € Ty with o+ 8 = A, by

assumption (2.24]) one has
|wapa(0)] = coapa(0). (2.32)

Using (2.14)), (2.23), (2.15), for all ¢ € [0,T;] one has

|8twa3)\(t)\ = ‘QQQtSa(t) -+ BQath(t) — )\QatS)\(t”
< a2|0;Sa(t)] + B82|0:Ss(t)| + A2[0:SA(t)]
< Cllug|lm, (@®Sa(t) + B2S5(t) + ASa(t)) < Cp*Qapa(t) < Ap*Qapa(0)  (2.33)

where A > 0 is a universal constant. Thus
t
|wapa (t) — wapa(0)] < / |Orwapn(s)] ds < Ap*t Qapa(0). (2.34)
0

By (2.32)), (2.34) one has

[waga ()] 2 [wapa(0)] — |wapa(t) = wapa(0)] = (co — Ap™t) Qapa(0).

Therefore ‘
|wapa(t)] > 50 Qupr(0)  VE€[0,T.], a,B, €Ty, a+f=A, (2.35)
where )
. —4 SN i
T, := Ascop™ ", A= mln{Al, 2A} (2.36)

and A; is given by Lemma [2.3] so that

T. < Ty = Asljuo| (co — Ap*Ty) > $co.

—4
my?

Recalling (2.5)), to analyze the difference Sy (T') — S»(0) we study the integral of the imaginary
part of Z,gx on [0,T], for any T € [0,T4], and «, 8, A € T with a4+ 8 = A. Let

BoBsBy — BoBsB,

= (2.37)

19046)\ = Im(Zag)\) =

12



If at least one among «, 3, A belongs to 'y, say a € T, then as observed in (2.31)), the correspond-
ing S, (t) is zero for all t € [0, 7] Hence by ., «(t) is also identically zero on [0,7%], and
therefore ¥, (t) = 0 by its definltlon . Thus, for all T € [0,Ty],

/T Yapr(t)dt =0 if {a, B, A} NTo # 0. (2.38)
0

It remains to study the case in which «, 8, A all belong to I';. Since (u,v) solves (2.12) on
[0,T%] C [0,T1], Zagx solves (2.19) on the same time interval, namely

O Zapn () = =5 Wapr (D Zagn () + Rz, (8) - VE€[0.T.].

By the lower bound (2.35)), wapx(t) is a nonzero real number, therefore we can divide by it and we
obtain o
i

Zoar(t) = — 2 (8, Zapr(t) — Ry .. (£)) Vit e[0,T.]. 2.39

)= s (0Zan(t) = R () W1 € 0.7 (239

By (2.39)), and integrating by parts, for all T’ € [0, T.] we have
T - .
0t Zapa(t R t
/ Zam(t)dt=2i/ wdt—m/ Bz ()
0 0 ;

wWagpa(t) Wapa(t)

.Zaﬁ)\ (T) .Zocﬂ)\(o) ~/T atwaﬁ)\ (t) ./T RZaﬁA (t)
=2 — 2 + 21 Zap(t dt — 21 —=F dt.
wapa(T) wapa(0) 0 oAl )(wam(t))2 0 Wapa(t)

(2.40)

By (2.22), (2.35), one has
|wapa(0)] c0€2apx (0)
By (2.22)), (2.35)), then (2.15), one also has

| ZapA(T)] < Sa(T)Ss(T)SA(T) < 5a(0)55(0)5x(0) (2.42)
|wasa(T)] c0Qapx(0) c0Qapx(0)

To estimate the last integral in (2.40]), we observe that by (2.21)), (2.35)) one has
[RZapn (D] _ [[w(t)ll7m, S (£)Sp(£)SA(2)

|lwapa(®)] ™~ COQa,BA(O)
Then, by , we estimate
[u(t)lln, Sa(t)Sp(E)SA(E) _ lluollm, Sa(0)Ss(0)Sx(0)

vt € [0, 7). (2.43)

vt € [0, 7). 9.44

Qapr(0) coﬂam(m o1 (244

Integrating (2.43), (2.44) over [0 T] and using ) to bound the factor T'||uol|2, cg ', we obtain
wapa(t Qam(o)

Regarding the other integral in , we use , ) to estimate Zyga(t), (2.35]) to bound

wapa(t) from below, and (2.33) to estlmate atwag)\( ), and we get

||3twam(t)| < 5a(0)S5(0)9x(0)[0]lm, s (0)
wapr(®)> ™ [CoQam(O)]Q

Integrating (2.46)) over [0, 7] and using, once again, ) to bound the factor T'||uo|/, 5", we

obtain
8twa[3>\(t)
‘/ Zap(t wam(t)ydt‘

| Zapa(t) vt € [0,77]. (2.46)

S5(0)S5(0)5x(0)
c0Qapr(0)

A

(2.47)
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From formula (2.40) and estimates (2.41)), (2.42)), (2.45)), (2.47) we deduce that

0)Sx(0)
o (t) dt Vo, B A €Ty, A 2.4
‘/ aa(t ‘ COQaﬁ)\(O) a,f,Aely, a+p (2.48)

Now we fix any A € I'; and write equation (2.5)) in terms of ¥, (defined in (2.37)), namely

OpSa(t) = —— E Dapa(t) afr + 2 E Vpra(t) aBA + R, (1) (2.49)
a,Bel’ a,Bel’
a+B=\ B+A=a

The first sum in (2.49)) has a finite number of terms; the second sum is a series of functions that
converges uniformly on [0, T,] because, by (2.22)), (2.15),

S (s [paa@®) aBAS D Sa(0)95(0)S(0)aBA

a,Ber  t€0.T] a,Bel

B4+A=«a B+A=a
S (3 5000) (32 550082550 £ InaliP90) < .

ael’

Therefore the sums in (2.49) can be integrated term by term. For all T' € [0, T%], integrating (2.49))
on [0,T] gives

S)\(T)—S)\( :_7 Z / ﬁaﬁ)\dtaﬁ)\-i-* Z / 19ﬁAadtﬂ)\Ot+/ Rs/\( )dt (2 50)
a,BeT a,Bel’
a+pB=A ,6’+/\ e

Using (2.9)), (2.13), (2.15), (2.36)), one has

T T
[ Rs@at] < [l 5500 dt £ p250) (251)
0 0

Since A € T'y, we use (2.38) for the terms in (2.50) with «, or 3, or both «, 5 € Iy, we use (2.48)
for the terms with both o, 3 € I'y, and we obtain

S~(0)S afBA S.(0)S a,6’>\ 5
1SA(T) — Sx(0)] S BZEF © )Coﬁéa;(é)> + ﬂzer © )Coﬂ(ga;/\(é)) + p*Sx(0).
atB=A Bra=a

For a+ 8 = X one has aS\ = a2 + a2, and

3 Sal085(0)as) 5,0 ~( 928a(0) 5o o Pyl 5755(0) 054(0) ) c5 151 (0)

afer, e (0) “ afely 2apn(0) o deTy 2ap(0)
atB=A at+f= atf=
< (X885 + Y aSa(0)e;"$1(0) = 2uo |3y ' Sr(0)
BeT aecl

by the definition (2.30) of Qapx. For 8+ A = a one has affA = a? — aff? < oS, and the sum is
estimated similarly. Hence

|SA(T) — Sx(0)] < Cup?cy'SA(0) VT € [0,T.] (2.52)

for all A € T'y, for some universal constant C, > 0. For A\ € T'g one has (2.31)), therefore (2.52)
holds for all A € T.

From (2.31)) we deduce that

()17, = D SAOAP™ <D (14 CupPeg )SA(0)A*™ = (1 + Cup®ey Hluoll3, -
el Ael
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Taking the square root and using the elementary bound v/1 + z < 1+ x (which holds for all > 0)
we obtain
[u(®)lmy < (1+ Cup®cg Dlwollm, ¥t € [0,T3]. (2.53)

By triangular inequality, from (2.52) it follows that
|wapa(t) = wapr(0)] < a?[8a(t) — Sa(0)] + B2[S5(t) — S5(0)] + A%|Sx(t) — SA(0)]

< Cup®cy ' Qupa(0)  VEE[0,T.], a,B, ) €T. (2.54)
For a, B, A €T, a4+ 8=\ by 7 we obtain
(wWapr(t)] > |wapr(0)] = [wapa(t) = wasa(0)] = (co = Cep®cy ") Qapa(0) (2.55)
for all ¢ € [0, T)]. By -,
Qupr(t) < (1+ Cup?eg ') Qapa(0) Yt € [0,T0]. (2.56)

From ([2.55)), (2.56]) we get

2.—1
co — Cip®cy

WapA(t)| > ————— Qugsa(t).
|wapa (t)] 1T CopPeg? aa(t)
The elementary inequality
Co— X
>co— 2%
1+2
holds for all x > 0 because ¢y < 1; we apply 1t with = C,p? Co , and obtaln ) with

K, = 20 Flnally we deteriorate , 2.53) replacing C, with K, and ¢y w1th co and we

obtain (2.26] , - O

Now we apply repeatedly Proposition and use the improved growth estimate ([2.26)) to obtain
a longer lifespan for the solution.

Lemma 2.7. Let )
K*pO < i,
2 24
where 8y is given in Lemma[2.3 and K, in Proposition[2.6, Let N be an integer such that

]
0<COS17 0<p0§517 To =

log 2

I1I<N ——>—— |
~ |log(1 — 12z0)|

(2.57)

Let (ug,vo) € HJ"* (T4, c.c.), with
||U0||m1 < po,
and assume that ug satisfies the nonresonance condition (2.24), namely, with wagx, Qapxr defined

in (2.30),
lwagr] = coQapr V(o B,A) € T, (2.58)

where T1 :={(a, B, \) : a, B\ €Ty, a+ = A}. Let ty:=0.
Then for allk =1,..., N the following properties hold.

(i) The solution u of system (2.12)) is defined on the interval [0, ty], where

c
thi=tho1 + 7y Tho= Aot (2.59)
Pr—1
with A, given by Proposition [2.6. Moreover
(), < pr Vt € [tr—1,tk], (2.60)
|wa5)\(t)| > CkQaB)\(t) Vt € [tkfhtk]y (Oé, 6, )\) S 7-1, (261)
where
ok = pr—1(1+xk—1), cpi=cp1(1 —zp_1). (2.62)
Also define
K. p?
= Pk (2.63)
Ck
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(#4)r, One has

1
0 < xp, < 2o(1 4 1020)* < 220 < o (2.64)
0< %0 < co(1—2z0)% <ep <o <1, (2.65)
0< Po < pk < po(1 + 2w0)" < 2p9 < 61, (2.66)
S > 81— 1200)k > 2 (2.67)
pk P 25
Proof. We start with proving the statements with & = 1. The initial datum wug satisfies the

assumptions of Proposm We apply it, and we obtain that the solutlon u is defined on [0, T%]
E2)

with T, = A*po o (see ), and T, = 71 = t1 by definition |k 1. Also, by - -7
we get

[w(@)llmy < po(1+ o), ¥t € [0, 0],
wapa(t)] > co(1 — 20)Qapa(t) Yt €[0,t0], (a,B,A) € Th,

which are (2.60)|x=1, (2.61)|x=1. Hence (i)x=1 is proved. By definition (2.62))[x=1, (2.63))[x=1, one

has ( 2
14+ xg
= — 2.
Xr1 ZTo (1 — .’170)2 ( 68)

We consider the elementary inequality

(1+z)? 4z

- <1 Ve,beR, 0<z<b<l1 2.69

(=27 = +(1—b)2 r,beR, 0<z<b<1, ( )

which holds because z — E ;2 is convex on [0, b], or just because

Eifz>2=(1+12_xx)2§(1+12x )2:1—1—33( 1, A >§1+x(14 P ).

x)? —b 1-b (1-0)2 —b  (1-10)2
For b = 15 it implies that
(1+ )2
T—op <145z Vel 3] (2.70)

Since z¢ < i, by (2.68)), (2.70) we get x1 < x0(1 + 5x0), and (2.64)x—1 is satisfied. Definition
(12.62)| k=1 gives ¢1 = co(1 — zg), p1 = po(1 + x0), and (2.65))|x=1, (2.66))|x=1 follow immediately.
To prove ([2.67))|x=1, we consider the elementary inequality

1—
(Hix) —(5+6b+4b2 + %)z Vo, beR, 0<a<b, (2.71)
which holds because
11—z 5z + 6x2 + 4z + 2* 9 3
m:l— L >1—x(5+6x+4z° + 7).
For b = 15 it implies that
11—z
m Gx V"E S [0, 112} (272)
Thus, by (2.72)),
c co(l —x c
a_ ol o g g

Pt oL+ o)t = pg
and (2.67)|x=1 holds. This completes the proof of (ii),=1
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Now assume that () (i) k hold with k& = n, for some n € [1, N — 1]; we have to prove them

for k =n+ 1. By (2.60 |k s \k », one has
[ua)llmy < pns |wapa(tn)| = cnQapa(tn)-

By (2.65)|x=n, (2.66))|x=n, 0 < ¢, < 1, 0 < p, < 6;. Hence Proposition can be applied

with (¢,,u(t,)) as initial data, and with ¢, p, in the role of the parameters cg,p of Propo-
sition [2.6 . We obtain that the solution is extended to the interval [t,,t, + Thi1], With 7511
given by Proposition | namely Tn+1 = A.c,p,*, which is also its definition in Emk —n+t1-
With pri1, Cogt, Tngt deﬁned by (2.62)|k=n+1, [2-63)|k=n-+1, Proposmonmalso implies estimates
|k:n+1, |k:n+1 on the tlme interval [t,, t,41]. Thus (4)g=n+1 is proved.

Let us prove (ii)g=pn+1. One has ¢,11 = ¢, (1 —x,) by definition |k:n+1, cn > co(1—2x0)"
by |k:n, and z, < 2zg by |k:n; therefore

Cn+1 > Co(l - 2:E0)n+1.

By (2 one also has (1 — 2x) N>1 hence 1 2.65)) |k=n-+1 is proved.
Slmllarly, Pn+1 = pn 1 +-Tn by (2.62 |lc =n+1; Pn < Po(l + 2$0 n by (2.66 |lc =n, and z, < 279
by (2.64 | k=n; therefore
prt1 < po(1+ 2x0)" .
By one also has (1 + 2x¢)" < 2, hence ([2.66)|r—n+1 is proved.
From definitions (2.63)|x=n+1, 2.62)|k=n+1, (2.63)|k=n we deduce that

(1+ xn)z

By (2.64)|x=, we have x,, < 27 < 1—12 Hence, by (2.70), xn+1 < z,(1 + 5x,). Since z, <
2o(1 4+ 10z0)™ and z,, < 2z (both bounds coming from (2.64)|x=r), we obtain

Tpy1 < xo(l + 101‘0)n+1.

By (2.57)) one also has (1 + 10z0)"™ < 2, therefore (2.64)|x—,+1 is proved.
From definition (2.62)|g=n+1 one has

Cn+1 _ Cn(l - xn)
Prn+1 Pﬁ(l + xn)4

Since x,, < 2z < 12, by (2 it follows that

Cn+1 Cn
> — (1 —6zy,).
Pnt1 P !

Then we use (2.67)|x=» and the bound z,, < 2z, and obtain

Pn+1 Po
By (2.57) one also has (1 — 12z¢)™ > 1, therefore (2.67)|k=n+1 is proved. The proof of (i7)y=n+1
is complete. O]

Lemma 2.8. There exist universal constants 63 € (0,1), A > 0 with the following properties. Let
g1
0<c <1, O<5§?, e < 03¢,
where 81 is given in Lemma|2.5, Let (ug,vo) € H"* (T4, c.c.), with

[uollm, <, (2.74)
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and assume that ug satisfies the nonresonance condition (2.24). Then the solution (u,v) of the
Cauchy problem (2.12) is defined on the interval [0, T3], where

3
_ AgCO

T3
6

with (u,v) € C([0, Ts], Hy" (T, c.c.)) and
[u)|lm, <26 ¥t e [0,T3].

Proof. First, we consider the function

e}
A
<
IN
N |

we calculate its derivative

and observe that ¢’(y) < 0 on (0

1 y
)2
decreasing, and therefore ¢(y) > ga(%) for all y € (0, %], namely

| (apply the inequality e* > 1+ z with & = ﬂ) Hence ¢ is

log 2 1 1
2% > 0<y<-. (2.75)
|log(1 —y)| — 2y 2
As a consequence, given any real 0 < x < 4—18, there exists an integer N such that
1 1 log 2
1<—<N<-—<—8° __ (2.76)
482 24z ~ |log(1 — 12z)|

(the interval [gi-, 51-] has length > 1, therefore it contains at least one integer).

Now let 0 < ¢pg <1,0 < pg < %51, assume that zg := K*ngEQ < é, and let N be an integer

satisfying (2.76))|,—»,. Let wug satisfy (2.74), (2.58)). Then all the assumptions of Lemma are

satisfied. Thus the solution w is defined on [0, tx], with
||u(t)Hm1 S 2p0 VYt € [07tN]

by (0. (€58). and

N No1 QN1 Ac
k * *
tN*ZTk*A* 72? %*240
k=1 k=0 Pk k=0 P0 Po
by (2.59), (2.67). Then, by (2.76) =z,
3
ty > A*io > A*io L A3600
2p5 2p; 48zq £

with Az := A,(96K,)"1. We define 63 := (48K*)_%, so that zy < 4—18 becomes pg < d3¢g, and we
rename € := pg. O

2.2 Back to the original coordinates

We now aim at expressing the nonresonance condition in the original coordinates.

Using the definition of the transformations ®©), @ &®) in , (3.13), (3.25) and reasoning
like in the proof of Lemma (which is based on the structure described in Remark [3.15]), one
readily has the following.
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Lemma 2.9. There exist universal constants § > 0, C > 0 such that for all (u,v) € H;" (T%, c.c.)
in the ball ||ul|m, < 6, for all k € Z%, the k-th Fourier coefficient f, = g% of (f,g) = (®®) o
®W o ®O))(u,v) satisfies

[ fie = unel < Cllul7,, (lurel + Ju—]) < k] + Ju—gl. (2.77)
An analogous bound holds for the inverse transformation, namely

| fr = wi) < CNFIZ, (fel + 1 F=k]) < [l + | =kl

As a consequence, we have the following lemma on the superactions S).

Lemma 2.10. There exist universal constants 6 > 0, C > 0 such that for all (u,v) € H;" (T4, c.c.)
in the ball ||ul|m, <9, letting (f,g9) = (23 0 &) 0 ®O))(u,v) and denoting

Sv=D lwl’ Si=Y il

|k|=X |k|=A
one has for all A € T R

1S3 = Sxl < Cllull3,, S (2.78)
An analogous bound holds for the inverse transformation, namely

(S5 = Sl < CII 117, 55 (2.79)

Proof. Let 6 > 0 be the same as in Lemma and denote here by C > 0 the constant in .
We start by observing (using Lemma [2.9) that | f| < 2(|ux| + |u—x|) and
£kl = Tur?[ = (il + JunD) 11 ol = Tunl| < 3(un| + Ju—i )| fe —
< 3C|ullz, (Jus| + |u—g)?
< 6C|ull 7, (Jurl® + [u—r[*)-
Hence, for all A € T" one has

Sh = Sal < 3 |1l = Jual| < 12€Jull2, 5y
|k|=X

and ([2.78)) holds with C' := 12C. In the same way one proves (2.79). O

From ([2.78)-(2.79) it follows that Sy = 0 if and only if S\ = 0. Hence the set I'; of the indices
A € T for which S is nonzero is left invariant by the transformation (&) o ®® o ®®)). We deduce
the next lemma on the nonresonance condition.

Lemma 2.11. Assume the hypotheses of Lemma , If the sequence (Sx)er satisfies (2.24))
with some co € (0,1], then the sequence (Sx)aer satisfies

}aQSQ + 2S5 — )\23,\‘ > (co = Cllul|Z,)) (aZSN’a + 2S5 + )\QSB\) (2.80)
for all a, B, A € Ty such that a4+ 8 = .
The same statement applies to the inverse transformation (®®) o &4 o )1,
Proof. We compute, applying Lemma and denoting by C the constant in ,
|a?Sy + 8285 — A28,| > [a®Sa + 2S5 — 2S5 | — a®|Sa — Sal — 8295 — Sa| — A2[Sx — Sa|
> (co = Cllullim, )(@®Sa + 525 + A2S))
co = Cllull,
1+ O3,
(co— 2C||ul|? )(a2§a + 2S5 + A\2Sy),

ma

(a?S, + 8255 + \2S))

\%

thus (2.80) holds with C = 2C. O
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Since the transformations @), ®2), defined in (3.2)), (3.5)), are very explicit (the transformation
®W) is only a Fourier multiplier and ®() leaves invariant the quantities S \), We can now express
the nonresonance condition as a suitable condition on the datum in the original coordinates,
by applying the normal form transformation ® := &) 0 &) o ) 0 &) 0 HO),

To this end, given a pair of space-periodic real-valued functions (a,b) as in , we define the
quantities Uy := Uy (a,b) by (L.9). Lemma then translates immediately into the following.

Lemma 2.12. There exist universal constants § > 0, C > 0 such that the following holds. Let
(u,v) € HJ"(T? c.c.) belong to the ball ||ullm, < & and let (a,b) = ®(u,v). If the sequence
{Sx = Sa(u)}rer satisfies for some ¢y € (0,1], then the sequence {Ux = Ux(a,b)}rer
satisfies

|Us + U — Ux| > (co — Cllull2,,) (Ua + Us + Uy) (2.81)

for all a, B, A € Ty such that o+ 8 = . Conversely, if

m 1 my—1
(a,b) € H. 3 (T R) x HM 72 (TYR), lallmy 1 + 10l -3 <0 (2.82)

and, for some cq € (0,1],
|Ua+Ug—UA|ZCO(Ua+U5+U)\) (2.83)

for all a, 3, \ € Ty such that o + B = X, then, setting (u,v) = ® 1(a,b), the sequence {S\ =
Sx(u)}rer satisfies
028, + 8255 — A2y > (co — C(lall?,, .y + ||b||m1_7)> (0280 + 8285 +A28))  (2.84)

for all a, B, A € Ty such that a4+ B = .
From Lemmas and we deduce our main result on the Kirchhoff equation.

Proof of Theorem [L.1l Let €,¢co € (0,1], and assume that the datum (a,b) satisfies (1.12)),
(T13). Let (uo,vo) := ®~*(a,b), where & = &1 o-.. 0 ®®) is the normal form transformation.
Hence

l[wollm, < Cre (2.85)

for some universal constant C7 > 0.
Denote 4, C' the umversal constants of Lemma If ¢ <, then (a,b) satlsﬁes 2.82), (2.83),
and therefore, by Lemma the actions S (ug,vo) satisfy - If Ce < 1 5¢0, then

. - A Co
Cllall,, g + b2, _y) < Ot < e < 2,

and we obtain .

|28, + 2S5 — N2Sy| > 50(0125'(1 + 2S5 + A%8)) (2.86)
forall a, B, e, a+ 8= A

Now let & := %CO, € := Cie. By (12.85)), (2.86]), one has
)
0<l <1, 0<E<o, E<bd, |luofm <&

ife <3 C ,
of Lemma are satlsﬁed, and we obtain that the solution (u,v) of the
defined on [0, T3] with

e < —co, where d1, d3 are the universal constants in Lemma Thus the absumptlonb

Jauchy problem (|2 is

Ascy _
T3 = F lw(@)||m, <26 Vte]|0,T5].
Replacing ¢y = co, £ = Ci¢e, we get Tz = Aqcie O for some universal constant A4. Since ¢y < 1,
all the Condltlons on ¢ hold if ¢ < d¢y, where we define § := mm{5, 26 256{1 , 2‘%’ , which is a
universal positive constant. O
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3 Appendix. Quasilinear normal form and transformations

In this section we review the main formulas and inequalities of the normal form construction of

[2]-[3] (subsections [3.1}3.4), then we derive the effective equations (2.5)-(2-6) and prove Lemma[2.1]
(subsection [3.5)).

3.1 Linear transformations

The first two transformations &), &2 in [2] are very standard, and transform system into
another one (see ) where the linear part is diagonal, preserving both the real and the Hamil-
tonian structure of the problem. They are the symmetrization of the highest order and then the
diagonalization of the linear terms.

Symmetrization of the highest order. In the Sobolev spaces (|1.5)) of zero-mean functions, the
Fourier multiplier -
A= |Da] s By = BT € e ]l

is invertible. System (.3) writes

8tu =
{@v — —(1 4 (Au, Au))A%u, (3.1)

where (-,-) is the real scalar product of L?(T% R); the Hamiltonian (T.4)) is
1 1 1 ,
H(u,v) = 5(1},1}) + §<Au, Au) + Z<AU,AU> .

To symmetrize the system at the highest order, we consider the linear, symplectic transformation

(u,v) = @V (g,p) := (A~ 2¢, A%p). (3-2)

System becomes
{g;qa - /izzl +(A%q,A%q))Aq, 33)
which is the Hamiltonian system 9 (q, p) = JVH ™ (g, p) with Hamiltonian HY) = Ho®™  namely
HY(g,p) = %<A%p7A%p> + %<A%q,A%q> + %<A%q7/\%q>2, J = (_OI é) SNC R

The original problem requires the “physical variables” (u,v) to be real-valued; this corresponds to
(¢, p) being real-valued too. Also note that <A%p7A%p> = (Ap,p).

Diagonalization of the highest order: complex variables. To diagonalize the linear part d,q = Ap,
Oyp = —Aq of system , we introduce complex variables.

System and the Hamiltonian H (1)(q7 p) in are also meaningful, without any change,
for complex functions ¢, p. Thus we define the change of complex variables (g, p) = ®?)(f, g) as

@n) =000 = (L0 -0 (35)

so that system (3.3)) becomes

Org = ihg +ig(A(f +9), f + 9)A(f +9)
where the pairing (-, ) denotes the integral of the product of any two complex functions
(w, h) == / w(z)h(z) de = Z w;h_;, w,h € L*(T%C). (3.7)
Td

JEZN{0}
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The map ®@ : (f,g) — (¢,p) in is a C-linear isomorphism of the Sobolev space Hg(T?, C) x
H§(T4,C) of pairs of complex functions, for any s € R. When (q,p) are real, (f,g) are complex
conjugate. The restriction of ®?) to the space Hg(T?, c.c.) (see ) of pairs of complex conjugate
functions is an R-linear isomorphism onto the space H(T9, R) x H5(T¢, R) of pairs of real functions.
For g = f, the second equation in (3.6) is redundant, being the complex conjugate of the first
equation. In other words, system as the following “real structure”: it is of the form

o) - (53)

where the vector field F(f, g) satisfies

Fof, ) = (s F)- (3.8)

Under the transformation ®®), the Hamiltonian system (3.3) for complex variables (g, p) becomes
(3.6), which is the Hamiltonian system 0;(f,g) = iJVH?)(f, g) with Hamiltonian H® = H® o
P 2

, namely

HO(f.9) = (Af,g) + 35 (A +9). £ +9)%

where J is defined in (3.4), (-,-) is defined in (3.7), and VH () is the gradient with respect to (-, -).
System (3.3) for real (¢, p) (which corresponds to the original Kirchhoff equation) becomes system
(3-6) restricted to the subspace H§(T?, c.c.) where g = f.

3.2 Diagonalization of the order one

In [2] the following nonlinear global transformation ®®) is constructed. Its effect is to remove the
unbounded operator A from the “off-diagonal” terms of the equation, namely those terms coupling

f and f.
Lemma 3.1 (Lemma 3.1 of [2]). Let

¥ .0) = M. (1) (9)

where M(n, ) is the matriz

B 1 1 p(P(n, )
MOV = =) <p<P<n,¢>> ! >

p is the function

—X
r)i=—
) = T T

P is the functional

1
P(n,v) = @m,v)),  Qn,v):= (AN +v),n+1),
and ¢ s the inverse of the function x — x+v/1 + 2x, namely

Wl4+2r=y & z=¢(y).

Then, for all real s > %, the nonlinear map ®®) : HZ(T? c.c.) — HZ(T? c.c.) is invertible,

continuous, with continuous inverse

(®9) 1 (f.9) = ——

( 1 P(Q(fﬁﬁ)) (f)
VI=p2(Q(f,9) \—rQ(f.9)) 1 9)"
For all s > %, all (n,) € H;(T%, c.c.), one has

12 (. 9) s < Cllln, ll)lms 25

for some increasing function C. The same estimate is satisfied by (®3))~1,
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In [2] it is proved that system ([3.6)), under the change of variable (f,g) = ®®)(n, ), becomes

O = —i/TT 2P Ay + W (¢A9, Av) — (An, A} )9,

O = i/ T+ 2P0, ) A+ o= ((Aap, Aws) — (An, An) .

1) (n,¢) Ay 1+2P(w))<¢ ¥) — (An, An) |

System ((3.10) is diagonal at the order one, i.e. the coupling of n and 1/) (except for the coeflicients)

is confined to terms of order zero. Note that the coefﬁcients of are finite for ,v € Hg,

while the coefficients in are finite for f,g € Hj 7, : the regularlty threshold of the transformed

system is % higher than before

The real structure is preserved, namely the second equation in (3.10)) is the complex conjugate

of the first one, or, in other words, the vector field in (3.10) satisfies property (3.8). Even if ®()

is not symplectic, nonetheless the transformed Hamiltonian H®) := H® o &®) is still a prime
integral of the equation, and it is

—PO ) ({An,n) + (Mg 9) L+ P y)
2y/1+2P(1,9) 1+2P(n, )
As observed in [2], since P(n,) is a function of time only (namely it does not depend on z),
the vector field of (3.10) could be divided by a factor 1/1 + 2P(n, %) by a reparametrization of the

time variable; this would normalize the terms of order one. In [2]-[3], however, we did not make
so, because it was not necessary.

(3.10)

HB) (n,4) = (A, ¢) + P?(n, ).

3.3 Normal form: first step

The next step is the cancellation of the cubic terms contributing to the energy estimate. Following

[2], we write as
0(n, ) = X (n,9) := Di(n, ) + D>3(1,9) + B3 (0, ) + R>5(n,9) (3.11)

where

Du )= (!} Dalnd) o= (VIF 2P ) — DDa(0, ),

Bs(n, ) is the cubic component of the bounded, off-diagonal term

_: _ 0
Bat ) = 5 (14201 — () (V)
and Rx>5(n, 1) is the bounded remainder of higher homogeneity degree

—lp(ﬂﬂ/f)
2(142P(n,))

The term D>3 gives no contribution to the energy estimate; the term B3 is removed by the following
normal form transformation. Let

Ros(n.v) = (thoh0) = (anan) (). (312)

W (w,z) == (I + M(w, 2)) <f) 7 (3.13)
L O Alg[w,w] + Clg[Z,Z]
Mfw, z) := (Au[z, z] + Ciaw, w] 0 ' (3.14)
where Ao, Co are the maps
A B o— ) . |.7|2 h ik-x 3.15
wloohi= >, wvygE e (313)
3:k#0, |51kl
i e

Cizlu, vlh Z UV j = hpe’™ ™ (3.16)

2 IR TR
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Let 3
mo:=1 ifd=1, mo =g ifd > 2. (3.17)

Lemma 3.2 (Lemma 4.1 of [2]). Let Aya,Cia,mo be defined in (3.15), (3.16), (3.17). For all
complex functions w,v,h, all real s > 0,

[ Ar2[u, v]h]ls < g”u”moHUHWOHhHSv [C1z[u, v]h]s < %Hﬂllllv\llllhllw
The differential of ®*) at the point (w, 2) is
(D) (w,2) = (I + K(w,2)), K(w,z)=M(w,z)+E(w,z2),
where M (w, z) is defined in (3.14), and

st (5) = (Bt Vi %) ass

Lemma 3.3 (Lemma 4.2 of [2]). For all s > 0, all (w,z) € H"(T% c.c.), (o, B) € H§(T%, c.c.)
one has
HM(w,z) (g)

e (3)

where mq is defined in (317). For ||w|m, < 3, the operator (I + K(w,z)) : H"(T? c.c.) —
H{™ (T4, c.c.) is invertible, with inverse

7 2
< <l lall,

S

7
<

7
< gellwllgllells + gllwlhmo lwllsliedlm,

I+ Kw,z2) ' =I-Kw,z2) +K(w,z2), Kw,z):= Z(—K(w,z))”,

n=2
satisfying
|7+ K(w,2) (g) | < ctlials + lwlhmg Il lalim,).
for all s > 0, where C' is a universal constant.
The nonlinear, continuous map ®* is invertible in a ball around the origin.

Lemma 3.4 (Lemma 4.3 of [2]). For all (n,v) € H™ (T c.c.) in the ball ||n||lm, < %, there
exists a unique (w, z) € HY" (T4, c.c.) such that ™) (w,z) = (n,%), with ||w||lmy < 2|0lme- If, in
addition, n € H§ for some s > mg, then w also belongs to HE, and ||w||s < 2||n|ls. This defines
the continuous inverse map (®W)~1: H3 (T4, c.c.) N {|[nllm, < 3} — HF(T c.c.).

Under the change of variables (1,4) = ®*) (w, 2), it is proved in [2] that system (3.10) becomes
d(w,z) = (I + K(w,2)) ' X (W (w, 2)) = X+ (w, 2)
= (1+P(w,2))Dr(w, 2) + X5 (w, 2) + XT;(w, 2) (3.19)

where

Plw, z) = /1 4+ 2P(@D) (w,2)) — 1,

X3 (w, z) has components

RETETS D DTS

3:k#0, |k|=j]
(X3)2(w, 2) = 1 Z ZjZ—j |]|2w}ce”C z
3,k#£0, |k|=j]
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and

X%(w,z) =K (w,2)(I + K(w,z))_l(Bg(w,z) - X5 (w,2)) +R§5(w,z)
— P(w, 2) (I + K (w, z))_l(Bg,(w, z) — X (w,2))

with
RE (w,2) = (I + K(w,2)) ' Ro5(®W (w, 2)) + [B3(2™ (w, 2)) — Bs(w, 2)]
+ ( — K(w,2) + [N((w, z))83(¢(4) (w, 2)),
R25 defined in .

Lemma 3.5 (Lemma 4.5 of [2]). The maps M(w, W), K(w,®@), and the transformation ®®) pre-
serve the structure of real vector field (3.8)). Hence X+ defined in (3.19)) satisfies (3.8]).

The terms (1 + P)D; and X3 in (3.19) give no contributions to the energy estimate, because,
as one can check directly,

(A (14 P)(—iAw), A°z) + (A*w,A°(1+ P)iAz) =0

and
<A5(X§r)1, Az) + <A5w7AS(X§r)2> =0.

Similarly, also PX; gives no contribution to the energy estimate, because
(A5(PX3 )1, A°2) + (A*w, A5(PX3)a) = P(AS (XS )1, A®2) + P(A*w, A* (X)) = 0.

Lemma 3.6 (Lemma 4.6 of [2]). For all s > 0, all pairs of complex conjugate functions (w, z),
one has

1 1
1B (w, 2)[ls < S llwlTllwlls, 1% (w, 2)lls < llwllFflwl]s,

and, for |wllm, < %, for all complex functions h,

IP(w, 2)h||s = P(w, 2)|[hlls, 0 < P(w,2) < Cllwli, (3.20)
IR>5(w, 2)ls < 2P(w, 2)[1Bs(w, )]s < Cllwl3 [wlFllwl

where R>s5 is defined in (3.12) and C is a universal constant.

Lemma 3.7 (Lemma 4.7 of [2]). For all s > 0, all (w,z) € H§(T% c.c.) N H"(T?, c.c.) with
|wl|me < %, one has

X35 (w, 2)||s < CllwliFlwl]Z, 1wl (3.21)
where C 1s a universal constant.
In [3] it is calculated that
X (w,z) = (1+P(w, z))(Dl(w, 2) + X3 (w, z)) + X (w, 2) + X;(w, 2) (3.22)

where X7 (w, z) are terms of quintic homogeneity order extracted from X ;5 (w, z), namely
X7 (w, 2) = By(w, 2)M(w, ) (Z)) — K(w, 2)X{ (w, 2) — 3Q(w, 2)Bs (w, 2), (3.23)
and
X;}(w,z) = X§5(w,z) - P(w, 2) X5 (w, 2) — X (w, 2). (3.24)
The terms (14+P(w, 2))(D1(w, 2)+ X5 (w, 2)) in (3-22)) give no contributions to the energy estimate.
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Lemma 3.8 (Lemma 4.8 of [3]). For all s > 0, all (w,2) € H§(T% c.c.) N HY"(T? c.c.) with
|wl|me < %, one has

1X3 (w, 2)ls < Cllwllimglwlls,  1XL7(w, 2)]ls < Cllwlg,llwlls,

where C 1s a universal constant.

It is calculated in [3] that the first component (X (w,z)); of X (w,z) is the sum of the
following eight terms:

; P Y/ 2 P Vi 2 )
Yl(f)[w,w,w,w]w S (|‘7| d + e )ij_ngw_gwkem'z,

64 S \|j[+ (k| €]+ ||
|k|(1 . 5\k|) L]
] 1 (1 5z ) )
e 4 Og (1~ 9y U=y ik
P w,w,7, 2w ;M:' M (o + T~ ) -
Ikl k| |K| [K|
Lol =gy (1= sl |
v 0 O+ 9% i RV
1 12,2, 2, 2w J%k| 17 1e? ( G T T R )zjz 207 qwie® T,

31 . . ik
Vi [y w,w,w)z = 223 51165+ [Ewjuojwew—pze™,
Jbk

' 41833/ (1 — 8 g 100 = o
v ® - .2£< I¢] 1¢] II)_; B
i 16%"” = RS A
VP lw w220z = 20 Sl ~ g2z eme®,
J,Z,k
5100 =6 |
vy W, 2,2, 2% = — ( il 64 lil’ )w-z,-z 2_gzpeth®
o {25 %""" A /e F T Ak s
Yo 22,2, 21z = = D Ll + )22 zezmezne™ ™,
3.4k

where 5% is the Kronecker delta, and when a coefficient is a fraction of the type 0/0, it must
be taken as zero (this notation just avoids writing sums with several different restrictions on the
summation set).

The second component (X (w,z2))2 of X (w,z) is deduced from the first one by the real
structure (3.8]).

3.4 Normal form: second step

In [3] we define the transformation

("‘;’) =3O (u,v) := (I + M(u,v)) (5) , (3.25)
where
M(u,v) = Alu, u, u, u] + Blu, u, u, v] + Clu, u, v, v] + Dlu, v,v,v] + Flv,v,v, ], (3.26)
_ All[u;U,uvu] Al?[uauvuau]
Alu, u, u,u] = (Agl[u,u,wu] Asolu, u, u, u]

and similarly for the other terms in (3.26)); also,

Api[uM @ @ W p = Z ug-l)u(_2 u(g)u(:lzhk a11(4,4, k) eF®
Jk

26

ik-x



for all ™, ... u® h, so that Aj; is determined by the coefficients a1 (j,¢, k), and similarly for
all the other operators. In [3] we calculate the coefficients of the normal form transformations,

which are

a1 (4, 4, k)

bll(j7 £7 k)

Cll(ja év k)

di1(j,¢,k)

fll(ja 67 k)

a12(j, 4, k)

b12(j7 €7 k)

Cl2(ja év k)

di2(j,¢, k)

f12(j’ év k)

_ e ( 1 1 )

128(] + [€1) \[g] + [k 1€+ |k[ /7
=0,

|K| K| K| ]

— 1|j|2|£|2(_5|€<1_5j|)+ 1 (1_5|é|)>1_5|j|

64 1] = [%] MR LU LAtV
=0,

K], gl i Ny

- (- O 051 (=9 (1—%)) g [21e?
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with the same meaning of 0/0 as above. The differential of ®() is

where

(@) (u,v) = T+ K(u,v), K(u,v) = M(u,v) + E(u,v)

«

E(u,v) (ﬁ) = {2A[u, o, u, u] + 2A[u, u, u, o] + 2B[u, o, u, v]

+ Blu, u, o, v] + Blu, u, u, 5] + 2Clu, o, v, v] + 2C[u, u, v, f] + Dlev, v, v, ]

+ Dlu, 8, v,v] + 2D[u, v, v, f] + 2F v, B,v,v] + 2.7-"[11,1;,1;,6]}(1;).

With the change of variable (3.25)), the transformed equation is

where

O (u,v) = W(u,v)

W(u,v) = (@) (u,0)) " X (@) (u, ).

Recalling (3.22)), we decompose

W(u,v) = (1 + P(‘IJ(5) (u, v))) (D1 (u,v) + X:I,"(u7 v)) + Ws(u,v) + Wz (u, v),

where (14 P(®®))(D; + X3) give no contribution to the energy estimate,

Ws(u,v) == X3 (u,v) + D1 (M(u,v)[u,v]) — K(u,v)D1(u,v)
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and Ws7(u,v) is defined by difference and contains only terms of homogeneity at least seven in
(u,v). The first component (Ws)1(u,v) of the vector field W (u,v) is

. |k
i , 1 (1_5m)
(Ws)1(u,v) = — UjU_ -wv_gukelk'm\j\zmz( - — )
32 ]ZZ; S L+ 1kl 16— [k
l71=l¢€|
tay D it guengvie™ Ll k]
gk
[k|=l7]+1€|
. I3
¢ ik-z) ;|2 4] |£|(1_6\€|)
+ — uju_upv_gvge™ || |€|(6+ — + . )
16 Jz,z:k o 4] + 151 4] =171
l71=Ik|
31 T
+ 76 S wju_juw_goe™ 6|k, (3.41)
Ji.bk
[k|=17]—1¢]
and its second component is
|K|
7 . 1 (1*5|e|)
(Ws)2(u,v) = —— VjU_ -ugu,gvke’k'x|j|2|£|2( - - )
3w 2 U HEAZ T
l71=l¢|
3i ik-x|
-3 > vjv_juv_gure’™ " |j[|0] ||
gk
[k|=l7]+1€|
. |51
¢ ik-z) ;|2 ¢ el - 5\4\)
- — vV U_jvpu_gupe” 4] |£|(6+ - , )
6 2 @+51 " ATl
l71=1k|
3i ko) -
~ 16 Z vjv_jugu_pure™ 5[0 k. (3.42)
gk
[k|=I7]—1€]

Lemma 3.9 (Lemma 5.1 of [3]). For all s >0, (w,z) € H3(T% c.c.) N HY (T4, c.c.), one has

W (u, )]s < Cllullmllulls,

where C is a universal constant.

By (3.39), (3.40]), (3.41))-(3.42), the system for the Fourier coefficients becomes

. 1 .
Brup = —i(1 +’P)(\k|uk 1> uju_j|]|zvk)

|7|=1k]
. |%|
i 1 (1- 5\z|)
+ 2 ulu_-vzv_zuk|j|2w|2< - B )
5 Z; 5= AEENCE
lil=1]
3¢ ;
+ 32 Z uju—jueu—evg|jl €]k
3.t
|3 l+[el=1k]
. Ll
; . H [€[(1 = 6,)
+ — UjU_ ~uzvfzvk|3|2|£|(6 + ; j )
16 ; jU—j 1| + |51 1€ — 5]
li|=Ik|
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3i .
16 Z wju—joev—gvi|j|[E][k] + [(W>7)1(u, v)]k (3.43)

g4
71 —1€|=[k|
and
. 1 .
Opv = i(1 + 73)(|/<?|vk +3 Z VU—j |J|2uk)
l71=1k|
)
32

g4
l71=1el

31 ;
-5 > wiv o gull|e|k|

1 (1—5|§)>

2121912
g g( _
wrosuen- el PG ~ T

Y4
[71+1]=k|
; 7]
¢ 12 14| |é|(1_5|z\)
- Tz vjv_jveu_gug|j|°|€]( 6 + - _
6 2 U P+ e+ @)
[7]=Ik|
3i .
— T 2 vo-usumgunl K]+ [(War)a(u, o)l (3.44)
s
li1=Tel=k

where [(W>7)1(u,v)]; denotes the k-th Fourier coefficient of the first component of Ws7(u,v), and
similarly for the second component; P denotes, in short, P(®®)(u,v)), which is a real function of
time only, namely it is independent of x.

Lemma 3.10 (Lemma 5.4 of [3]). For d > 2, the coefficients a1, 11, f11, a12,b12, c12,d12, f12 in

— all satisfy the bound
[coefficient(k, j, O] < C(Ij*[ef2 + |j[2161%)
for some universal constant C. For d =1, they satisfy
|coefficient(k, j,€)| < C|j|*|¢]>.

Lemma 3.11 (Lemma 5.5 of [3]). Let my be defined in (1.6). All the operators G € {A11,Ci1, Fi1,
Aiz, Bi2,C12, D1a, Fia} satisfy

1G[u, v, w, z]h[ls < Cllullm, [[0llm, 1wl [2]lm, [172]]s
for all complex functions u,v,w,z,h, all real s > 0, where C' is a universal constant.

Lemma 3.12 (Lemma 5.6 of [3]). For all s >0, all (u,v), (a, (), one has
a
[ M) (5)]. < i, Nl (3.45)

[ o) (5)], < Cllulin, et lall + oy,

where my s defined in (1.6) and C is a universal constant.
There exists a universal constant § > 0 such that, for ||u|lm, < d, the operator (I + K(u,v)) :
HJ™ (T, c.c.) — HY"™(TY, c.c.) is invertible, with inverse satisfying

|+ ko) (5)], < ol + luli, lellola)

for all s > 0.
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The nonlinear, continuous map ®) is invertible in a ball around the origin.

Lemma 3.13 (Lemma 5.7 of [3]). There exists a universal constant § > 0 such that, for all
(w,2) € H" (T, c.c.) in the ball |wm, < 8, there exists a unique (u,v) € HJ" (T< c.c.) such
that ®O) (u,v) = (w,2), with ||[ullm, < 2/|W||lm,. If, in addition, w € Hf for some s > my, then
u also belongs to HE, and ||uls < 2||w||s. This defines the continuous inverse map (®©))~1 .
H3 (T c.e) N {||wllm, <8} — H3(T? c.c.).

By equations (5.35) of [3], the remainder Wx7(u,v) is given by

+ P2 (u, 0)IK (u, v) (W (u, 0) — X (u,v))
P2 (u, 0)) (W (u,v) = X5 (u,v))

K(u, v)[1 + P(@D (u, v)] X3 (u, )

Wsr(u,v) =[1

(1 + K(u,0) 7 1+ P@O) (u, 0))][X5 (2P (u, ) = X (u,0)]

(I + K(u,v) 7 [X5 (@ (u,0)) = X5 (u,v)]

(I + K(u,0) ' X3, (@) (u, v)), (3.46)
where K(u,v) := S (=K (u,v))™.

Lemma 3.14 (Lemma 5.8 of [3]). There exist universal constants § > 0, C' > 0 such that, for all
s >0, for all (u,v) € HJ" (T4, c.c.) N H§(T%, c.c.) in the ball ||ul|;m, <&, one has

W7 (u, )l < Cllully, [ulls.

3.5 Derivation of the effective equation and structure of the remainder

Now that the construction of the normal form has been recalled in details, to obtain the “effective
equations” — on Fourier spheres and to prove the estimates in Lemma for the single
Fourier coefficient of the remainder W7 (u,v) is not difficult.

The derivation of is a straightforward calculation: use the definition of Sy, By,
the equations 1’ for the evolution of the Fourier coefficients ug, vy, and sum over all
indices k € Z< on the sphere |k| = .

Proof of Lemma[2.1, The vector field X (n,+) in (3.11) is given by the simple explicit formula in
(3-10]), where the multiplicative factors P(n, ) and ({(Ay, Ay) — (An, An)) are functions of time,
independent of z. Hence the Fourier coefficients of the remainder R>5 in (3.12) satisfy

[R5, )]l < lnll3 llmlls (1| + 1)
for all (n,v) € HE(T% c.c.), all k € Z% (|r]| = |n_i| because ¥(z) = n(r) and ¥ = (n_))-
Recalling the definition (3.15)-(3.16|) of A12,Ci2, and following the proof of Lemma 4.1 of [2], we
immediately obtain the inequalities for the Fourier coefficients

3 1
[[Ar2[u, v]h]k] < gllullmollollmo lhxl,  [[Crafw, vlAli| < Fellwlillvllzlil

for all complex-valued functions u, v, h, all k. Hence, from the definitions (3.14]), (3.18]), one has
a 2
[0, (5)] | < Cllwli Gl + o),

[20w.2)(5)],| < Cllwllmg o (el + ]
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for all (w, 2), (o, B) € HJ"(T?, c.c.), all k € Z%. Applying recursively these bounds, using induction
and Neumann series (like e.g. in the proof of Lemma 4.3 of [2]), we obtain estimates for the Fourier
coefficients of the inverse operator

[+ K@, 2)7(5)] ]| < O]+ lai) + lwllmgllolon (el + ro-iD3

for all (w, 2), (o, B) € H™ (T4, c.c.), with ||w]|m, < 6, for all k € Z¢, where K (w,2) = M(w,2) +
E(w, z) and § > 0 is a universal constant. With (lengthly but straightforward) similar calculations,
from formulas (3-23)), ([3-24)) for X, X;} one proves that

X5 (w, 2)]k| < Cllwll, (Jwi| + [w-r]),
X L7 (w, 2)]k| < Cllwll, (lwk] + [w-—k])

for all (w, z) € HJ"™(T%, c.c.), |w|m, <6, for all k € Z.

Then we repeat the same kind of (long, but simple and explicit) analysis for the operators
M(u,v), E(u,v), K(u,v) defined in (3.26), (3.38), (3.37), and we estimate the Fourier coefficients
of W>7(u,v) using its formula (3.46]). O

Remark 3.15. The proof of Lemma is based on the properties of vector fields V'(u, v) having
the structure V(u,v) = F(u,v)(y) where F(u,v) is a Fourier multiplier with matrix symbol
depending (nonlinearly) on (w,v). A more general version of Lemma for reality preserving
transformed vector fields of this form can be proved with essentially the same ingredients. O
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