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Abstract. We study stability times for a family of parameter dependent nonlinear Schrödinger equations on

the circle, close to the origin. Imposing a suitable Diophantine condition (first introduced by Bourgain), we

prove a rather flexible Birkhoff Normal Form theorem, which implies, e.g., exponential and sub-exponential time

estimates in the Sobolev and Gevrey class respectively.
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1. Introduction and main results

We consider families of NLS equations on the circle with external parameters of the form:

(1.1) iut + uxx − V ∗ u+ f(x, |u|2)u = 0 ,

where i =
√
−1 and V ∗ is a Fourier multiplier

V ∗ u =
∑
j∈Z

Vjuje
ijx , (Vj)j∈Z ∈ w∞q ,

1
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living in the weighted `∞ space

w∞q := {V = (Vj)j∈Z ∈ `
∞ | |V |q := sup

j∈Z
|Vj |〈j〉q <∞} , q ≥ 0 ,

where 〈j〉 := max{|j|, 1}, while f(x, y) is 2π periodic and real analytic in x and is real analytic in y in a

neighborhood of y = 0. We shall assume that f(x, y) has a zero in y = 0. By analyticity, for some a, R > 0 we

have

(1.2) f(x, y) =

∞∑
d=1

f (d)(x)yd , |f |a,R :=

∞∑
d=1

|f (d)|Ta
Rd <∞ ,

where, given a real analytic function g(x) =
∑
j∈Z

gje
ijx, we set1 |g|2Ta

:=
∑
j∈Z
|gj |2e2a|j| . Note that if f is indepen-

dent of x (1.2) reduces to

(1.3) |f |R :=

∞∑
d=1

|f (d)|Rd <∞ .

Equation (1.1) is at least locally well-posed (say in a neighborhood of u = 0 in H1, see e.g. Lemma 5.4) and has

an elliptic fixed point at u = 0, so that an extremely natural question is to understand stability times for small

initial data. One can informally state the problem as follows: let E ⊂ H1 be some Banach space and consider

(1.1) with initial datum u0 such that |u0|E ≤ δ � 1. By local well posedness, the solution u(t, x) of (1.1) with

such initial datum exists and is in H1.

We call stability time T = T (δ) the supremum of the times t such that for all |u0|E ≤ δ one has u(t, ·) ∈ E
with |u(t, ·)|E ≤ 2δ.

Computing the stability time T (δ) is out of reach, so the goal is to give lower (and possibly upper) bounds.

A good comparison is with the case of a finite dimensional Hamiltonian system with a non-degenerate elliptic

fixed point, which in the standard complex symplectic coordinates uj = 1√
2
(qj + ipj) is described by the

Hamiltonian

(1.4)

n∑
j=1

ωj |uj |2 +O(u3) , where ωj ∈ R are the linear frequencies.

Here if the frequencies ω are sufficiently non degenerate, say diophantine2, then one can prove exponential lower

bounds on T (δ) and, if the nonlinearity satisfies some suitable hypothesis (e.g. convexity or steepness ), even

super-exponential ones. This was proved in [MG95] (see also the recent paper [BFN15] and references therein).

The strategy for obtaining exponential bounds is made of two main steps. The first one consists in the so-called

Birkhoff normal form procedure: after N ≥ 1 steps the Hamiltonian (1.4) is transformed into

(1.5)

n∑
j=1

ωj |uj |2 + Z +R ,

where Z depends only on the actions (|ui|2)ni=1 while R = O(|u|2N+3) contains terms of order at least 2N + 3 in

|u|. It is well known that this procedure generically diverges in N, so the second step consists in finding N = N(δ)

which minimizes the size of the remainder R.

The problem of long-time stability for equations (1.1) has been studied by many authors. In the context

of infinite chains with a finite range coupling, we mention [BFG88]. Regarding applications to PDEs (and

particularly the NLS) the first results were given in [Bou96a] by Bourgain, who proved polynomial bounds for

the stability times in the following terms: for any N there exists p = p(N) such that initial data which are δ-small

in the Hp′+p norm stay small in the Hp′ norm, for times of order δ−N. Afterwards, Bambusi in [Bam99b] proved

that superanalytic initial data stay small in analytic norm, for times of order eln( 1
δ )1+b , where b > 0.

1Namely g is a holomorphic function on the domain Ta := {x ∈ C/2πZ : |Imx| < a} with L2-trace on the boundary.
2A vector ω ∈ Rn is called diophantine when it is badly approximated by rationals, i.e. it satisfies, for some γ, τ > 0,

|k · ω| ≥ γ|k|−τ , ∀k ∈ Zn \ {0} .
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Following the strategy proposed in [Bam03] for the Klein-Gordon equation Bambusi and Grébert in [BG03]

first considered equation (1.1) on Td and then, in [BG06], proved polynomial bounds for a class of tame-

modulus PDEs, which includes (1.1). Their main result is that for any N � 1 there exists p(N) (tending to

infinity as N → ∞) such that for all p ≥ p(N) and all δ−small initial data in Hp one has T ≥ C(N, p)δ−N,

provided δ < δ0(N, p). Similar results were also proved for the Klein Gordon equation on tori and Zoll manifolds

in [DS04], [DS06], [BDGS07]. Successively Faou and Grébert in [FG13] considered the case of analytic initial

data and proved subexponential bounds of the form T ≥ eln( 1
δ )1+b , b > 0, for classes of NLS equations in Td

(which include (1.1) by taking d = 1). Regarding derivative NLS equations, the first results were in [YZ14] for

the semilinear case. Recently, Feola and Iandoli in [FI] prove polynomial lower bounds for the stability times

of reversible NLS equations with two derivatives in the nonlinearity.

A closely related topic is the study of orbital stability times close to periodic or quasi-periodic solutions

of (1.1). In the case E = H1, Bambusi in [Bam99a] proved a lower bound of the form T ≥ eδ
−b
, b > 0,

for perturbations of the integrable cubic NLS close to a quasi-periodic solution. Regarding higher Sobolev

norms, most results are in the periodic case. See [FGL13] (polynomial bounds for Sobolev initial data) and the

preprint [MSW18] (subexponential bounds for Gevrey initial data).

A dual point of view is to construct special orbits for which the Sobolev norms grow as fast as possible (thus

giving an upper bound on the stability times). As far as we are aware such results are mostly on T2 and in

parameterless cases (for instance [CKS+10], [GK15], [GHP16]) and the time scales involved are much longer

than our stability times (see [Gua14] for the instability of (1.1) on T2 and [Han14] for the instability of the

plane wave in Hp with p < 1).

In this paper we propose an abstract Birkhoff normal form result (see Theorem 1.3) on weighted sequence

spaces (based on `2) and deduce from it stability estimates for initial data in analytic, Gevrey and Sobolev

class. An important difference of our approach with respect to the aforementioned papers and one of the main

motivations of our work is that we use a different diophantine non-resonance condition on the linear frequencies,

originally introduced in [Bou05] in the context of almost-periodic solutions. More precisely set

(1.6) Ωq :=

{
ω = (ωj)j∈Z ∈ RZ, sup

j
|ωj − j2|〈j〉q < 1/2

}
and, for γ > 0, define the set of “good frequencies” as

(1.7) Dγ,q :=

{
ω ∈ Ωq : |ω · `| > γ

∏
n∈Z

1

(1 + |`n|2〈n〉2+q)
. ∀` ∈ ZZ : |`| <∞

}
,

It is known that Dγ,q is large with respect to a natural probability product measure on Ωq (for a proof see [Bou05]

or Lemma 4.1 in the present paper). It turns out that such diophantine conditions are very natural and easy

to use in the context of PDEs on the circle with a superlinear dispersion law. Then from now on we shall fix

γ > 0, q ≥ 0 and assume that ω ∈ Dγ,q.

Remark 1.1. We note that some non-resonance condition on the frequencies is inevitable if one wants to prove

long-time stability, indeed if one takes V = 0 and f(x, |u|2) = |u|4 then one can exhibit orbits in which the

Sobolev norm is unstable in times of order δ−4, see [GT12], [HP17].

At the formal level our BNF scheme is identical to the one used in finite dimensional systems, see formula

(1.5). The fact that such a scheme may be applied in an infinite dimensional context follows from introducing

a suitable norm (see Definition 1.2 and the comments thereafter); it turns out that our norm has explicit (and

for us quite surprising) immersion properties (see Proposition 3.1) and allows good bounds on the solution of

the homological equation (see Lemma 4.2). The gist of these properties is that they ensure that any vector

field mapping a (neighborhood of) given Hilbert space in itself also maps (smaller neighborhoods of) more

regular Hilbert spaces in themselves. Analogously also the vector field solving the homological equation maps

sufficiently more regular Hilbert spaces in themselves.
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To show that our procedure works in significative cases, we have computed stability times for various regu-

larity classes. More precisely we improve the results in [FG13] on analytic and Gevrey initial data, see Theorem

1.1. Moreover we recover [BG06] on Sobolev initial data, giving an explicit control on the dependence of the

stability time and of the smallness condition on the regularity, see Proposition 1.1 and the improved estimates

of Theorem 1.2.

Comments on possible generalizations. In this paper we have considered the simplest possible example

of dispersive PDE on the circle. One can easily see that the same strategy can be followed word by word in

more general cases provided that the non-linearity does not contain derivatives and that the dispersion law is

superlinear. A much more challenging question is to consider NLS models with derivatives in the non-linearity.

As we have mentioned a semilinear case was discussed by [CMW]. A very promising approach to Birkhoff

normal form for quasilinear PDEs is the one of [Del12]- [BD18] which was applied to fully-nonlinear reversible

NLS equations in [FI]. It seems very plausible (at least in the reversible case) that one can adapt their methods

(based on paralinearizations and paradifferential calculus) to our setting.

A natural generalization would be the extension to higher dimensions. While the immersion properties would

work essentially in the same way, the diophantine condition should be adapted, for instance one could use the

condition in [FG13].

Equation (1.1) contains infinitely many external parameters. Of course one would like to consider parameterless

equations as in the very interesting recent preprint [BFG18]. In this direction a natural question would be to

understand if one could impose similar diophantine conditions by tuning only one parameter such as the mass

in the beam or wave equations (see, e.g., [Bam03], [BD18]).

Before explaining the abstract BNF procedure in detail let us describe our stability results.

1.1. Stability results.

Analytic and Gevrey initial data. Our result is similar to [FG13] in the sense that we also prove subex-

ponential bounds on the time. We mention however that in [FG13] the control of the Sobolev norm in time

is in a lower regularity space w.r.t. the initial datum. Recently we have been made aware of a preprint by

Cong, Mi and Wang [CMW] in which the authors give subexponential bounds for Gevrey initial data of a

model like (1.1), very similar to ours. A difference is that in their case the non linearity contains a derivative

(see the comments after Theorem 1.1) but satisfies momentum conservation. The two results were obtained

independently and contemporarily, anyway, the overall strategies of proofs are quite different. In particular our

result is a consequence of the general Birkhoff Norma Form Theorem 1.3 and the non-resonance conditions are

different (recall (1.7)).

To state our result, let us fix 0 < θ < 1, and define the function space3

(1.8) Hp,s,a :=

u(x) =
∑
j∈Z

uje
ijx ∈ L2 : |u|2p,s,a :=

∑
j∈Z
|uj |2〈j〉2pe2a|j|+2s〈j〉θ <∞

 .

with the assumption a ≥ 0, s > 0, p > 1/2. We remark that if a > 0 this is a space of analytic functions, while

if a = 0 the functions have Gevrey regularity. Note that for technical reasons connected to the way in which we

control the small divisors, we cannot deal with the purely analytic case θ = 1, see Lemmas 6.1, 7.1. For this

reason we denote this result as G (Gevrey case).

Our result, stated below, depends on some constants δG, TG, explicitely defined in Subsection A, and depending

only on γ, q, a, R, |f |a,R, p, s, a, θ.

Theorem 1.1 (Gevrey Stability). Fix any a ≥ 0, s > 0 such that a + s < a and any p > 1/2. For any

0 < δ ≤ δG and any u0 such that

|u0|p,s,a ≤ δ ,

3Actually Hp,s,a also depends on θ, however, since we think θ fixed, we omit to write explicitly the dependence on it.
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the solution u(t) of (1.1) with initial datum u(0) = u0 exists and satisfies

|u(t)|p,s,a ≤ 2δ for all times |t| ≤ TG

δ2
e(ln

δG
δ )

1+θ/4

.

Remark 1.2. Some comments on Theorem 1.1 are in order.

1. The main point in the proof is to verify that the abstract Birkhoff Normal Form Theorem 1.3 is applicable.

Then we put the Hamiltonian of the NLS in Birkhoff normal form:

(1.9)
∑
j∈Z

ωj |uj |2 + Z +R ,

where Z depends only on the actions (|ui|2)i∈Z while R = O(|u|2N+3) is analytic in a ball centered at zero of

hp,s,a and has a zero of order at least 2N + 3 in u = 0. Then we find N = N(δ) which minimizes the size of the

remainder R.

2. We did not make an effort to maximize the exponent 1 + θ/4 in the stability time. In fact, by trivially

modifying the proof, one could get 1 + θ/(2+). We remark that in [CMW], in which θ = 1/2, the exponent is

better, i.e. it is 1 + 1/(2+).

Sobolev initial data. Here our first goal was to recover by our methods the result of [BG06], computing

explicitly all the constants in the estimates. In particular it is fundamental to have a good control on the

dependence of the stabiliy time T on the the regularity p. Indeed there are two natural ways of taking a small

ball around zero: reducing the size δ or increasing the regularity p. A crucial point is that, in the case of Sobolev

regularity, the number of BNF steps that one may perform is (apparently unavoidably) tied to the regularity

p. This is clearly seen in [BG06], where the number of steps is ∼ √p. It seemed an interesting point to verify

how our approach worked in such a case, and wether we would see the same phenomenon.

As before, our estimates depend on some constants, denoted by τS, δS, kS, TS,, explicitly defined in Appendix

A. These constants depend only on γ, q, a, R, |f |a,R.

Proposition 1.1 (A quantitative version of [BG06]). Consider equation (1.1) with f satisfying (1.2) for

a, R > 0. For any p ≥ 3τS + 1 and any initial datum u(0) = u0 satisfying

(1.10) |u0|Hp := |u0|L2 + |∂pxu0|L2 ≤ δ ≤ δS(kSp)
−3p

the solution u(t) of (1.1) with initial datum u(0) = u0 exists and satisfies

(1.11) |u(t)|Hp ≤ 4δ for all times |t| ≤ TSp
−5p

(
δS
δ

) 2(p−1)
τS

.

Remark 1.3. Also in this result we just have to verify the hypotheses of Theorem 1.3. However as it happens

in [BG06] the maximum number N of steps of BNF we can perform depends on p, in particular N = [p−1
τS

]. This

is in fact slightly better than the previously cited paper (N ∼ p instead of
√
p). On the other hand it is not

difficult to show that the bound δ ≤ δS(kSp)−3p is essentially optimal (see Remark 10.1).

Looking at the proof of the Theorem or even constructing other finite-dimensional models, one can see that

in the traslation invariant case, the very restrictive smallness condition in (1.10) is only due to interactions

between the modes 0, 1,−1 and all the others. It then seems natural to consider initial data for which the

energy on such modes is smaller, namely |u0|L2 ≤ 2−pδ. We refer to this case as M, the relevant constants can

be found in Appendix A

Theorem 1.2. Consider equation (1.1) with f independent of x and satisfying (1.3) for R > 0. For any

p > 3τM + 1 and for any initial datum u(0) = u0 satisfying

(1.12) |u0|Hp ≤ δ ≤
δM√
p
, |u0|L2 ≤ 2−pδ
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the solution u(t) of (1.1) exists and satisfies

(1.13) |u(t)|Hp ≤ 8δ for all times |t| ≤ TM

(
8δM

2

(p− 1)δ2

) p−1
τM

.

Remark 1.4. Note that, since the L2 norm is a constant of motion, one trivially has |u(t)|L2 ≤ 2−pδ. Comparing

with (1.11), we see that the time estimate is more or less the same but now it holds in a much bigger neighborhood

of zero (δ ≤ p−1/2 instead of ≤ p−3p).

If one requires a stronger condition on the L2 norm, i.e., |u0|L2 ≤ 3−pδ, it turns out that the size of the

perturbation is exponentially decreasing in p and, therefore, keeping δ fixed and sending p to infinity one

immediately obtains stability.

The main difference between the Gevrey and Sobolev cases is that in the latter the number of BNF steps N

depends on the regularity, while in the former it is independent. Thus in the Sobolev case we cannot fix both δ

and p and optimize in N. What we can do is to fix δ and find an optimal regularity p(δ), which maximizes the

stability time. It turns out that the two cases S and M behave differently. Indeed the weaker smallness condition

(1.12) allows us to take much bigger p(δ), obtaining much longer stability times. As before our statements

depend on some constants, denoted by δ̄S, δ̄M explicitly defined in Subsection A.

Corollary 1.1 (Sobolev stability: optimization).

(S) For any 0 < δ ≤ δ̄S and any u0 such that

(1.14) |u0|Hp ≤ δ , p = p(δ) := 1 +
ln(δS/δ)

6 ln ln(δS/δ)
,

the solution u(t) of (1.1) with initial datum u(0) = u0 exists and satisfies

(1.15) |u(t)|Hp ≤ 4δ for all times |t| ≤ TSe
ln2(δS/δ)

4τS ln ln(δS/δ) .

(M) Assume that f in (1.1) is independent of x. For any 0 < δ ≤ δ̄M and

(1.16) ∀ p ≥ p(δ) :=
δM

2

δ2
, ∀u0 s.t. |u0|Hp ≤ δ , |u0|L2 ≤ 2−pδ ,

the solution u(t) of (1.1) with initial datum u(0) = u0 exists and satisfies

(1.17) |u(t)|Hp ≤ 8δ for all times |t| ≤ TMe
δM

2

τMδ
2 .

Remark 1.5. Some remarks on Corollary 1.1 are in order.

Note that (1.15) is the stability time computed in [BFG88] for short range couplings.

1. We will prove the case M only for p = p(δ), the general case being analogous4 (with the same constants!)

also if p ≥ p(δ).
2. One can easily restate Corollary 1.1 in terms of the Sobolev exponent p, instead of δ, since the map

δ → p(δ) is injective.

Remark 1.6 (finite dimensional examples). It is interesting to compute the stability times predicted by our

theorems for initial data supported on a finite number of modes. To this purpose consider an initial datum u(0)

uniformly distributed over the modes 1, . . . , j:

|u(0)
i | = ε , ∀i = 1, . . . , j

Theorem 1.1 with a = 0, p = 1 states that if ε ≤ εG := δGe
−2jθ then u(t) stays stable, in Gevrey norm, for times

of order e(ln
εG
ε )

1+θ/4

.

4Indeed, thanks to the immersion property of our norms (see Proposition 6.1 below) the canonical transformation putting the

system in Birkhoff Normal Form (see Theorem 8.1 below) in the p-case is simply the restriction to Hp of the one of the p(δ)-case.
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Now if ε ≤ εM(p) := δMj
−p−1/

√
p we have |u0|Hp < δ and |u0|L2 < 2−pδ; then by Theorem 1.2 the solution u(t)

stays stable, in Hp norm, for times of order T ∼
(
εM(p)
ε

)2(p−1)/τM
. Maximizing the time in p with fixed ε we get

(1.18) p ∼
ln(

δ2M
ε )

2 ln j
, T ∼ e

(ln ε−1)2

ln j

provided that ε . j−7τM . Explicitly we get a weaker constraint on ε and a better time estimate. Of course

one could play the same game directly with the estimate of Proposition 1.1. As it should be expected the time

estimate is more or less the same as 1.18 but the smallness condition is much stronger, i.e. of the type ε . e−2jθ .

1.2. The abstract Birkhoff Normal Form. We start by setting our functional framework. The main point

is to introduce a weighted majorant norm which penalizes the terms in the Hamiltonian which do not preserve

momentum, see Definition 1.1.

Let us pass to the Fourier side via the identification

(1.19) u(x) =
∑
j∈Z

uje
ijx 7→ u = (uj)j∈Z ,

where u belongs to some complete subspace of `2. Fix the symplectic structure to be

(1.20) i
∑
j

duj ∧ dūj .

In this framework the Hamiltonian of (1.1) is

HNLS(u) := Dω + P , where(1.21)

Dω :=
∑
j∈Z

ωj |uj |2 , P :=

∫
T
F (x, |u(x)|2)dx , F (x, y) :=

∫ y

0

f(x, s)ds .

We shall always work with quite regular solutions; given a real sequence w = (wj)j∈Z, with wj ≥ 1 let us set

the Hilbert space5

(1.22) hw :=

u := (uj)j∈Z ∈ `
2(C) : |u|2w :=

∑
j∈Z

w2
j |uj |

2
<∞

 .

As examples of hw we consider:

G) (Gevrey case) w(p, s, a) :=
(
〈j〉pea|j|+s〈j〉θ

)
j∈Z

, which is isometrically isomorphic, by Fourier transform,

to Hp,s,a defined in (1.8).

S) (Sobolev case) w(p) := w(p, 0, 0) = (〈j〉p)j∈Z, which is isometrically isomorphic, by Fourier transform, to

Hp,0,0 defined in (1.8) and is equivalent to Hp equipped with the norm | · |L2 + |∂px · |L2 with equivalence

constants independent of p (see (5.28))

M) (Modified-Sobolev case) wj = bjcp, where bjc := max{|j|, 2}; this space is equivalent to Hp equipped

with the norm 2p| · |L2 + |∂px · |L2 with equivalence constants independent of p (see (5.30))

Here and in the following, given r > 0, by Br(hw) we mean the closed ball of radius r centered at the origin

of hw.

In the following we always consider HamiltoniansH : Br(hw)→ R such that there exists a pointwise absolutely

convergent power series expansion6

H(u) =
∑

α,β∈NZ ,
|α|+|β|<∞

Hα,βu
αūβ , uα :=

∏
j∈Z

u
αj
j

5 Endowed with the scalar product (u, v)hw :=
∑
j∈Z w

2
juj v̄j .

6As usual given a vector k ∈ ZZ, |k| :=
∑
j∈Z |kj |.
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with the following properties:

(i) Reality condition:

(1.23) Hα,β = Hβ,α ,

this means that H is real analytic in the real and imaginary part of u (see section 2);

(ii) Mass conservation:

(1.24) Hα,β = 0 if |α| 6= |β| ,

namely the Hamiltonian Poisson commutes with the mass
∑
j∈Z |uj |2;

The Hamiltonian functions being defined modulo a constant term, we shall assume without loss of generality

that H(0) = 0.

We say that a Hamiltonian H as above preserves momentum when

(1.25) Hα,β = 0 if π(α− β) :=
∑
j∈Z

j
(
αj − βj

)
6= 0 ,

namely the Hamiltonian H Poisson commutes with
∑
j∈Z j|uj |

2
. Note that if the nonlinearity f in equation

(1.1) does not depend on the variable x, then the Hamiltonian P in (1.21) preserves momentum.

Definition 1.1 (η-majorant analytic Hamiltonians). For η ≥ 0, r > 0 let Ar,η(hw) be the space of Hamiltonians

as above such that the η-majorant

(1.26) Hη(u) :=
∑

α,β∈NZ

|Hα,β|eη|π(α−β)|uαūβ

is point-wise absolutely convergent on Br(hw). If we take η = 0 we denote H0(u) = H(u) as the majorant of H.

The exponential weight eη|π(α−β)| is added in order to ensure that the monomials which do not preserve

momentum have an exponentially small coefficient.

We will say that a Hamiltonian H(u) ∈ Ar,η(hw) is η-regular if XHη
: Br(hw)→ hw and is uniformly bounded,

where XHη
is the vector field associated to the η-majorant Hamiltonian in (1.26). More precisely we give the

following

Definition 1.2 (η-regular Hamiltonians). For η ≥ 0, r > 0 let Hr,η(hw) be the subspace of Ar,η(hw) of those

Hamiltonians H such that

|H|Hr,η(hw) = |H|r,η,w := r−1

(
sup
|u|hw≤r

∣∣∣XHη

∣∣∣
hw

)
<∞ .

We shall show in Section 2 that this guarantees that the Hamiltonian flow of H exists at least locally and

generates a symplectic transformation on hw.

Remark 1.7. Definition 1.2 with η = 0, i.e. the idea of controlling an analytic function through the sup of its

Cauchy majorant, dates back to Cauchy-Kovalevskaya. In the context of analytic functions on Hilbert spaces,

this class of functions is defined and studied, with a slightly different approach, in [Nik86] and [KP10], where it

is referred to as “normally analytic” functions.

Regarding the idea of introducing a weight which penalizes monomials which do not preserve momentum, this

was used already in [Bam03].

In our work the crucial point is that all the dependence on the parameters r, η, w of the norm in Definition

1.2 can be encoded in the coefficients

(1.27) c(j)r,η,w(α,β) := r|α|+|β|−2eη|π(α−β)| w2
j

wα+β
, wα+β =

∏
j∈Z

w
αj+βj
j

defined for any α,β ∈ NZ and j ∈ Z (see formula (3.1) and Lemma 3.1). This allows us to give a simple and

explicit condition which guarantees the immersion Hr,η(hw) ⊆ Hr′,η′(hw′) in terms of the ratio of the coefficients



AN ABSTRACT BIRKHOFF NORMAL FORM THEOREM AND EXPONENTIAL TYPE STABILITY OF THE 1D NLS 9

c
(j)
r,η,w(α,β), c

(j)
r′,η′,w′(α,β), see Proposition 3.1.

As it is well known a Birkhoff Normal Form is achieved by an iterative procedure. Let us describe the general

step. Given a Hamiltonian

(1.28) H =
∑
j∈Z

ωj |uj |2 + Z +R ,

where Z is a normal form and R has a zero of degree say 2d + 2 (with d ≥ 1) at u = 0, we look for a change of

variables, which conjugates H to a Hamiltonian
∑
j∈Z ωj |uj |2 + Z ′ +R′ so that now R has a zero of degree at

least 2d+ 4. The desired change of variables is generated by the time one flow of a Hamiltonian S which solves

the homological equation7

{
∑
j∈Z

ωj |uj |2, S} = R .

As for the immersion properties, given8 r′ ≤ r, η′ ≤ η and w′ ≥ w such that Hr,η(hw) ⊆ Hr′,η′(hw′), in Proposition

4.2 and Lemma 5.2 we give a simple and explicit condition -in terms of the ratio of the coefficients c
(j)
r,η,w(α,β),

c
(j)
r′,η′,w′(α,β)- which ensures that if R ∈ Hr,η(hw) is appropriately small, then S is well defined and generates a

close to identity change of variables Br′(hw′) → hw′ . With this procedure we start in some phase space hw and

then show the existence of the Birkhoff change of variables on a ball which not only has a smaller radius but

is taken in the stronger toplogy hw′ . Note that this is not a smoothing change of variables: it is defined from

the smaller space to itself.

Starting with a Hamiltonian as in (1.28) with a zero of order 4, in order to reach the form (1.9) we need to

perform N steps of BNF. To this purpose we make the following

Assumption 1. We say that η ≥ 0 and two weights w0 ≤ w satisfy the Birkhoff assumption at step N ≥ 1 if

the following holds. The exists a sequence of weights w0 ≤ w1 ≤ · · · ≤ wN = w such that

C := max

{
1, sup

0≤n<N

sup
j,α,β

αj+βj 6=0

c
(j)
%∗n,ηn+1,wn+1

(α,β)

c
(j)
%n,ηn,wn(α,β)

}
<∞ ,

K := max

{
1, sup

0≤n<N

sup
j,α,β

αj+βj 6=0

c
(j)
%∗n,ηn+1,wn+1

(α,β)

c
(j)
%n,ηn,wn(α,β)|ω · (α− β)|

}
<∞ ,

K] := max

{
1, sup

0≤n<N

sup
j,α,β

αj+βj 6=0

c
(j)
%∗n,ηN,wN

(α,β)

c
(j)
%n,ηn,wn(α,β)|ω · (α− β)|

}
<∞ ,(1.29)

where

%n = (2− n

N
) , ηn = (1− n

N
)η , 0 ≤ n ≤ N , %∗n =

%n+1 + %n
2

, 0 ≤ n < N .

Informally speaking C <∞ guarantees the immersion properties at each step, while K <∞ guarantees that

one can solve the homological equation at each step. Finally K] < ∞ guarantees that the composition of the

changes of variables of all steps is well defined and close to identity on some ball Br(hwN).

Let

(1.30) Kr(hw) := {H ∈ Hr,0(hw) | H =
∑
α∈NZ

Hα,α|u|2α}

be the subspace of normal form Hamiltonians.

7Since ω ∈ Dγ,q , w.l.o.g. we may assume that R is in the range of the operator {
∑
j∈Z ωj |uj |2, ·}.

8As usual w ≤ w′ means that wj ≤ w′j for every j ∈ Z.
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Theorem 1.3 (Abstract Birkhoff Normal Form). Consider a Hamiltonian of the form

(1.31) H = Dω +G , Dω =
∑
j

ωj |u|2j

with ω ∈ Dγ,q and G ∈ Hr̄,η(hw0), for some r̄ > 0, η ≥ 0. Assume moreover that G has a zero of order at least

4 at u = 0. Consider N ≥ 1 and w ≥ w0 such that η, w0, w satisfy the Birkhoff assumption at step N. Set

(1.32) r̂ := min

{
r?√

Nmax{CK,K]}
,
r̄

2

}
, where r? := r̄

√
γ

211e|G|r̄,η,w0
.

Then for all 0 < r ≤ r̂ there exists an invertible9 symplectic change of variables

(1.33) Ψ : Br(hw) 7→ B2r(hw) , sup
u∈Br(hw)

|Ψ(u)− u|w ≤ Ĉ1r
3 ≤ r

8
, Ĉ1 :=

K]

27er2
?

,

such that in the new coordinates

H ◦Ψ = Dω + Z +R , Z ∈ Kr(hw) ,

where

(1.34) |Z|r,0,w ≤ Ĉ2r
2 , |R|r,0,w ≤ Ĉ3r

2(N+1) , with Ĉ2 :=
8|G|r̄,η,w0

r̄2
, Ĉ3 :=

γ

29er2
?

(
CK N

4r2
?

)N

.

The theorem follows by a straightforward iteration, see Section 5.

As it is well known the bounds (1.34) imply a lower bound on the stability time; we discuss this in Corollary

5.1 where we show that the solution u(t) of the Hamiltonian flow of (1.31) with initial datum u(0) = u0 such

that |u0|w ≤ 3r
8 exists and satisfies

|u(t)|w ≤ r for all times |t| ≤ 1

8Ĉ3r2(N+1)
.

By Theorem 1.3 and Corollary 5.1, in order to prove the stability results we only need to define suitable

sequence spaces verifying Assumption 1. In particular we consider the three applications G, S, M introduced at

page 7. Another interesting example (suggested to us by Z. Hani) could be the space{
(uj) ∈ L2 : |u|2 :=

∑
j

|uj |2eln(bjc)2 <∞
}
,

where bjc = max{|j|, 2}. In this case one may get T ≈ δln(ln(1/δ)).
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9 in the sense that there exists a symplectic change of variables Φ : Br(hw) 7→ B2r(hw) such that Ψ ◦ Φu = Φ ◦ Ψu = u,

∀u ∈ B 7
8
r(hw) .
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Part 1. An abstract framework for Birkhoff normal form on sequences spaces

2. Symplectic structure and Hamiltonian flows

Spaces of Hamiltonians. As explained in the Introduction our wheighted spaces hw are contained in `2(C),

so we endow them with the standard symplectic structure coming from the Hermitian product on `2(C).

We identify `2(C) with `2(R) × `2(R) through uj = (xj + iyj)/
√

2 and induce on `2(C) the structure of a real

symplectic Hilbert space10 by setting, for any (u(1), u(2)) ∈ `2(C)× `2(C),

〈u(1), u(2)〉 =
∑
j

(
x

(1)
j x

(2)
j + y

(1)
j y

(2)
j

)
, ω(u(1), u(2)) =

∑
j

(
y

(1)
j x

(2)
j − x

(1)
j y

(2)
j

)
,

which are the standard scalar product and symplectic form Ω =
∑
j dyj ∧ dxj .

For convenience and to keep track of the complex structure, one often writes the vector fields and the differential

forms in complex notation, that is

Ω = i
∑
j

duj ∧ dūj , X
(j)
H = i

∂

∂ūj
H

where the one form and vector field are defined through the identification between C and R2, given by

duj =
1√
2

(dxj + idyj) , dūj =
1√
2

(dxj − idyj) ,

∂

∂uj
=

1√
2

(
∂

∂xj
− i

∂

∂yj

)
,

∂

∂ūj
=

1√
2

(
∂

∂xj
+ i

∂

∂yj

)
.

Remark 2.1. By mass conservation and since H(0) = 0, it is straightforward to prove that the norm | · |r,η,w is

increasing in the radius parameter r (see also Proposition3.1).

Note that if |H|r,η,w <∞ then H admits an analytic extension Ĥ, that is

(u+, u−) ∈ Br(`2(C))×Br(`2(C))→ Ĥ(u+, u−) : H(u) = Ĥ(u, ū),

whose Taylor series expansion is

Ĥ(u+, u−) =

∗∑
α,β∈NZ

Hα,βu
α
+u

β
− .

where we denote by
∑∗

the sum restricted to those α,β : |α| = |β| <∞.

One can see that

∂

∂ūj
H(u) =

∂Ĥ(u+, u−)

∂u−,j

∣∣∣
u+=ū−=u

.

Poisson structure and hamiltonian flows. The scale {Hr,η(hw)}r>0 is a Banach-Poisson algebra in the

following sense

Proposition 2.1. For 0 < ρ ≤ r and η > 0 we have

(2.1) |{F,G}|r,η,w ≤ 4

(
1 +

r

ρ

)
|F |r+ρ,η,w|G|r+ρ,η,w .

10We recall that given a complex Hilbert space H with a Hermitian product (·, ·), its realification is a real symplectic Hilbert

space with scalar product and symplectic form given by

〈u, v〉 = 2Re(u, v) , ω(u, v) = 2Im(u, v) .
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Proof. It is essentially contained in [BBP13]. See in particular Lemma 2.16 of [BBP13] with n = 0 (no action

variables here) and no s and s′ (no actions variable here). Note that the constant in Lemma 2.16 is 8, instead of

4 in the present paper, because of the presence there of action variables which scale different from the cartesian

ones (namely (2r)2 instead of 2r). Recall also the required properties of the space E (named hw in the present

paper) mentioned after Definition 2.5. �

The following Lemma is a simple corollary and its proof is postponed to the appendix

Lemma 2.1 (Hamiltonian flow). Let 0 < ρ < r, and S ∈ Hr+ρ,η(hw) with

(2.2) |S|r+ρ,η,w ≤ δ :=
ρ

8e(r + ρ)
.

Then the time 1-Hamiltonian flow Φ1
S : Br(hw)→ Br+ρ(hw) is well defined, analytic, symplectic with

(2.3) sup
u∈Br(hw)

∣∣Φ1
S(u)− u

∣∣
hw
≤ (r + ρ)|S|r+ρ,η,w ≤

ρ

8e
.

For any H ∈ Hr+ρ,η(hw) we have that H ◦ Φ1
S = e{S,·}H ∈ Hr,η(hw) and∣∣∣e{S,·}H∣∣∣

r,η,w
≤ 2|H|r+ρ,η,w ,(2.4) ∣∣∣(e{S,·} − id

)
H
∣∣∣
r,η,w
≤ δ−1|S|r+ρ,η,w|H|r+ρ,η,w ,(2.5) ∣∣∣(e{S,·} − id−{S, ·}

)
H
∣∣∣
r,η,w
≤ 1

2
δ−2|S|2r+ρ,η,w|H|r+ρ,η,w(2.6)

More generally for any h ∈ N and any sequence (ck)k∈N with |ck| ≤ 1/k!, we have

(2.7)

∣∣∣∣∣∣
∑
k≥h

ck adkS (H)

∣∣∣∣∣∣
r,η,w

≤ 2|H|r+ρ,η,w
(
|S|r+ρ,η,w/2δ

)h
,

where adS (·) := {S, ·}.

3. Immersions for spaces of Hamiltonians.

Given two positive sequences w = (wj)j∈Z, w
′ =

(
w′j
)
j∈Z we write that w ≤ w′ if the inequality holds point

wise, namely

w ≤ w′ :⇐⇒ wj ≤ w′j , ∀ j ∈ Z .

In this way if r′ ≤ r and w ≤ w′ then Br′(hw′) ⊆ Br(hw). Consequently if r′ ≤ r, η′ ≤ η and w ≤ w′ then

Ar,η(hw) ⊆ Ar′,η′(hw′).
We thus wish to study conditions on (r, η, w), (r∗, η′, w′) (with r∗ ≤ r) which ensure that Hr,η(hw) ⊆ Hr∗,η′(hw′).
Note that this is not obvious at all, since we are asking that an Hamiltonian vector field of XH ∈ Hr,η(hw),

when restricted to the smaller domain Br∗(hw′) belongs to the smaller space hw′ .

The coefficients c
(j)
r,η,w(α, β). Let us start by rewriting the norm | · |r,η,w in a more adimensional way. In this

way all the dependence on the parameters r, η, w of the norm | · |r,η,w is encoded in the coefficients (1.27).

Definition 3.1. For any H ∈ Hr,η(hw) we define a map

B1(`2)→ `2 , y = (yj)j∈Z 7→
(
Y

(j)
H (y; r, η, w)

)
j∈Z
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by setting

(3.1) Y
(j)
H (y; r, η, w) :=

∑
∗
|Hα,β|

(αj + βj)

2
c(j)r,η,w(α,β)yα+β−ej

where ej is the j-th basis vector in NZ, while the coefficient c
(j)
r,η,w(α,β) was defined in (1.27). For brevity, we

set ∑
∗

:=
∑

α,β:|α|=|β|

.

The momentum π(·) was defined in (1.25).

The vector field YH is a majorant analytic function on `2 which has the same norm as H. Since the majorant

analytic functions on a given space have a natural ordering this gives us a natural criterion for immersions, as

formalized in the following Lemma.

Lemma 3.1. Let r, r∗ > 0, η, η′ ≥ 0, w, w′ ∈ RZ
+. The following properties hold.

(i) The norm of H can be expressed as

(3.2) |H|r,η,w = sup
|y|`2≤1

|YH(y; r, η, w)|`2

(ii) Given H(1) ∈ Hr∗,η′,w′ and H(2) ∈ Hr,η,w ,
such that for all α,β ∈ NZ and j ∈ Z with αj + βj 6= 0 one has

|H(1)
α,β|c

(j)
r∗,η′,w′(α,β) ≤ c|H(2)

α,β|c
(j)
r,η,w(α,β),

for some c > 0, then

|H(1)|r∗,η′,w′ ≤ c|H(2)|r,η,w .

Proof. See appendix B. �

As a corollary we get the following “immersion theorem” for spaces of Hamiltonians

Proposition 3.1 (Immersion). Let r, r∗ > 0, η, η′ ≥ 0, w, w′ ∈ RZ
+. If

(3.3) C := sup
j∈Z,α,β∈NZ

αj+βj 6=0

c
(j)
r∗,η′,w′(α,β)

c
(j)
r,η,w(α,β)

<∞ ,

then Hr,η(hw) ⊆ Hr∗,η′(hw′), with

(3.4) |H|r∗,η′,w′ ≤ C|H|r,η,w .

In particular |·|r,η,w is increasing in r and η, namely if r∗ ≤ r and η′ ≤ η then

|H|r∗,η′,w ≤ |H|r,η,w.

Moreover, if r∗ ≤ r, w ≤ w′ and H ∈ Kr,η(hw) then

(3.5) |H|r∗,η′,w′ ≤ |H|r,η,w .

Furthermore, if H preserves momentum then

(3.6) |H|r∗,η′,w′ ≤ C0|H|r,η,w ,
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where

(3.7) C0 := sup
j∈Z,α,β∈NZ,
αj+βj 6=0,∑
i i(αi−βi)=0

c
(j)
r∗,η′,w′(α,β)

c
(j)
r,η,w(α,β)

<∞ ,

Proof. Inequality (3.4) directly follows from Lemma 3.1 (ii), while (3.5) follows directly by (1.27) since in the

kernel αj + βj 6= 0 implies αj + βj ≥ 2. The momentum preserving case follows analogously. �

Remark 3.1. The above immersion properties, with different norm and in a different context, were implicitly

used by Bourgain in [Bou05].

4. Small divisors and homological equation

Let us consider the set of frequencies

(4.1) Ωq :=

{
ω = (ωj)j∈Z ∈ RZ, sup

j
|ωj − j2|〈j〉q < 1/2

}
;

this set is isomorphic to [−1/2, 1/2]Z via the identification

(4.2) ξ 7→ ω(ξ) , where ωj(ξ) = j2 +
ξj
〈j〉q

.

We endow Ωq with the probability measure µ induced11 by the product measure on [−1/2, 1/2]Z.

We now define the set of Diophantine frequencies, the following definition is a slight generalization of the one

given by Bourgain in [Bou05].

Definition 4.1. Given γ > 0 and q ≥ 0, we denote by Dγ,q ≡ Dµ1,µ2
γ,q the set of µ1, µ2, γ-Diophantine frequencies

(4.3) Dµ1,µ2
γ,q :=

{
ω ∈ Ωq : |ω · `| > γ

∏
n∈Z

1

(1 + |`n|µ1〈n〉µ2+q)
, ∀` ∈ ZZ : 0 < |`| <∞

}
.

Now we have that

Lemma 4.1. For µ1, µ2 > 1 the exists a positive constant Cmeas(µ1, µ2) such that

µ
(
Ωq \ Dµ1,µ2

γ,q

)
≤ Cmeas(µ1, µ2)γ .

Proof. In Appendix C �

This means that, for all µ1, µ2 > 1, Diophantine frequencies are typical in Ωq in the sense that they have

full measure. Here and in the following we shall always assume that

(4.4) 0 < γ ≤ 1 , ω ∈ D2,2
γ,q = Dγ,q .

11Denoting by µ the measure in Ωq and by ν the product measure on [−1/2, 1/2]Z, then µ(A) = ν(ω(−1)(A)) for all sets A ⊂ Ωq

such that ω(−1)(A) is ν-measurable.
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In the remaining part of this section, on appropriate source and target spaces, we will study the invertibility

of the ”Lie derivative” operator

(4.5) Lω : H 7→ LωH :=
∑
∗

i(ω · (α− β))Hα,βu
αūβ,

which is nothing but the action of the Poisson bracket
{∑

j ωj |uj |
2
, ·
}

on H.

Recalling the definition of Kr(hw) in (1.30) we give the following

Definition 4.2. Let

Rr,η(hw) := {H ∈ Hr,η(hw) | H =
∑
α 6=β

Hα,βu
αūβ}(4.6)

Then we have the decomposition Hr,η(hw) = Rr,η(hw)⊕Kr(hw) and the continuous projections12

(4.7) |ΠKH|r,η,w, |ΠRH|r,η,w ≤ |H|r,η,w .

Obviously for diophantine frequency Rr,η(hw) and Kr(hw) represent the range and kernel of Lω.

For any r, η, w and α,β ∈ NZ recall the coefficient defined in (1.27)

c(j)r,η,w(α,β) := r|α|+|β|−2eη|π(α−β)| w2
j

wα+β
.

In following Lemma we consider R ∈ Rr,η(hw) and state sufficient conditions which ensure that L−1
ω R ∈

Rr∗,η′(hw′).

Lemma 4.2 (Homological equation). Fix ω ∈ Dγ,q. Consider two ordered weights 0 < r∗ ≤ r, 0 ≤ η′ ≤ η, w′ ≥ w,

such that

(4.8) K := γ sup
j∈Z,α 6=β∈NZ

αj+βj 6=0

c
(j)
r∗,η′,w′(α,β)

c
(j)
r,η,w(α,β)|ω · (α− β)|

<∞ ,

then for any R ∈ Rr,η(hw) the homological equation

LωS = R

has a unique solution S = L−1
ω R in Rr∗,η′(hw′), which satisfies

(4.9)
∣∣L−1
ω R

∣∣
r∗,η′,w′

≤ γ−1K|R|r,η,w .

Similarly, if R preserves momentum, assuming only

(4.10) K0 := γ sup
j∈Z,α 6=β∈NZ

αj+βj 6=0∑
i i(αi−βi)=0

c
(j)
r∗,η′,w′(α,β)

c
(j)
r,η,w(α,β)|ω · (α− β)|

<∞ ,

we have that S also preserves momentum and

(4.11)
∣∣L−1
ω R

∣∣
r∗,η′,w′

≤ γ−1K0|R|r,η,w .

12Explicitely ΠKH :=
∑

α=β Hα,βu
αūβ, ΠRH :=

∑
α 6=β Hα,βu

αūβ.
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Proof. Given any Hamiltonian R ∈ R, the formal solution of LS = R is given by

(4.12) L−1
ω R =

∑
|α|=|β|,α 6=β

1

i(ω · (α− β))
Rα,βu

αūβ ,

where u ∈ Br∗(hw′). By Lemma 3.1 (ii) (applied to H(1) = L−1
ω R and H(2) = R) and (4.8), we get (4.9). The

momentum preserving case is analogous. �

5. Abstract Birkhoff Normal Form

In this section we prove the abstract Birkoff normal form Theorem 1.3. We start by defining a degree

decomposition which endows Hr,η(hw) with a graded Poisson algebra structure.

Definition 5.1 (minimal scaling degree). We say that H has minimal scaling degree d = d(H) (at zero) if

Hα,β = 0 , ∀ α,β : |α| = |β| ≤ d ,

Hα,β 6= 0 , for some α,β : |α| = |β| = d + 1 .

We say that d(0) = +∞.

Essentially H has scaling degree d if and only if it has a zero of order 2d + 2 at zero, we prefer this notation

because we find it more intrinsic, it produces a graded Poisson algebra structure and one has the following

Lemma 5.1. If H ∈ Hr,η(hw) with d(H) ≥ d, then for all r∗ ≤ r one has

|H|r∗,η,w ≤
(
r∗

r

)2d

|H|r,η,w .

Proof. Recalling (1.27), we have

c
(j)
r∗,η,w(α,β)

c
(j)
r,η,w(α,β)

=

(
r∗

r

)|α|+|β|−2

.

Since |α|+ |β| − 2 ≥ 2d, the inequality follows by Proposition 3.1. �

The normal form will be proved iteratively by means of the following Lemma, which constitutes the main

step of the procedure.

Basically we start with a Hamiltonian H = Dω + Z + R with Z ∈ Kr(hw) in normal form and R ∈ Rr,η(hw) of

minimal degree d, and we consider r′ ≤ r, η′ ≤ η, w′ ≥ w so that Hr,η(hw) ⊆ Hr′,η′(hw′). Then we give a sufficient

condition which ensures the existence of a change of variables Φ : Br′(hw′) → Br(hw′) such that

H ◦ Φ = Dω + Z ′ +R′ ,

with Z ′, R′ ∈ Hr′,η′(hw′) and R′ of minimal degree d + 1.

Lemma 5.2. Fix ω ∈ Dγ,q. Let r > r′ > 0, η ≥ η′ ≥ 0, w ≤ w′. Consider

H = Dω + Z +R , Z ∈ Kr(hw) , R ∈ Rr,η(hw) , d(Z) ≥ 1 , d(R) ≥ d ≥ 1 .

Assume that (3.3) and (4.8) hold and that13

(5.1) |R|r,η,w ≤
γδ

K
, with δ :=

r − r′

16er
.

13K is the constant in (4.8).
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Then there exists a change of variables

Φ : Br′(hw′) → Br(hw′) ,(5.2)

such that

H ◦ Φ = Dω + Z ′ +R′ , Z ′ ∈ Kr′,η′(hw′) , R′ ∈ Rr′,η′(hw′) , d(Z ′) ≥ 1 , d(R′) ≥ d + 1 .

Moreover14

|Z ′|r′,η′,w′ ≤ |Z|r,η,w + (γδ)−1K|R|r,η,w(C|R|r,η,w + |Z|r,η,w) ,
|R′|r′,η′,w′ ≤ (γδ)−1K|R|r,η,w(C|R|r,η,w + |Z|r,η,w) .(5.3)

Finally, for w] ≥ w′, assume the further conditions

(5.4) γ sup
j∈Z,α 6=β∈NZ

αj+βj 6=0

c
(j)

r∗,η′,w]
(α,β)

c
(j)
r,η,w(α,β)|ω · (α− β)|

=: K] <∞ , r∗ :=
r′ + r

2

and

(5.5) |R|r,η,w ≤
γδ

K]
.

Then

Φ∣∣Br′ (hw] ) : Br′(hw]) → Br(hw]) ,

supu∈Br′ (hw] )
|Φ(u)− u|h

w]
≤ rγ−1K]|R|r,η,w .(5.6)

Moreover if R preserves momentum, assuming only that

(5.7) K]
0 := γ sup

j∈Z,α 6=β∈NZ

αj+βj 6=0,∑
i i(αi−βi)=0

c
(j)

r∗,η′,w]
(α,β)

c
(j)
r,η,w(α,β)|ω · (α− β)|

<∞

and that (5.1), (5.5) hold with K0,K
]
0 instead of K,K] we have that R′ preserves momentum and (5.6) holds

with K]
0 instead of K].

Proof. By Lemma 4.2 let S = L−1
ω R in Rr∗,η′(hw′) be the unique solution of the homological equation LωS = R

on Br∗(hw′). Note that d(S) ≥ d. We have

(5.8) |S|r∗,η′,w′ ≤ γ
−1K|R|r,η,w .

We now apply Lemma 2.1 with (r, η, w) (r′, η′, w′) and ρ := r∗− r′. Note that (5.1) and (5.8) imply (2.2). We

define Φ := Φ1
S and compute

H ′ := H ◦ Φ = Dω + Z + (e{S,·} − id−{S, ·})Dω + (e{S,·} − id)(Z +R) =

= Dω + Z −
∞∑
j=2

(adS)
j−1

j!
R+ (e{S,·} − id)(Z +R) .

We now set

Z ′ = ΠKH
′ −Dω , R′ = ΠRH

′ .

Since the scaling degree is additive w.r.t. Poisson brackets, we have that d(Z ′) ≥ 1 and d(R′) ≥ d+ 1. By (2.7)

|Z ′|r′,η′,w′ ≤ |Z|r′,η′,w′ + (γδ)−1K|R|r,η,w(|R|r∗,η′,w′ + |Z|r∗,η′,w′) ,
|R′|r′,η′,w′ ≤ (γδ)−1K|R|r,η,w(|R|r∗,η′,w′ + |Z|r∗,η′,w′) .

14C is defined in (3.3).
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Since (4.8) holds we can apply Proposition 3.1: by (3.4) and (3.5) we get

|R|r∗,η′,w′ ≤ C|R|r,η,w , |Z|r∗,η′,w′ ≤ |Z|r,η,w .

(5.3) follows.

Finally assume (5.5) and (5.4). By Lemma 4.2 let S] = L−1
ω R in Rr∗,η′(hw]) be the solution of the homological

equation LωS
] = R on Br∗(hw]) ⊆ Br∗(hw′). Since S and S] solve the same linear equation on Br∗(hw]), we

have that

S] = S∣∣Br∗ (h
w]

)
.

By (4.9) we get

(5.9) |S|r∗,η′,w] ≤ γ
−1K]|R|r,η,w .

We now apply Lemma 2.1 with (r, η, w)  (r′, η′, w]) and ρ := r∗ − r′. Note that (5.5) and (5.9) imply (2.2).

Then (5.6) follows by (2.3) and (5.9).

The momentum preserving case is analogous. �

Theorem 1.3 follows Given η ≥ 0 and a sequence of weights w0 ≤ w1 ≤ · · · ≤ wN = w. For any given r > 0 we

set

(5.10) rn = (2− n

N
)r , ηn = (1− n

N
)η , 0 ≤ n ≤ N , r∗n =

rn+1 + rn
2

, 0 ≤ n < N .

From Assumption 1 and (1.27) we have15

max

{
1, sup

0≤n<N

sup
j,α,β

αj+βj 6=0

c
(j)
r∗n,ηn+1,wn+1

(α,β)

c
(j)
rn,ηn,wn(α,β)

}
= C <∞ ,(5.11)

max

{
1, sup

0≤n<N

sup
j,α,β

αj+βj 6=0

c
(j)
r∗n,ηn+1,wn+1

(α,β)

c
(j)
rn,ηn,wn(α,β)|ω · (α− β)|

}
= K <∞ ,(5.12)

max

{
1, sup

0≤n<N

sup
j,α,β

αj+βj 6=0

c
(j)
r∗n,ηN,wN

(α,β)

c
(j)
rn,ηn,wn(α,β)|ω · (α− β)|

}
= K] <∞ .(5.13)

For brevity we set

(5.14) hn := hwn , Hn := Hrn,ηn(hn) , 0 ≤ n ≤ N , Hn,∗ := Hr∗n,ηn+1(hn+1) , 0 ≤ n < N ,

and, correspondingly, Rn,Kn,Rn,∗,Kn,∗ and

(5.15) | · |n := | · |rn,ηn,wn , | · |n,∗ := | · |r∗n,ηn+1,wn+1
.

Lemma 5.3. By Assumption (5.11) we have the immersion properties

(5.16) H0 ⊆ H0,∗ ⊆ · · · ⊆ Hn ⊆ Hn,∗ ⊆ Hn+1 ⊆ · · · ⊆ HN ,

with estimates

H ∈ Hn =⇒ |H|n,∗ ≤ Ĉ|H|n , 0 ≤ n ≤ i ≤ N− 1

H ∈ Kn =⇒ |H|n,∗ ≤ |H|n , 0 ≤ n ≤ i ≤ N− 1 .(5.17)

15we are just using the fact that the ratio c
(j)
r,η,w(α,β)/c

(j)
r′,η′,w′ (α,β) depends on r, r′ only through their ratio.
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Proof. We apply Proposition 3.1 with

r, η, w rn, ηn, wn , r∗, η′, w′  r∗n, ηn+1, wn+1 ,

by noting that the bound (3.3) follows from (5.11). The bounds in (5.17) follow form (3.4) and (3.5). The chain

of inclusions (5.16) follows. �

Proof of Theorem 1.3. We will prove the thesis inductively. Let us start by noticing that

r̂ = min

{
r̄

8
√
|G|r̄,η,w0

√
γδ̂

max{CK,K]}
,
r̄

2

}
, δ̂ :=

1

32eN

and, for all 0 < r ≤ r̂, let us set

ε := γ−1

(
2r

r̄

)2

|G|r̄,η,w0 =
1

29e

(
r

r?

)2

.

From definition (1.32) we thus deduce that

(5.18) 8 εmax{CK,K]}δ̂−1 ≤ 1.

Recalling the notations introduced in (5.10)-(5.15), by Lemma (5.1) we have

γ−1|G|0 ≤ ε ,

hence, setting Z(0) := ΠKG and R(0) := ΠRG, from (4.7) it follows that

γ−1|Z(0)|0 , γ−1|R(0)|0 ≤ ε .

We perform an iterative procedure producing a sequence of Hamiltonians, for n = 0, . . . , N

H(n) = Dω + Z(n) +R(n) ,

Z(n) ∈ Kn , R(n) ∈ Rn , d(Z(n)) ≥ 1 , d(R(n)) ≥ n+ 1 ,

γ−1|Z(n)|n ≤ ε
n∑
h=0

2−h , γ−1|R(n)|n ≤ εn+1
(

4CKδ̂−1
)n (5.18)

≤ 2−nε .(5.19)

Fix any k < N. Let us assume that we have constructed H(0), . . . ,H(k) satisfying (5.19) for all 0 ≤ n ≤ k. We

want to apply Lemma 5.2 with

H, r, η, w  H(k), rk, ηk, wk and r′, η′, w′, w], d  rk+1, ηk+1, wk+1, wN, k + 1 .

By construction the bounds (3.3), (4.8) and (5.4) hold since C ≤ C, K ≤ K, K] ≤ K], where Ĉ, K̂, K̂] were

defined in (5.11),(5.12),(5.13). We just have to verify that (5.1) holds, namely

|R(k)|k ≤
γ

K

rk − rk+1

16erk
.

In fact, by applying the inductive hypothesis (5.19) and the smallness condition (5.18), we get

|R(k)|k ≤ γ
(

4CKδ̂−1
)k
εk+1 ≤ γε

2k
≤ γ

16eK(2N− k)
=
γ

K

rk − rk+1

16erk
.

The verification of (5.5) is completely analogous.

So, by applying Lemma 5.2 we construct a change of variable Φk as in (5.2) with

Φk : Brk+1
(hwk+1

) → Brk(hwk+1
) .

Let us now set

H(k+1) = Dω + Z(k+1) +R(k+1) := Hk ◦ Φk

with Z(k+1) ∈ Kk+1, R
(k+1) ∈ Rk+1 and d(Z(k+1)) ≥ 1, d(R(k+1)) ≥ k + 2. It remains to prove the bounds in

the second line of (5.19) (with n = k + 1). By (5.3) we have
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|Z(k+1)|k+1 ≤ |Z(k)|k + (γδ̂)−1K|R(k)|k(C|R(k)|k + |Z(k)|k) ,

|R(k+1)|k+1 ≤ (γδ̂)−1K|R(k)|k(C|R(k)|k + |Z(k)|k) .(5.20)

By substituting the inductive hypothesis (5.19), we have the following chain of inequalities

γ−1|R(k+1)|k+1 ≤ δ̂−1ε2K(4CKδ̂−1ε)k(C(4CKδ̂−1ε)k + 2)

(5.18)

≤ δ̂−1ε2K(4CKδ̂−1ε)k(C + 2)

≤ (4CKδ̂−1)k+1εk+2 = (4CKδ̂−1ε)k+1ε,

which proves the bound on R(n) in (5.19) for any n.

En passant, we note that

(5.21) γε
(

4CKδ̂−1ε
)N

=
γ

29er2
?

(
CKN

4r2
?

)N

r2(N+1) .

Finally, using the same strategy as above, we also get

γ−1|Z(k+1)|k+1 ≤ ε

(
k∑
h=0

2−h + (4CKδ̂−1)k+1εk+1

)
(5.18)

≤ ε

k+1∑
h=0

2−h ,

which completes the proof of the inductive hypothesis (5.19), and remark that

(5.22) ε

N∑
h=0

2−h =
r2

28er2
?

(
1− 2−N−1

)
.

By (5.6) we have

Φk : Brk+1
(hwN) → Brk(hwN) ,

supu∈Brk+1
(hwN ) |Φk(u)− u|wN ≤ rkγ

−1K]|R(k)|k .(5.23)

In conclusion we define

Ψ := Φ0 ◦ Φ1 ◦ · · · ◦ ΦN−1 : Br(hN)→ B2r(hN).

Since we have

Φ0 ◦ Φ1 ◦ · · · ◦ ΦN−1 − id

= (Φ0 − id) ◦ Φ1 ◦ · · · ◦ ΦN−1 + (Φ1 − id) ◦ Φ2 ◦ · · · ◦ ΦN−1 + . . .ΦN−1 − id .

By (5.23) we get

sup
u∈Br(hwN )

|Ψ(u)− u|wN ≤
N−1∑
k=0

rkγ
−1K]|R(k)|k

(5.19)

≤ 2rεK]
N−1∑
k=0

2−k ≤ 4rK]ε ,

proving the first bound in (1.33). The second bound in (1.33) can be written as 8Ĉ1r
2 ≤ 1, which follows

from r ≤ r̂. We finally set Z = ZN, R = RN and the estimates (1.34) follow by (5.21)-(5.22). Of course

the same reasoniong can be applied in order to construct the inverse, i.e. a symplectic change of variables

Φ : Br(hw) 7→ B2r(hw) such that

(5.24) Ψ ◦ Φu = Φ ◦Ψu = u , ∀u ∈ B 7
8 r

(hw) .

�
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When the nonlinearity G preserves momentum Theorem 1.3 can be reformulated under slightly weaker

assumptions. More precisely, setting η = 0

C0 := max

{
1, sup

0≤n<N

sup
j,α,β,

αj+βj 6=0,

π(α−β)=0

c
(j)
%∗n,0,wn+1

(α,β)

c
(j)
%n,0,wn

(α,β)

}
<∞ ,

K0 := max

{
1, sup

0≤n<N

sup
j,α,β,

αj+βj 6=0,

π(α−β)=0

c
(j)
%∗n,0,wn+1

(α,β)

c
(j)
%n,0,wn

(α,β)|ω · (α− β)|

}
<∞ ,

K]0 := max

{
1, sup

0≤n<N

sup
j,α,β,

αj+βj 6=0,

π(α−β)=0

c
(j)
%∗n,0,wN

(α,β)

c
(j)
%n,0,wn

(α,β)|ω · (α− β)|

}
<∞ ,(5.25)

the following holds

Proposition 5.1. If G preserves momentum Theorem 1.3 holds word by word with C0,K0,K
]
0 instead of C,K,K].

Moreover also the new perturbation R preserves momentum.

. We note that in the case that G preserves momentum, the same result holds with C0,K0,K
]
0 instead of

C,K,K]; moreover also R preserves momentum.

We finally give the following abstract stability result, whose proof is postponed to the Appendix B

Lemma 5.4. On the Hilbert space hw consider the dynamical system

v̇ = XN +XR , v(0) = v0 , |v0|w ≤
3

4
r ,

where N ∈ Ar,0(hw) and R ∈ Hr,η(hw) for some r > 0, η ≥ 0. Assume that

Re(XN , v)hw = 0 .

Then

(5.26)
∣∣∣|v(t)|w − |v0|w

∣∣∣ < r

8
, ∀ |t| ≤ 1

8|R|r,η,w
.

Corollary 5.1. Under the same assumptions of Theorem 1.3, the solution u(t) of the Hamiltonian flow of

(1.31) with initial datum u(0) = u0 such that |u0|w ≤ 3r
8 exists and satisfies

(5.27) |u(t)|w ≤ r for all times |t| ≤ 1

8Ĉ3r2(N+1)
.

Proof. Let us consider Hamiltonian (1.31), take an initial datum |u0|w := r < 3
8 r̂ and apply the change of

vartiables of Theorem 1.3. Denoting by v(0) = Ψ(u0) we are under the hypotheses of Lemma 5.4 with η = 0

and we conclude

|v(t)|w ≤
7

8
r , ∀ |t| ≤ 1

8|R|r,0,w
.

Now we can apply (5.24) in order to return to the original variables and deduce that u(t) = Φv(t) satisfies

|u(t)|w ≤ r , ∀ |t| ≤ r−2(N+1)

8Ĉ3

≤ 1

8|R|r,0,w
.

�
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Part 2. Applications to Gevrey and Sobolev cases

In Part 2 we show how to apply the abstract BNF to Gevrey and Sobolev cases. Following the notations

given in the introduction we work in the three sequence spaces defined for the applications G, S, M, see page 7.

As explained in the introduction, in order to prove the estimates on the stability times we just need to verify

that Assumption 1 holds. This is the content of the next sections.

Let us start by setting some notations.

Case G) In the case w(p, s, a) =
(
〈j〉pes〈j〉θ+a|j|

)
j∈Z

we denote hw(p,s,a) = hp,s,a, same notation for the norm of

vectors | · |p,s,a. Regarding the norm of Hamiltonians we write | · |r,η,w(p,s,a), consistently with Definition 1.2. Of

course, for any 0 ≤ p ≤ p′, 0 ≤ s ≤ s′, 0 ≤ a ≤ a′ we have

hp′,s′,a′ ⊆ hp,s,a , |v|p,s,a ≤ |v|p′,s′,a′ , ∀v ∈ hp′,s′,a′ .

Case S) If a = s = 0 we denote hp,0,0 = hp , same notation for the norm of vectors | · |p and hamiltonians

| · |r,η,w(p).

Remark 5.1. Note that, via the usual Fourier identification one has:

(5.28) |u|p ≤ |u(x)|L2 + |∂pxu(x)|L2 ≤ 2|u|p

Case M) In the case wj = bjcp where

bjc := max{|j|, 2}
we denote the norm of vectors as

(5.29) ‖u‖2p = ‖u‖2w :=
∑
j∈Z
bjc2p|uj |2 .

Remark 5.2. Note that hw in M) and hp are the same vector space endowed with two equivalent norms. Moreover

one has

(5.30) ‖u‖p ≤ 2p|u(x)|L2 + |∂pxu(x)|L2 ≤ 2‖u‖p .

Definition 5.2 (momentum preserving regular Hamiltonians). Given r > 0, p ≥ 0 let Hr,p be the space of

point-wise absolutely convergent Hamiltonians on ‖u‖p ≤ r which preserves momentum and such that

(5.31) ‖H‖r,p := r−1

(
sup
‖u‖p≤r

‖XH‖p

)
<∞ ,

namely.16

‖ · ‖r,p = | · |Hr,0(hw) , wj = bjcp

We now verify that the nonlinearities in (1.1) are bounded in the norm | · |r,η,w in the cases S, M, G.

Proposition 5.2. Consider the correction term P =
∫
T F (x, |u|2)dx in the NLS Hamiltonian (1.21), where the

argument f in F satisfies(1.2). Let p > 1/2.

(i) For any a, s, η ≥ 0 such that a+ η < a and any r > 0 such that17 (Calg(p)r)
2 ≤ R, we have

(5.32) |P |r,η,w(p,s,a) ≤ CNem(p, s, a− a− η)
(Calg(p)r)

2

R
|f |a,R <∞.

where f and |f |a,R are defined in 1.2.

16Note that on the preserving momentum subspace Hr,η(hw) coincides with Hr,0(hw) for every η.
17R is defined in (1.2) and the constants in Appendix A.
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(ii) If F is independent of18 x, for (Calg,M(p)r)
2 ≤ R we have

(5.33) ‖P‖r,p ≤ 2p
(Calg,M(p)r)

2

R
|f |R <∞ .

This Proposition follows directly from the fact that the corresponding sequence spaces hw are closed w.r.to

convolution.

Let ? : hp,s,a × hp,s,a → hp,s,a be the convolution operation defined as

(f, g) 7→ f ? g :=

 ∑
j1,j2∈Z , j1+j2=j

fj1gj2


j∈Z

.

The map ? : (f, g) 7→ f ? g is continuous in the following sense:

Lemma 5.5. For p > 1/2 we have

(5.34) |f ? g|p,s,a ≤ Calg(p)|f |p,s,a|g|p,s,a , ‖f ? g‖p ≤ Calg,M(p)‖f‖p‖g‖p .

The proof is given in Appendix B.

Proof of Proposition 5.2. By definition (recall (1.2) and (1.21))

(5.35) F (x, y) =

∫ y

0

f(x, s)ds =

∞∑
d=2

f (d−1)(x)

d
yd =:

∞∑
d=2

F (d)(x)yd

therefore we have

P =

∫
T
F (x, |u|2)dx =

∑
d≥2

F (d) ? u ? · · · ? u︸ ︷︷ ︸
d times

? ū ? · · · ? ū︸ ︷︷ ︸
d times


0

.

To each analytic function F (d)(x) we associate its Fourier coefficients; we have
(
F

(d)
j

)
j∈Z
∈ hp,s,a0 for a0 :=

a+ η < a and s, p ≥ 0. Indeed

|F (d)|2p,s,a0 :=
∑
j

e2a0|j|+2s〈j〉θ 〈j〉2p|F (d)
j |

2 (5.35)
=

∑
j

e2a0|j|+2s〈j〉θ 〈j〉2p
|f (d−1)
j |2

d2

≤ c2(p, s, a− a0)

d2

∑
j

e2a|j||f (d−1)
j |2 =

c2(a− a0, s, p)

d2
|f (d−1)|2Ta

with

c(p, s, t) := es + sup
x≥1

xpe−tx+sxθ

Now condition (1.2) ensures that (B.12) holds and our claim follows, by Lemma B.2, setting a0 = a+ η.

(ii) Follows from (B.14).

�

18i.e. P preserves momentum and we are assuming (1.3).
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6. Immersions

The following proposition gathers the immersion properties of the norm | · |r,η,w(p,s,a) with respect to the

parameters p, s, a.

Proposition 6.1. The following inequalities hold:

(1) Variations w.r.t. the paramater p. For any 0 < ρ < r , 0 < σ < η and p1 > 0 we have

|H|r−ρ,η−σ,w(p+p1,s,a) ≤ Cmon(r/ρ, σ, p1)|H|r,η,w(p,s,a) .

(2) Variation w.r.t. the parameter s. For any 0 < σ < η we have

(6.1) |H|r,η−σ,w(p,s+σ,a) ≤ |H|r,η,w(p,s,a)

(3) Variation w.r.t. the parameter a. For any 0 < σ < η

(6.2) |H|e−σr,η−σ,w(p,s,a+σ) ≤ e2σ|H|r,η,w(p,s,a)

Remark 6.1. All the items in the previous Proposition describe immersion properties of Hr,η(hp,s,a) w.r.t vari-

ations of the parameters.

In item (1) we say that if H ∈ Hr,η(hp,s,a) (i.e. if its vector field maps Br(hp,s,a) → hp,s,a) then it is also in

Hr−ρ,η−σ(hp+p1,s,a) for any ρ, σ, p1 > 0. Note however that the norm of H in the latter space is in general much

larger, we denote this constant by Cmon.

In item (3) we have essentially the same phenomenon, only in order to increase the analiticity parameter

a a+ σ, we need to decrease the radius to e−σr.

Item (2) gives the best bound, indeed not only Hr,η−σ(hp,s+σ,a) ⊆ Hr,η(hp,s,a) but the norm of H in the latter

space does not increase.

To prove this Proposition we show that the hypotheses of Proposition 3.1 hold. In order to prove this, in

turn we strongly rely on some notation and results introduced by Bourgain in [Bou05] and extended later on

by Cong-Li-Shi-Yuan in [CLSY] (Definition 6.1 and Lemma 6.1 below). The definitions and lemmata given

below are the key technical arguments. Many of the ideas come from Bourgain in [Bou05] in the case of Gevrey

regularity and for momentum preserving Hamiltonians, here we give a detailed presentation adapted to our

more general setting and covering also the case of Sobolev regularity.

Definition 6.1. Given a vector v = (vi)i∈Z vi ∈ N, |v| < ∞ we denote by n̂ = n̂(v) the vector (n̂l)l∈I (where

I ⊂ N is finite) which is the decreasing rearrangement of

{N 3 h > 1 repeated vh + v−h times} ∪ {1 repeated v1 + v−1 + v0 times}

Remark 6.2. A good way of envisioning this list is as follows. Given v = (vi)i∈Z consider the monomial

xv :=
∏
i x

vi
i . We can write uniquely

xv =
∏
i

xvii = xj1xj2 · · ·xj|v|

then n̂(v) is the decreasing rearrangement of the list
(
〈j1〉, . . . , 〈j|v|〉

)
.

As an example, consider the case v 6= 0. Then, by construction there exists a unique J ≥ 0 such that vj = 0

for all |j| > J and vJ + v−J 6= 0 hence

v = (. . . , 0, v−J , . . . , v0, . . . , vJ , 0 . . . ) .
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If J = 0 then

n̂ = (1, . . . , 1︸ ︷︷ ︸
v0 times

)

otherwise we have

n̂ = ( J, . . . , J︸ ︷︷ ︸
vJ+v−J times

, J − 1, . . . , J − 1︸ ︷︷ ︸
vJ−1+v−J+1 times

, . . . , 1, . . . , 1︸ ︷︷ ︸
v1+v−1+v0 times

)

Given α,β ∈ NZ with 1 ≤ |α| = |β| <∞, from now on we define

n̂ = n̂(α + β) .

We set the even number

N := |α|+ |β| ,

which is the cardinality of n̂. We observe that, given

π =
∑
i∈Z

i(αi − βi) =
∑
h>0

h
(
αh − βh −α−h + β−h

)
,

there exists a choice of σi = ±1, 0 such that

(6.3) π =
∑
l

σln̂l.

with σl 6= 0 if n̂l 6= 1. Hence,

(6.4) n̂1 ≤ |π|+
∑
l≥2

n̂l.

Indeed, if σ1 = ±1, the inequality follows directly from (6.3); if σ1 = 0, then n̂1 = 1 and consequently n̂l = 1∀l.
Since the mass is conserved, the list n̂ has at least two elements, and the inequality is achieved.

Lemma 6.1. Given α,β such that
∑
i i(αi − βi) = π ∈ Z, we have that setting n̂ = n̂(α + β)

(6.5)
∑
i

〈i〉θ(αi + βi) =
∑
l≥1

n̂θl ≥ 2n̂θ1 + (2− 2θ)
∑
l≥3

n̂θl − θ|π|.

Proof. In appendix C. �

The lemma above was proved in the simpler case of momentum preserving Hamiltonians in [Bou05] for θ = 1
2

and for general θ in [CLSY]. It is fundamental in discussing the properties of Hr,η(hp,s,a) with s > 0, indeed it

implies

(6.6)
∑
i

〈i〉θ(αi + βi)− 2〈j〉θ + |π(α− β)| ≥ (1− θ)

∑
l≥3

n̂θl + |π|

 ≥ 0

for all α,β such that αj + βj 6= 0.

Proof of Proposition 6.1. In all that follows we shall use systematically the fact that our Hamiltonians preserve

the mass and are zero at the origin. These facts imply that |α| = |β| ≥ 1.

Let us start by proving Item (2), which is the simplest case. We need to show that

(6.7)
c
(j)
r,η−σ,w(p,s+σ,a)(α,β)

c
(j)
r,η,w(p,s,a)(α,β)

= exp(−σ(
∑
i

〈i〉θ(αi + βi)− 2〈j〉θ + |π(α− β)|) ≤ 1 .
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The last inequality follows by (6.6) of Lemma 6.1

Item (1) First we assume that ρ ≤ r/2. By Proposition 3.1 for any 0 < ρ ≤ r/2 , 0 < σ < η and p1 > 0 we

need to compute

(6.8) Cmon := sup
j,α,β

αj+βj 6=0

c
(j)
r−ρ,η−σ,w(p+p1,s,a)(α,β)

c
(j)
r,η,w(p,s,a)(α,β)

= sup
j,α,β

αj+βj 6=0

(
〈j〉2∏

i〈i〉αi+βi

)p1
e−σ|π|

(
r − ρ
r

)|α|+|β|−2

.

We use the notations of Definition 6.1, with n̂(α+β) ≡ n̂. Since αj +βj 6= 0 we have that 〈j〉 ≤ n̂1. Note that

(6.9)
∏
i

〈i〉αi+βi =
∏
l≥1

n̂l .

Hence
〈j〉2∏

i〈i〉αi+βi
≤ n̂1∏

l≥2 n̂l

Let us call N = |α|+ |β| ≥ 2. By (6.4) we have that

(6.10) sup
j,α,β

αj+βj 6=0

〈j〉2∏
i〈i〉αi+βi

≤ n̂1∏
l≥2 n̂l

≤
∑N
l=2 n̂l + |π|∏N

l=2 n̂l
≤ (N − 1)n̂2 + |π|∏N

l=2 n̂l
≤ N + |π|∏N

l=3 n̂l
.

We have shown that

sup
j,α,β

αj+βj 6=0

〈j〉2∏
i〈i〉αi+βi

≤ N + |π| .

Since (N + |π|)p1 ≤ 2p1(Np1 + |π|p1), denoting L := ln (r/r − ρ) we repeatedly use Lemma C.1 in order to

control

sup
N≥2,π∈Z

(N + |π|)p1e−σ|π|
(
r − ρ
r

)N−2

(6.11)

≤ 2p1
(

sup
N≥2 ,π∈Z

Np1e−σ|π|−L(N−2) + sup
N≥2 ,π∈Z

|π|p1e−σ|π|−L(N−2)

)
≤ 2p1

(
max

{(p1

L

)p1
, 1
}

+
(p1

σ

)p1)
≤ 2p1+1 max

{(p1

L

)p1
,
(p1

σ

)p1
, 1
}

≤ 2p1+1pp11 max

{(
2r

ρ

)p1
,

(
1

σ

)p1
, 1

}
= Cmon ,

using that

L ≥ ln(1 + ρ/r) ≥ 2 ln(3/2)ρ/r ≥ ρ/2r ,

which holds since we are in the case ρ ≤ r/2. This completes the proof in the case ρ ≤ r/2.
Consider now the case r/2 < ρ < r. Using the monotonicity of the norm w.r.t. r and the already proved case

with ρ = r/2, we have

|H|r−ρ,η−σ,w(p+p1,s,a) ≤ |H|r/2,η−σ,w(p+p1,s,a) ≤ 2p1+1 max
{

(4p1)
p1 ,
( p1

eσ

)p1
, 1
}
|H|r,η,w(p,s,a)

≤ 2p1+1pp11 max

{(
2r

ρ

)p1
,

(
1

σ

)p1
, 1

}
|H|r,η,w(p,s,a) ,

proving (1) also in the case r/2 < ρ < r.

Item (3) We proceed as in item (1)− (2),

(6.12)
c
(j)
e−σr,η−σ,w(p,s,a+σ)(α,β)

c
(j)
r,η,w(p,s,a)(α,β)

= exp(−σ(
∑
i

〈i〉θ(αi + βi)− 2〈j〉θ + |π(α− β)| − (|α|+ |β| − 2)) ≤ e2σ .
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our claim follows since, by formula (6.4), one has

(6.13)
∑
i

(αi + βi)|i| − 2|j|+ |π| ≥
∑
l≥2

n̂l − n̂1 + |π| − |α0 + β0| ≥ −(|α|+ |β|) .

�

Remark 6.3. Note that a key point in Items (1) and (2) are the estimates (6.10) and (6.6) where we control the

ratio of the coefficient (1.27) in terms of {n̂l}l≥3 (namely uniformly with respect to n̂1 and n̂2). This means that

if n̂3 is ”big”, then the norm of the Hamiltonian is correspondingly small: polynomially in the Sobolev case and

subexponentially in the Gevrey one. This is a seminal property which appears in different flavors thoughout

the literature; in Proposition 6.1 we do not really need to exploit it. Instead, it will be heavily used for a sharp

control on the small divisors appearing in the Homological equation (see proof of Proposition 7.1).

Incidentally we note that norm | · |r,η,w(p,s,a) possesses the tameness property.

Proposition 6.2.

sup
|u|p0,s,a≤r−ρ

|XH |p,s,a
|u|p,s,a

≤ Ctame(ρ, η, p)|H|r,η,w(p0,s,a)

Proof. In Appendix B. �

Proposition 6.3. The norm ‖ · ‖r,p is monotone decreasing in p, namely ‖ · ‖r,p+p1 ≤ ‖ · ‖r,p for any p1 > 0.

Proof. For the norm ‖ · ‖r,p the quantity in (1.27) becomes (recall that in the norm of a momentum preserving

hamiltonian there is need of introducing the parameter η)

(6.14) c(j)
r,p(α,β) := r|α|+|β|−2

(
bjc2∏

i∈Z bic
(αi+βi)

)p
.

By Lemma 3.1 item (ii) we only need to show that

(6.15) c
(j)
r,p+p1(α,β) ≤ c(j)r,p(α,β)

for all j, α,β with |α| = |β| ≥ 1 and αj + βj ≥ 1 (recall the momentum conservation), namely we have to

prove that

(6.16) sup
j,α,β

αj+βj≥1

bjc2∏
ibicαi+βi

≤ 1 .

We first show that the inequality holds in the case j = 0,±1. Indeed we have∏
i

bicαi+βi ≥
∏
i

2αi+βi = 2
∑
i αi+βi ≥ 4

since
∑
iαi + βi ≥ 2 (by the fact that |α| = |β| ≥ 1).

Consider now the case |j| = bjc ≥ 2. Since αj + βj ≥ 1, inequality (6.16) follows by

(6.17) sup
j,α,β

|j|∏
i 6=jbicαi+βi

≤ 1 .



28 LUCA BIASCO, JESSICA ELISA MASSETTI, AND MICHELA PROCESI

By momentum conservation we have

(6.18) |j| ≤
∑
i 6=j

|i|(αi + βi) ≤
∑
i 6=j

bic(αi + βi)

and (6.17) follows if we show that

(6.19) sup
j,α,β

∑
i6=jbic(αi + βi)∏
i 6=jbicαi+βi

≤ 1 ,

where we can restrict the sum and the product to the indexes i such that αi + βi ≥ 1. This last estimates

follows by the fact that given xk ≥ 1 ∑
2≤k≤n kxk∏
2≤k≤n k

xk
≤ 1 ,

as it can be easly proved by induction over n (noting that nx ≥ nx for n ≥ 2, and any x ≥ 1). �

7. Homological equation

Now we give estimates on the solution of the homological equation

LωS := {Dω, S} = R

The constants C1, C2(r, σ, t) are defined in Appendix A. Note that C1 depends only on θ.

Proposition 7.1. Let ω ∈ Dγ,q and let 0 < σ < η, 0 < ρ < r/2. For any R ∈ Rr,η(hp,s,a), the Homological

equation LωS = R has a unique solution S = L−1
ω R, which satisfies the following two bounds:

(G)
∣∣L−1
ω R

∣∣
r,η−σ,w(p,s+σ,a)

≤ γ−1eC1σ
− 3
θ |R|r,η,w(p,s,a)

(S)
∣∣L−1
ω R

∣∣
r−ρ,η−σ,w(p+τ,s,a)

≤ γ−1C2(r/ρ, σ, τ)|R|r,η,w(p,s,a).

hence L−1
ω R ∈ Rr,η−σ(hp,s+σ,a) ∩Rr−ρ,η−σ(hp+τ,s,a).

If R preserves momentum R ∈ Rr,0(hw) , with wj = bjcp, the unique solution of the Homological equation

preserves momentum and satisfies

(M) ‖L−1
ω R‖r,p+τ1 ≤ γ−16τ1(46e27)2+q‖R‖r,p,

so S = L−1
ω R ∈ Rr,0(hw′), with w′j = bjcp+τ1 .

Remark 7.1. As in the abstract case we assume that XR maps Br(hp,s,a)→ hp,s,a and then show that S maps

some smaller ball (because it has smaller radius or is in a stronger topology) to itself. This can be done in two

ways: if we increase the Gevrey regularity index s s+ σ (case G) then the increase can be arbitrarily small,

at the price of an exponential increase in the bound.

If we want to keep s fixed (say that we start with s = a = 0 and want to stay in the Sobolev class) then we

have to increase the regularity p by a fixed amount. The main difference between the cases S and M is that in

the first case one has to decrease r, η and the bound on S diverges as ρ, σ → 0. In the second case, instead we

have to increase the regularity p by a slightly larger amount but then we get a uniform bound for S.

Note that, differently from Proposition 6.1, we cannot consider the purely analytic case (s, p fixed say to 0, 1).

This is due to the fact that in (6.13) we have a much weaker bound for the ratio of the coefficients in (6.12),

w.r.t. the one afforded by (6.6) and (6.10) for the Gevrey and Sobolev cases.
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The following Lemma is the key point in the control of the small divisors appearing in the solution of the

Homological equation. Here we strongly use the fact that we are working with a dispersive PDE on the circle

with superlinear dispersion law.

Lemma 7.1. Consider α,β ∈ NZ with 1 ≤ |α| = |β| <∞. If

(7.1)

∣∣∣∣∣∑
i

(αi − βi)i
2

∣∣∣∣∣ ≤ 10
∑
i

|αi − βi| ,

then for all j such that αj + βj 6= 0 one has

(7.2)
∑
i

|αi − βi|〈i〉θ/2 ≤ C∗

(∑
i

(αi + βi)〈i〉θ − 2〈j〉θ + |π|

)
, C∗ =

13

1− θ

(7.3)
∏
i

(1 + |αi − βi|〈i〉) ≤ e27(1 + |π|)3N6
N∏
l=3

n̂τ0l .

where N = |α|+ |β| and π =
∑
i i(αi − βi) (recall (1.25).

Proof. In appendix C �

Note that

(7.4)

∣∣∣∣∣∑
i

(αi − βi)i
2

∣∣∣∣∣ ≥ 10
∑
i

|αi − βi| =⇒ |ω · (α− β)| ≥ 1 .

Indeed denoting ωj = j2 + ξj〈j〉−q with |ξj | ≤ 1
2 ,

|ω · (α− β)| ≥ 10
∑
j

∣∣αj − βj
∣∣− 1

2

∑
j

∣∣αj − βj
∣∣ ≥ 1.

Proof. In the following, we will compute for each item the corresponding K,K0 defined in (4.8) and (4.10), and

show their finiteness in order to apply Lemma 4.2 and give the explicit upper bounds entailed in Proposition

7.1 (G)-(S)-(M).

Item G) In this case by (6.7)

K = γ sup
j:αj+βj 6=0

e−σ(
∑
i〈i〉

θ(αi+βi)−2〈j〉θ+|π|)

|ω · (α− β)|
.

There are two cases.

If (7.1) does not hold, then by (7.4) |ω · (α− β)| ≥ 1 and by (6.5) and (4.4) we get

γ
e−σ(

∑
i〈i〉

θ(αi+βi)−2〈j〉θ+|π|)

|ω · (α− β)|
≤ 1
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and the bound is trivially achieved.

Otherwise, let us consider the case in which (7.1) holds. By applying Lemma 7.1, since ω ∈ Dγ,q we get:

γ
e−σ(

∑
i〈i〉

θ(αi+βi)−2〈j〉θ+|π|)

|ω · (α− β)|

≤ e−
σ
C∗

∑
i |αi−βi|〈i〉

θ
2
∏
i

(
1 + (αi − βi)

2〈i〉2+q
)

≤ exp
∑
i

[
− σ

C∗
|αi − βi|〈i〉

θ
2 + ln

(
1 + (αi − βi)

2〈i〉2+q
)]

= exp
∑
i

fi(|αi − βi|)(7.5)

where, for 0 < σ ≤ 1, i ∈ Z and x ≥ 0, we defined

fi(x) := − σ

C∗
x〈i〉 θ2 + ln

(
1 + x2〈i〉2+q

)
.

In order to bound (7.5), we need the following lemma, whose proof is postponed to Appendix C.

Lemma 7.2. Setting

i] :=

(
8C∗(q + 3)

σθ
ln

4C∗(q + 3)

σθ

) 2
θ

,

we get

(7.6)
∑
i

fi(|`i|) ≤ 7(q + 3)i] ln i] −
σ

2C∗

(
n̂1(`)

) θ
2

for every ` ∈ ZZ with |`| <∞.

The inequality (G) follows from plugging (7.6) into (7.5) and evaluating the constant.

Item S) In this case K in (4.8) is (recall (6.8))

(7.7) K = γ sup
j:αj+βj 6=0

(
1− ρ

r

)N−2
(

〈j〉2∏
i〈i〉αi+βi

)τ
e−σ|π|

|ω · (α− β)|
,

where N = |α|+ |β|.
As before we consider two cases.

If (7.1) is not satisfied then(7.4) holds and the right hand side of (7.7) is bounded by the quantity in (6.8) and

it is estimated analogusly.

If (7.1) holds instead, by applying formula (6.10), Lemma 7.1 and the fact that ω ∈ Dγ,q we get:(
〈j〉2∏

i〈i〉αi+βi

)τ
1

|ω · (α− β)|
≤
(

〈j〉2∏
i〈i〉αi+βi

)τ∏
i

(
1 + |αi − βi|2〈i〉2+q

)

≤

(
N + |π|∏N
l=3 n̂l

)τe27(1 + |π|)3N6
∏
l≥3

n̂τ0l

2+q

≤ e27(2+q)(N + |π|)τ+9(2+q) ≤ e27(2+q)(N + |π|)3τ .

By using Lemma C.1 (just like explained in detail in formula (6.11) with p1 = 3τ), K in (7.7) is bounded by

e27(2+q)(N + |π|)3τ
(

1− ρ

r

)N−2

e−σ|π|

≤ e27(2+q)23τ+1(3τ)3τ max

{(
2r

ρ

)3τ

,

(
1

σ

)3τ

, 1

}



AN ABSTRACT BIRKHOFF NORMAL FORM THEOREM AND EXPONENTIAL TYPE STABILITY OF THE 1D NLS 31

Item M) Note that in this case the constant in (4.8) amounts to

K0 = γ sup
j∈Z,α 6=β∈NZ

αj+βj 6=0,
∑
i i(αi−βi)=0

(
bjc2∏

ibicαi+βi

)τ1 γ

|ω · (α− β)|
.

We have two cases. If (7.4) holds K0 ≤ γ by (6.16).

Otherwise (7.1) holds and, therefore, (7.3) (note that here π = 0) applies, giving

K0 ≤ sup

(
bjc2∏

ibicαi+βi

)τ1 ∏
i

(
1 + |αi − βi|2〈i〉2+q

)
≤ sup

(
bjc2∏

ibicαi+βi

)τ1
e27(2+q)N6(2+q)

N∏
l=3

n̂
τ0(2+q)
l

since ω ∈ Dγ,q. We claim that

(7.8) N ≤ 4

N∏
l=3

bn̂lc
1

4 ln 2 .

Indeed if N = 2, the inequality is trivial. Since N is even we have to consider only the case N ≥ 4, which

follows by Lemma C.1. Recalling (6.9) we have

(7.9)
∏
i

bicαi+βi =
∏
l≥1

bn̂lc .

Then

sup
j,α,β

αj+βj≥1

bjc2∏
ibicαi+βi

≤ bn̂1c2∏
l≥1bn̂lc

=
bn̂1c∏
l≥2bn̂lc

≤
∑
l≥2bn̂lc∏
l≥2bn̂lc

=
1∏

l≥3bn̂lc
+

∑
l≥3bn̂lc∏
l≥2bn̂lc

,

where the last inequality holds by momentum conservation. Then19

K0 ≤ 2τ1−1

(
1∏

l≥3bn̂lcτ1
+

(
∑
l≥3bn̂lc)τ1∏
l≥2bn̂lcτ1

)
(46e27)2+q

∏
l≥3

bn̂lcτ1/2

≤ 2τ1−1(46e27)2+q

(
1 +

(
∑
l≥3bn̂lc)τ1

bn̂2cτ1
∏
l≥3bn̂lcτ1/2

)

≤ 2τ1−1(46e27)2+q

(
1 +

(bn̂3c1/2 + 4)τ1

bn̂2cτ1

)
by Lemma C.2 with a = 1/2. The estimate on K0, hence inequality (M) follows. �

8. Birkhoff normal form

We are now ready to apply Theorem 1.3 to the three applications G, S, M, defined in page 7. We start by

verifying the assumptions.

Lemma 8.1. The following holds

G) Let s > 0, p > 1/2 and a ≥ 0. Then for all N ≥ 1, 0 < η ≤ s, w := w(p, s, a) and w0 := w(p, s− η, a) satisfy

the Birkhoff assumption at step N and in (1.29) we can take

C = 1 , K, K] ≤ eC1(
N
η )

3
θ
.

19Using that (a+ b)τ1 ≤ 2τ1−1(aτ1 + bτ1 ) for a, b ≥ 0, τ1 ≥ 1.
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S) Let τS = τ , s, a ≥ 0, p ≥ 3τS+1 and set20 N := [p−1
τS

]. Then η > 0, w := w(p, s, a) and21 w0 := w(p− NτS, s, a)

satisfy the Birkhoff assumption at step N and in (1.29) we can take

C ≤ Cmon(4N, η/N, τS) , K ≤ C2(4N, η/N, τS) , K] ≤ C2(4N, η/N, NτS) .

M) Let τM = τ1, p ≥ 3τM + 1 and22 set N := [p−1
τM

]. Then η = 0, w := (bjcp)j∈Z and w0 := (bjcp−NτM)j∈Z satisfy

the ”momentum preserving” Birkhoff assumption at step N and in (5.25) we can take

C0 = 1 , K0, K
]
0 ≤ 6τM(46e27)2+q .

Proof. G) Set

wn,j := w0,je
nη
N
〈j〉θ , ∀n = 1, . . . , N .

The computation of C follows from (6.1); the ones of K,K] from Proposition 7.1.

S) Set

wn,j := w0,j〈j〉nτS , ∀n = 1, . . . , N .

The computation of C follows from (6.8); the ones of K,K] from Proposition 7.1.

M) Set

wn,j := w0,jbjcnτM , ∀n = 1, . . . , N .

The computation of C0 follows from (6.15); the ones of K0,K
]
0 again from Proposition 7.1. �

We now state the Birkhoff Normal Form Theorem (1.3) for the Hamiltonian in (1.21) in the usual three cases.

First we define

r(G) := min

{
δG

√
Ne

1
2C1(

N
ηG

)
3
θ

,

√
R

2Calg(p)

}
, δG :=

√
γR

Calg(p)
√

211eCNem(p, s− ηG, a− a− ηG)|f |a,R

C1(G) :=
eC1(

N
ηG

)
3
θ

27eδ2
G

, C2(G) :=
γ

28eδ2
G

, C3(G) :=
γ

29eδ2
G

(
NeC1(

N
ηG

)
3
θ

4δ2
G

)N

.(8.1)

r(S) := min

{
dS√

NC2(4N, a/2N, NτS)
,

√
R

5 · 2τS+2

}
, where dS :=

√
γR√

217CNem(p− NτS, 0, a/2)|f |a,R
,

C1(S) :=
C2(4N, a/2N, NτS)

27edS
2 , C2(S) :=

γ

28edS
2 ,

C3(S) :=
28CNem(p− NτS, 0, a/2)|f |a,R

eR

(
NCmon(4N, a/2N, τS)C2(4N, a/2N, τS)

4dS
2

)N

,(8.2)

r(M) := min

{
δM√
N
,

√
R

2τM+6

}
, δM :=

√
γR√

217e12τM(46e27)2+q|f |R
,

C1(M) :=
1

29δ2
M

, C2(M) :=
2τM+8|f |R

R
, C3(M) := 2τM+8 |f |R

R

( N

8δ2
M

)N
,

20[·] is the integer part.
21Note that 1 ≤ p− NτS < 1 + τS.
22Note that 1 ≤ p− NτM < 1 + τM.
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Theorem 8.1 (Birkhoff Normal Form). Under the same assumptions of Lemma 8.1 the following holds. Con-

sider the Hamiltonian (1.21), assuming, only in the case M, that f does not depend on x (momentum conserva-

tion). Then for any 0 < r ≤ r there exists two close to identity invertible symplectic change of variables

Ψ,Ψ−1 : Br(hw) 7→ hw , sup|u|w≤r |Ψ
±1(u)− u|w ≤ C1r

3 ≤ 1
8r ,

Ψ ◦Ψ−1u = Ψ−1 ◦Ψu = u , ∀u ∈ B 7
8 r

(hw)(8.3)

such that in the new coordinates

H ◦Ψ = Dω + Z +R ,

for suitable majorant analytic Hamiltonians Z,R ∈ Ar(hw), Z ∈ K, satisfying the estimate

(8.4) sup
|u|w≤r

|XZ |w ≤ C2r
3 , sup

|u|w≤r
|XR|w ≤ C3r

2N+3 ,

XZ (resp. XR), being the hamiltonian vector field generated by the the majorant of Z (resp. R). Moreover, in

the case M, R preserves momentum.

Proof. We use Theorem 1.3 with G P .

G) Setting

(8.5) η = ηG := min

{
a− a

2
, s

}
, r̄ :=

√
R

Calg(p)
,

we have that

(8.6) |P |r̄,η,w0 = |P |r̄,η,w(p,s−η,a)

(5.32)

≤ CNem(p, s− η, a− a− η)|f |a,R
By (1.32) r? ≥ δG ≥ δG (see Appendix A). Then, recalling (1.32) and Lemma 8.1, one can verify that

r̂ ≥ r(G) , Ĉ1 ≤ C1(G) , Ĉ2 ≤ C2(G) , Ĉ3 ≤ C3(G) , .

S) Set

(8.7) η := a/2 , r̄ :=

√
R

Calg(p− NτS)
.

Then Assumption 1 is satisfied by Lemma 8.1 with the same choice of N, w0, w. We have that

(8.8) |P |r̄,η,w0 = |P |r̄,a/2,w(p−NτS)
(5.32)

≤ CNem(p− NτS, 0, a/2)|f |a,R
For the various constants we refer to Appendix A. Recalling τS = τ , we note that

Cmon(4N, η/N, τ) = 22τ+1τ τNτ max {4, (1/2η)}τ = 2(4τ max {4, (1/2η)} N)τ ,

C2(4N, η/N, τ) = 2e27(2+q)(12τ max {4, (1/2η)} N)3τ

C2(4N, η/N, Nτ) = 2e27(2+q)(6Nτ)3Nτ max
{

(8N)
3Nτ
, (N/η)3Nτ

}
= 2e27(2+q)(12τ max

{
4, (2η)−1

}
N2)3Nτ ,(8.9)

we have that for N ≥ 3

(8.10) Cmon(4N, η/N, τ)C2(4N, η/N, τ) ≤
√
C2(4N, η/N, Nτ) .

By (1.32)

r? ≥
√
γR

Calg(p− NτS)
√

211eCNem(p− NτS, 0, a/2)|f |a,R
≥ dS .

Then, recalling (1.32) and (8.10) one has r̂ ≥ r(S). Moreover (recall (1.34))

(8.11) Ĉ1 ≤ C1(S) , Ĉ2 ≤ C2(S) , Ĉ3 ≤ C3(S) .
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Finally the last inequality in (8.3) follows from the second bound in (1.33).

M) Set

(8.12) η := 0 , r̄ :=

√
R

2τM/2Calg,M(p− τMN)
≥
√

R

10 · 2τM
.

Then Assumption 1 is satisfied by Lemma 8.1, case M, with the same choice of N, w0, w. We have that

(8.13) |P |r̄,0,w0 = ‖P‖r̄,p−τMN
(5.33)

≤ 2|f |R
By (1.32)

r? ≥
√
γR√

2τM+17|f |R
Then

r̂ ≥ r(M) , Ĉ1 ≤ C1(M) , Ĉ2 ≤ C2(M) , Ĉ3 ≤ C3(M) .

�

9. Gevrey stability. Proof of Theorem 1.1

Actually we prove of Theorem 1.1 for the slightly longer stability time |t| ≤ 24eδ2G
γδ2 e

(ln
δG
δ )

1+θ/4

, where δG > δG
(recall Appendix A). We set

r := 2δ

and choose

(9.1) N(r) :=

[(
2 ln

2δG
r

)θ/4]
=

[(
2 ln

δG
δ

)θ/4]
.

Recalling (8.5) by Corollary 5.2 solutions of the PDE (1.1) in the space hp,s,a, correspond, by Fourier identifi-

cation (1.19), to orbits of the Hamiltonian System (1.21) in the space

hw with wj = ea|j|+s〈j〉
θ

〈j〉p .

An initial datum u0 satisfying |u0|p,s,a ≤ δ corresponds to23 u0 ∈ hw with |u0|w ≤ δ.
We claim that r ≤ 2δG implies

(9.2)
rNeC1(

N
ηG

)
3
θ

2δG
≤ 1 .

Indeed we have

N(r) ≥ NG := max

{
16(4C1)θ

η3
G

, 2
2θ+4
4−θ

}
and by (9.1) r ≤ 2δGe

− 1
2 (N(r)/2)4/θ and (9.2) follows if we show that the function

N → e−
1
2 (N/2)4/θNeC1(

N
ηG

)
3
θ

is ≤ 1 for N ≥ NG. This is true since the function is decreasing for N ≥ NG and is ≤ 1 for N = NG. This proves the

claim (9.2).

Then we apply Theorem 8.1 in the case G. Recalling (8.1), by (8.4) and (9.2)

C3(G)r2(N+1) ≤ γr2

29eδ2
G

(
r

2δG

)N(r)

=
γδ2

27eδ2
G

(
δ

δG

)N(r)

≤ γδ2

27eδ2
G

e−(ln
δG
δ )

1+θ/4

,

since N(r) ≥
(
ln 2δG

r

)θ/4
=
(
ln δG

δ

)θ/4
. We deduce the stability time by applying Lemma 5.1.

23We still denote it by u0.
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10. Sobolev stability

Before proving Proposition 1.1 we add a comment on the optimality of condition (1.10).

Remark 10.1. We construct a finite dimensional Hamiltonian, which is a reduction of (1.1) to a finite number

of Fourier indices and which exhibits fast drift in a time of order 1. For instance, consider

H(u1, uj) := (1 + V1)|u1|2 + (j2 + Vj)|uj |2 + e−aj Re(|u1|2u1ūj) ,

which is a finite dimensional model for (1.1) with f(x, |u|2) = e−aj cos((j − 1)x)|u|2. Consider now the initial

datum u(0) = (u1(0), uj(0)) = (δ/4, |j|−pδ/4), which clearly has Hp norm < δ. A direct computation shows

that in a time T of order 1, the Sobolev norm of u(T ) is of order δ3e−ajjp hence greater than 4δ if δ2e−ajjp is

large. Maximizing on j we get a constraint of the form δ2e−p(a−1p)p < 1.

Of course this pathological ”fast diffusion” phenomenon comes from the fact that f is NOT traslation invariant

(and hence H does not preserve momentum). Actually, restricting to translation invariant Hamiltonians would

not result in signficantly weaker constraints on the smallness of δ w.r.t. p. This can be seen in the following

example. Consider the familiy of Hamiltonians (in three degrees of freedom)

K(j) := V0|u0|2 + (1 + V1)|u1|2 + (j2 + Vj)|uj |2 + Re(ūj−1
0 uj1ūj)

with the constants of motion

L = |u0|2 + |u1|2 + |uj |2 , M = |u1|2 + j|uj |2 .

Following the same approach as in the previous example one shows that |uj |2 can have a drift of order j−pδ2j

in a time T of order 1. This means that the Sobolev norm of u(T ) is of order δ2jjp. Maximizing on j we get a

constraint of the form δep
1−

< 1.

Proof of Proposition 1.1. As before we set r := 2δ . An initial datum u0 satisfying |u0|L2 + |∂pxu0|L2 ≤ δ

corresponds to24 u0 ∈ hw(p) with |u0|p ≤ δ by (5.28). We apply the Birkhoff Normal Form Theorem 8.1 in the

case S (recall that N =
[
p−1
τS

]
). Recalling the definition of r(S) in (8.2), we verify that, for any N ≥ 1

(10.1) δS(kSp)
−3p ≤ dS

2
√
NC2(4N, a/2N, Nτ)

.

Indeed

dS

2
√
NC2(4N, a/2N, Nτ)

(8.9)
=

dS

2
√

2e27(2+q)/2

1√
N

1

(
√

12τNmax
{

2, a−1/2
}

)3Nτ

≥ dS
√
τ

2
√

2e27(2+q)/2

(√
12

τ
max

{
2, a−1/2

})−3(p−1)

(p− 1)−3(p−1)−1/2

= δS(kS)
−3p(p− 1)−3(p−1)−1/2

setting

δS =
dS
√
τ

2
√

2e27(2+q)/2
k3
S ,

24We still denote it by u0.
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(10.1) follows by verifying that δS ≤ δS and noting that p−3p < (p− 1)−3(p−1)−1/2 for p > 1.

By (8.11) and (8.9)

C3(S)(2δ)2(N+1)

= δ2 210CNem(p− Nτ, 0, a/2)|f |a,R
eR

(
NCmon(4N, a/2N, τ)C2(4N, a/2N, τ)δ2

dS
2

)N

= δ2 210CNem(p− Nτ, 0, a/2)|f |a,R
eR

(
4e27(2+q)33τ (4 max {4, (1/a)})4τδ2

τdS
2

)N

(τN)
4τ+1
τ (τN)

≤ δ2 210CNem(p− Nτ, 0, a/2)|f |a,R
eR

(
4e27(2+q)33τ (4 max {4, (1/a)})4τδ2

τdS
2

) p−1
τ −1

(p− 1)
4τ+1
τ (p−1)

(remember that N = [(p− 1)/τ ]). Then, noting that (p− 1)
4τ+1
τ (p−1) < p5p for p > 1 (recall that τ ≥ 15), we get

C3(S)(2δ)2(N+1) <
1

8TS

p5p

(
δ

δS

)2 p−1
τ

.

We conclude by applying Lemma 5.1 and (5.28)

|u(t)|L2 + |∂pxu(t)|L2 ≤ 2|u(t)|p ≤ 4δ , ∀ |t| ≤ TSp
−5p

(
δS
δ

) 2(p−1)
τS

,

proving (1.11).

Proof of Theorem 1.2. It is similar to the previous case but now we consider

hw with wj = bjcp (and | · |w = ‖ · ‖p) .

We set r = 4δ, an initial datum u0 satisfying 2p|u0|L2 , |u0|L2 + |∂pxu0|L2 ≤ δ corresponds to u0 ∈ hw with

‖u0‖p ≤ 2δ by (5.30). Now we can apply the Birkhoff Normal Form Theorem 8.1 with N = [p−1
τ1

]

(10.2) 4δ ≤ 4
δM√
p
≤ r(M) = min

{
δM√
N
,

√
R√

2τM+4

}
.

Proceeding as in the case S and noting that now

8C3(M)(4δ)2(N+1) = 2τM+12 |f |R
R

(
Nδ2

2δ2
M

)N

δ2 ≤ 2τM+13δ2
M

|f |R
R

(
p− 1

τ1
)
p−1
τ1 (

δ2

2δ2
M

)
p−1
τ1 ≤ 1

TM

(
(p− 1)δ2

8δM
2

) p−1
τM

.

Finally by Corollary 5.1 and (5.30) we get

|u(t)|L2 + |∂pxu(t)|L2 ≤ 2‖u(t)‖p ≤ 8δ , ∀ |t| ≤ TM

(
8δM

2

(p− 1)δ2

) p−1
τ1

,

proving (1.13).

Proof of Corollary 1.1 In case S we start by noticing that for 3p ln(kSp) ≤ ln(δS/δ) the function TS
δ2 (p)−5p

(
δS
δ

) 2(p−1)
τS

is increasing in p.

Let us check that p(δ) defined in (1.14) satisfies (1.10) and is ≥ 3τS + 1 namely, passing to the logarithms

and setting y := ln(δS/δ), we have to check that y
ln(y) > 6τS and 3p ln(kSp) ≤ y. The first bound follows from

the definition of δ̄S. For the second, we have

3p ln(kSp) ≤ 3

(
1 +

1

6

y

ln(y)

)(
ln(kS) + ln(1 +

1

6

y

ln(y)
)

)
≤ y
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provided that25

y ≥ max{kS, 40}.
Now we have to show that

TSe
ln2(δS/δ)

4τ ln ln(δS/δ) ≤ TS(p)
−5p

(
δS
δ

) 2(p−1)
τ

wich amounts to

e
y2

4τ ln y (p)5pe−
2(p−1)
τ y ≤ 1

or equivalently
y2

4τ ln y
+ 5p ln(p)− 2(p− 1)

τ
y ≤ 0 .

Assuming y
ln y > 6, we have 1 + y

6 ln y −
τ
6 < p < y

3 ln y we get

y2

4τ ln y
+ 5p ln(KSp)−

2(p− 1)

τ
y ≤ y2

4τ ln y
+

5

3

y

ln(y)
ln(

y

3 ln(y)
)− 2y(

1

6τ

y

ln(y)
− 1

6
)

≤ − y2

12τ ln y
+ 2y < 0

if y
ln(y) > 24τ > 6. Note that the last inequality holds if y ≥ 24τ2 (recall that τ ≥ 15). Recollecting the

condition that y has to satisfy is

y ≥ max{kS, 24τ2} ,
namely δ ≤ δ̄S.

M) Since we are assuming δ ≤ δ̄M we have that p defined in (1.16) satisfies p > 1 + 3τM. Moreover by (1.16),

the bound (1.12) holds. Then Theorem 1.2 applies and (1.17) follows directly by (1.13).

Part 3. Appendices

Appendix A. Constants.

In this subsection are listed all the constants appearing along the paper. We first introduce some auxiliary

constants. Given t, σ, ζ > 0, p > 1/2, 0 < θ < 1, s, q ≥ 0, we set26

Calg(p) := 2p
(∑
i∈Z
〈i〉−2p

)1/2

, Calg,M(p) :=
√

2

√
2 +

2p+ 1

2p− 1
,

CNem(p, s, t) := Calg(p)
(
es + sup

x≥1
xpe−tx+sxθ

)
, Cmon(t, σ, p) := 2p+1pp max

{
(2t)

p
, σ−p, 1

}
,

C1 := 28 θ−1(q + 3)
(23 · 13(q + 3)

θ(1− θ)

) 2
θ

(
ln
(23 · 13(q + 3)

θ(1− θ)
)) 2

θ+1

, C∗ = 13/(1− θ) ,

C2(t, σ, ζ) := e27(2+q)Cmon(t, σ, 3ζ) ,

τ := τ0(2 + q) , τ0 := 15/2 , τ1 := 2

(
τ0 +

3

2 ln 2

)
(2 + q)

25 Note that the function

y 7→ y − 3

(
1 +

1

6

y

ln(y)

)(
ln y + ln(1 +

1

6

y

ln(y)
)

)
is positive for y ≥ 40.

26Regarding CNem note that

sup
x≥1

xpe−tx+sx
θ
≤ exp

(
(1− θ)

( s
tθ

) 1
1−θ

)
max

{
p

e(1− θ)t
, e
− t(1−θ)

p

}p
.
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Here are the constants appearing in Theorem 1.1:

δG := min


√
R

4Calg(p)
, δGe

−
(

max

{
16(4C1)θη−3

G ,2
2θ+4
4−θ

})4/θ
 , TG :=

24eδG
2

γ
, where

δG :=

√
γR

Calg(p)
√

211eCNem(p, s− ηG, a− a− ηG)|f |a,R
, ηG := min

{
a− a

2
, s

}
.

Here are the constants appearing in Proposition 1.1

τS := τ =
15

2
(2 + q) , δS = min

{ √
3ττγR

210e2τ (kSτ)4τ
√
CNem(p− NτS, 0, a/2)|f |a,R

,

√
R

2τ+5

}

kS :=

√
12

τ
max

{
2, a−1/2

}
, TS =

26e2τ33τ (4 max {4, (1/a)})4τ

τγ
.

Here are the constants in Theorem 1.2

τM := τ1 =

(
15 +

3

ln 2

)
(2 + q) , δM := min

{√τ1δM
4

,

√
R

2τ1+8

}
, TM :=

R

2τ1+13δ2
M |f |R

=
23e6τ1(46e27)2+q

γ
;

where, recalling 8.2,

δM =

√
γR√

217e12τ1(46e27)2+q|f |R
.

Here are the constants appearing in Corollary 1.1:

δ̄S := δSe
−max{kS, 24τ2} , δ̄M :=

δM
4τ1

.

Appendix B. Proofs of the main properties of the norms

Lemma B.1. Let 0 < r1 < r. Let E be a Banach space endowed with the norm | · |E. Let X : Br → E a vector

field satisfying

sup
Br

|X|E ≤ δ0 .

Then the flow Φ(u, t) of the vector field27 is well defined for every

|t| ≤ T :=
r − r1

δ0

and u ∈ Br1 with estimate

|Φ(u, t)− u|E ≤ δ0|t| , ∀ |t| ≤ T .

27Namely the solution of the equation ∂tΦ(u, t) = X(Φ(u, t)) with initial datum Φ(u, 0) = u.
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Proof. Fix u ∈ Br1 . Let us first prove that Φ(u, t) exists ∀ |t| ≤ T. Otherwise there exists a time28 0 < t0 < T

such that |Φ(u, t)|E < r for every 0 ≤ t < t0 but |Φ(u, t0)|E = r. Then, by the fundamental theorem of calculus

(B.1) Φ(u, t0)− u =

∫ t0

0

X(Φ(u, τ))dτ .

Therefore

r − r1 ≤ |Φ(u, t0)|E − |u|E ≤ |Φ(u, t0)− u|E ≤
∫ t0

0

|X(Φ(u, τ))|Edτ ≤ δ0t0

< δ0T = r − r1 ,

which is a contradiction Finally, for every |t| ≤ T,

|Φ(u, t)− u|E ≤
∣∣∣∣∫ t

0

|X(Φ(u, τ))|Edτ
∣∣∣∣ ≤ δ0|t| .

�

Proof of Lemma 2.1. For brevity we set, for every r′ > 0

| · |r′ := | · |r′,η,w .

We use Lemma B.1, with E → hw, X → XS , δ0 → (r+ ρ)|S|r+ρ, r → r+ ρ, r1 → r, T → 8e. Then the fact that

the time 1-Hamiltonian flow Φ1
S : Br(hw)→ Br+ρ(hw) is well defined, analytic, symplectic follows, since for any

η ≥ 0

sup
u∈Br+ρ(hw)

|XS |hw ≤ (r + ρ)|S|r+ρ <
ρ

8e
.

Regarding the estimate (2.3), again by Lemma B.1 (choosing t = 1), we get

sup
u∈Br(hw)

∣∣Φ1
S(u)− u

∣∣
hw
≤ (r + ρ)|S|r+ρ <

ρ

8e
.

Estimates (2.4),(2.5),(2.6) directly follow by (2.7) with h = 0, 1, 2, respectively and ck = 1/k!, recalling that

by Lie series

H ◦ Φ1
S = eadSH =

∞∑
k=0

adkSH

k!
=

∞∑
k=0

H(k)

k!
,

where H(i) := adiS(H) = adS(H(i−1)), H(0) := H.

Let us prove (2.7). Fix k ∈ N, k > 0 and set

ri := r + ρ(1− i

k
) , i = 0, . . . , k .

Note that, by the immersion properties of the norm (recall Remark 2.1)

(B.2) |S|ri ≤ |S|r+ρ , ∀ i = 0, . . . , k .

Noting that

(B.3) 1 +
kri
ρ
≤ k

(
1 +

r

ρ

)
, ∀ i = 0, . . . , k ,

by using k times (2.1) we have

|H(k)|r = |{S,H(k−1)}|r ≤ 4(1 +
kr

ρ
)|H(k−1)|rk−1

|S|rk−1

(B.2)

≤ |H|r+ρ|S|kr+ρ4k
k∏
i=1

(1 +
kri
ρ

)
(B.3)

≤ |H|r+ρ
(

4k

(
1 +

r

ρ

)
|S|r+ρ

)k
.

28We assume t0 positive, the negative case is analogous.
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Then, using kk ≤ ekk!, we get∣∣∣∣∣∣
∑
k≥h

ckH
(k)

∣∣∣∣∣∣
r

≤
∑
k≥h

|ck||H(k)|r ≤ |H|r+ρ
∑
k≥h

(
4e

(
1 +

r

ρ

)
|S|r+ρ

)k

= |H|r+ρ
∑
k≥h

(|S|r+ρ/2δ)k
(2.2)

≤ 2|H|r+ρ(|S|r+ρ/2δ)h .

Finally, if S and H satisfy mass conservation so does each adkSH, k ≥ 1, hence H ◦ Φ1
S too. �

Proof of Lemma 3.1 . We first prove (i). It is easily seen that:

X
(j)
Hη

(u) = i
∑

α,β∈NZ

|Hα,β|βjeη|π(α−β)|uαūβ−ej .

Now

|XHη
(u)|w ≤ |XHη

(u)|w , u = (|uj |)j∈Z
hence, in evaluating the supremum of |XHη

|w over |u|w ≤ r we ca restrict to the case in which u = (uj)j∈Z has

all real positive components. Hence

|H|r,η,w = r−1 sup
|u|w≤r

∣∣∣∣∣∣
( ∗∑

|Hα,β|βjeη|π(α−β)||u|α+β−ej

)
j∈Z

∣∣∣∣∣∣
w

.

Then

(B.4) |H|r,η,w =
1

2r
sup
|u|w≤r

∣∣∣∣(W (j)
η (u)

)
j∈Z

∣∣∣∣
w

where

W (j)
η (u) =

∗∑
|Hα,β|

(
αj + βj

)
eη|π(α−β)|uα+β−ej ,

since, by the reality condition 1.23, we have

∗∑
|Hα,β|βjeη|π(α−β)|uα+β−ej =

∗∑
|Hα,β|αjeη|π(α−β)|uα+β−ej =

1

2
W (j)
η (u).

By the linear map

Lr,w : `2 → hw , yj 7→
r

wj
yj = uj ,

the ball of radius 1 in `2 is isomorphic to the the ball of radius r in hw, namely Lr,w(B1(`2)) = Br(hw). We have

Y
(j)
H (y; r, η, w) =

1

2
W (j)
η (Lr,wy) .

Then (i) follows.

In order to prove item (ii) we rely on the fact that, since we are using the η-majorant norm, the supremum

over y in the norm is achieved on the real positive cone. Moreover, given u, v ∈ `2, if

|uj | ≤ |vj | , ∀j ∈ Z

then |u|`2 ≤ |v|`2 . �
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Proof of Lemma 5.4 . Let us look at the time evolution of |v(t)|2w. By construction and Cauchy-Schwarz

inequality

2|v(t)|w
∣∣∣∣ ddt |v(t)|w

∣∣∣∣ =

∣∣∣∣ ddt |v(t)|2w
∣∣∣∣ = 2|Re(v, v̇)hw | = 2|Re(v,XR)hw |

≤ 2|v(t)|w|XR|w ≤ 2r|v(t)|w|R|r,η,w
as long as |v(t)|w ≤ r; namely

(B.5)

∣∣∣∣ ddt |v(t)|w
∣∣∣∣ ≤ r|R|r,η,w

as long as |v(t)|w ≤ r.
Assume by contradiction that there exists a time29

0 < T0 <
1

8|R|r,η,w
such that

(B.6)
∣∣∣|v(t)|w − |v0|w

∣∣∣ < r

8
, ∀ 0 ≤ t < T0 , but

∣∣∣|v(T0)|w − |v0|w
∣∣∣ =

r

8
.

Then

|v(t)|w ≤ |v0|w +
r

8
< r ∀ 0 ≤ t ≤ T0 .

By (B.5) we get ∣∣∣|v(T0)|w − |v0|w
∣∣∣ ≤ r|R|r,η,wT0 <

r

8
,

which contradicts (B.6), proving (5.26).

Proof of Lemma 5.5 . We first note that (see, e.g. Lemma 17 of [BDG10]) for p > 1/2 and every sequence

{xi}i∈Z, xi ≥ 0, (∑
i∈Z

xi

)2

≤ c
∑
i∈Z

(
〈i〉p〈j − i〉p

〈j〉p
xi

)2

,

with c := 4p
∑
i∈Z〈i〉−2p = (Calg(p))

2. Then

|f ? g|2p,s,a ≤
∑
j

e2s〈j〉θe2a|j|〈j〉2p
(∑

i

|fi||gj−i|
)2

≤ c
∑
j

e2s〈j〉θe2a|j|
∑
i

〈i〉2p〈j − i〉2p|fi|2|gj−i|2

= c
∑
i

e2s〈i〉θe2a|i|〈i〉2p|fi|2
∑
j

〈j − i〉2pe2s〈j−i〉θe2a|j−i||gj−i|2

= c|f |2p,s,a|g|
2
p,s,a

Regarding the second estimate, we set

φ(i, j) :=
bjc

bicbj − ic
, ∀ i, j ∈ Z .

Note that

(B.7) φ(i, j) = φ(j, i) = φ(−i,−j) .

We claim that

(B.8) φ(i, j) ≤ 1 .

29The case T0 < 0 is analogous.
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Indeed by (B.7) we can consider only the case j ≥ 0. Since φ(−|i|, j) ≤ φ(|i|, j) we can consider only the case

i ≥ 0. Again by (B.7) we can assume j ≥ i. In particular we can take j > i > 0, (B.8) being trivial in the cases

j = i, i = 0. We have

φ(i+ 1, i) =
i+ 1

2bic
≤ 3

4
, φ(j, 1) =

j

2(j − 1)
≤ 1 .

Then it remains also to discuss the case j − 2 ≥ i ≥ 2; we have

φ(i, j) =
j

i(j − i)
=

1

i
+

1

j − i
≤ 1 ,

proving (B.8).

For q ≥ 0 set

(B.9) cq := sup
j∈Z

∑
i∈Z

(φ(i, j))q = sup
j≥0

∑
i∈Z

(φ(i, j))q .

We claim that

(B.10) cq ≤ 4 + 2
q + 1

q − 1
<∞ , ∀ q > 1 .

Indeed, since bjc/bj + 1c ≤ 1 and bjc/bj − 1c ≤ 3/2 for j ≥ 0, we have30

cq = sup
j≥0

 bjcq

2q−1bj + 1cq
+

1

2q−1
+

bjcq

2q−1bj − 1cq
+

∑
i≤−2, 2≤i≤j−2, i≥j+2

(φ(i, j))q


≤ 23−q + sup

j≥0

∑
i≥2

bjcq

iq(j + i)q
+

∑
2≤i≤j−2

(
1

i
+

1

(j − i)

)q
+
∑
i≥j+2

bjcq

iq(i− j)q


≤ 23−q +

∑
i≥2

1

iq
+ 2q−1

∑
2≤i≤j−2

(
1

iq
+

1

(j − i)q

)
+
∑
i≥j+2

1

(i− j)q

≤ 4 + 2
q + 1

q − 1
,

using that (x+ y)q ≤ 2q−1(xq + yq) for x, y ≥ 0 and that31

∑
i≥2

i−q ≤ q + 1

2q(q − 1)
.

Note that for every q, q0 ≥ 0 we have

(B.11) cq0+q ≤ cq0

since

cq0+q := sup
j∈Z

∑
i∈Z

(φ(i, j))q0(φ(i, j))q
(B.8)

≤ sup
j∈Z

∑
i∈Z

(φ(i, j))q0 = cq0 .

We now note that for p > 1/2, j ∈ Z and every sequence {xi}i∈Z, xi ≥ 0, we have by Cauchy-Schwarz

inequality (∑
i∈Z

xi

)2

=

(∑
i∈Z

(φ(i, j))p(φ(i, j))−pxi

)2

≤ c2p
∑
i∈Z

(
(φ(i, j))−pxi

)2
,

30Note that the term
(

1
i

+ 1
(j−i)

)q
for j = 4 and i = 2 is 1 for every q.

31 ∑
i≥2 1−q ≤ 2−q +

∫∞
2 x−qdx
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with c2p defined in (B.9). Using the above inequality we get

‖f ? g‖2p ≤
∑
j

bjc2p
(∑

i

|fi||gj−i|
)2

≤ c2p
∑
j

∑
i

bic2pbj − ic2p|fi|2|gj−i|2

= c2p
∑
i

bic2p|fi|2
∑
j

bj − ic2p|gj−i|2

= c2p‖f‖2p‖g‖2p .

The proof ends recalling (B.10). �

Lemma B.2 (Nemitskii operators). Let p > 1/2. (i) Fix s ≥ 0, a0 ≥ 0. Consider a sequence F (d) =
(
F

(d)
j

)
j∈Z
∈

hp,s,a0 , d ≥ 1, such that

(B.12)

∞∑
d=1

d|F (d)|p,s,a0Rd <∞

for some R > 0.

For u = (uj)j∈Z let ū = (u−j)j∈Z and consider the Hamiltonian

H(u) =

∞∑
d=1

F (d) ? u ? · · · ? u︸ ︷︷ ︸
d times

? ū ? · · · ? ū︸ ︷︷ ︸
d times


0

.

For all (η, a, r) such that η + a ≤ a0 and (Calg(p)r)
2 ≤ R, we have that H ∈ Hr,η(hp,s,a) and

|H|r,η,w(p,s,a) ≤ r−1
∞∑
d=1

d|F (d)|p,s,a0(Calg(p)r)
2d−1 <∞.

(ii) Analogously if F (d) are constants satisfying

(B.13)

∞∑
d=1

d|F (d)|Rd <∞

and (Calg,M(p)r)
2 ≤ R, then H ∈ Hr,p with

(B.14) ‖H‖r,p ≤ 2pr−1
∞∑
d=1

d|F (d)|(Calg,M(p)r)
2d−1 <∞.

Proof. (i) By definition the η-majorant Hamiltonian is

Hη =
∑
d

∑
j0,j1...,j2d

j0+
∑2d
i=1(−1)iji=0

eη|πj1,...,j2d ||F (d)
j0
|uj1uj2uj3 . . . uj2d

where

πj1,...,j2d =

2d∑
i=1

(−1)iji = −j0 ,

hence

Hη =
∑
d

F (d)
η ? u ? · · · ? u︸ ︷︷ ︸

d times

? ū ? · · · ? ū︸ ︷︷ ︸
d times


0

, F (d)
η :=

(
eη|j||F (d)

j |
)
j∈Z

.
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consequently

X
(j)
Hη

=
∑
d

d

F (d)
η ? u ? · · · ? u︸ ︷︷ ︸

d times

? ū ? · · · ? ū︸ ︷︷ ︸
d−1 times


j

.

Moreover

|XHη
|p,s,a ≤

∑
d

d(Calg(p))
2d−1|F (d)

η |p,s,a(|u|p,s,a)2d−1 .

Since

|F (d)
η |p,s,a = |F (d)|s,a+η,p ≤ |F (d)|p,s,a0

we get

|XHη
|p,s,a ≤

∑
d

d(Calg(p))
2d−1|F (d)|p,s,a0(|u|p,s,a)2d−1 .

Therefore

|H|(p,s,a,0)
r,p,η = r−1

(
sup

|u|p,s,a<r

∣∣∣XHη

∣∣∣
p,s,a

)
≤ r−1

∑
d

d|F (d)|p,s,a0(Calg(p)r)
2d−1 <∞.

(ii) The proof is analogous to point (i). �

Proof of Proposition 6.2 . We start by Taylor expanding H in homogeneous components. The majorant

analiticity implies that for a homogeneous component of degree d one has

|H(d)|r,η,w(p,s,a) ≤ |H|r,η,,w(p,s,a)

Now let us consider the polinomial map (homogeneous of degree d− 1) XH(d) : hp,s,a → hp,s,a; as is habitual we

identify the polynomial map with the corresponding symmetric multilinear operator M (d−1) : hd−1
p,s,a → hp,s,a.

Since we are in a Hilbert space, one has that

|M |op
p,s,a := sup

u1,...ud−1∈hp,s,a
|ui|p,s,a≤1

|M (d−1)(u1, . . . , ud−1)|p,s,a = sup
|u|p,s,a≤1

|M (d−1)(u, . . . , u)|p,s,a

= sup
|u|p,s,a≤1

|XH(d) |p,s,a ≤ r−d+2|H|r,η,w(p,s,a)

for all η ≥ 0. Now let us compute the tame norm on a homogeneous component, i.e.

sup
|u|p0,s,a≤r−ρ

|M (d−1)(ud−1)|p,s,a
|u|p,s,a

= sup
|u|p0,s,a≤r−ρ

|Np(d−1)(ud−1)|p0,s,a
|u|p,s,a

where

Np
(d−1,j)(ud−1) = 〈j〉p−p0

∑
j1,...,jd−1

|M (d−1,j)
j1,...jd−1

|uj1 . . . ujd−1
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now setting π =
∑
i ji − j we have

Np
(d−1)(u1, . . . , ud−1)

≤ (d− 1)〈j〉p−p0
∑

j1,...,jd−1:
|j1|≥|ji|

|M (d−1,j)
j1,...jd−1

|uj1 . . . ujd−1

≤ (d− 1)
∑

j1,...,jd−1:
|j1|≥|ji|

(∑
i

〈ji〉+ |π|

)p−p0
|M (d−1,j)

j1,...jd−1
|uj1 . . . ujd−1

≤ (d− 1)2p−p0C(η, p)
∑

j1,...,jd−1

eη|π||M (d−1,j)
j1,...jd−1

|uj1 . . . ujd−1

+ (d− 1)2p−p0(d− 1)p−p0
∑

j1,...,jd−1

|M (d−1,j)
j1,...jd−1

|〈j1〉p−p0uj1 . . . ujd−1

which means that for any |u|p0,s,a ≤ r − ρ one has

|Np(d−1)(ud−1)|p0,s,a
≤ (d− 1)2p−p0C(η, p)|H(d)|r−ρ,η,w(p0,s,a)|u|p0,s,a + 2p−p0(d− 1)p−p0+1|M |op

p0,s,a(r − ρ)d−2|u|p,s,a

≤ (d− 1)2p−p0(C(η, p) + (d− 1)p−p0)(1− ρ

r
)d−2|H|r,η,w(p0,s,a)|u|p,s,a

We conclude that

sup
|u|p0,s,a≤r

|XH |p,s,a
|u|p,s,a

≤ 2p−p0 |H|r,η,w(p0,s,a)

∑
d≥2

(d− 1)
(
C(η, p) + (d− 1)p−p0

)
(1− ρ

r
)d−2

and the thesis follows since the right hand side is convergent. �

Appendix C. Small divisor estimates

Let us start with two techincal lemmata.

Lemma C.1. For p, β > 0 and x0 ≥ 0 we have that

max
x≥x0

xpe−βx =

{
(p/β)pe−p if x0 ≤ p/β,
xp0e
−βx0 if x0 > p/β.

Lemma C.2. Let 0 < a < 1 and x1 ≥ x2 ≥ . . . ≥ xN ≥ 2. Then∑
1≤`≤N x`∏
1≤`≤N x

a
`

≤ x1−a
1 +

2

axa1
.

Proof. By induction over N . It is obviously true for N = 1. Assume that it hols for N and prove it for N+1. �
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Proof of Lemma 6.1 . The fact that this (6.5) holds true when π = 0 is proven in [Bou96b] and [CLSY].

The bound (6.5) is equivalent to proving

(C.1)
∑
l≥1

n̂θl − 2n̂θ1 + θ|π| −
(
2− 2θ

)∑
l≥3

n̂θl ≥ 0.

i.e.

(C.2)
∑
l≥2

n̂θl − n̂θ1 + θ|π| −
(
2− 2θ

)∑
l≥3

n̂θl ≥ 0.

Inequality (C.2) then follows from

(C.3) f(|π|) :=
∑
l≥2

n̂θl −

|π|+∑
l≥2

n̂l

θ

+ θ|π| −
(
2− 2θ

)∑
l≥3

n̂θl ≥ 0,

which we are now going to prove. We shall show that the function f(x) is increasing in x ≥ 0; then the result

follows by showing f(0) ≥ 0, which is what was proven by Yuan and Bourgain.

We now verify that f ′(x) ≥ 0. By direct computation we see that

f ′(x) = −θ

x+
∑
l≥2

n̂l

θ−1

+ θ,

so it suffices to prove that

(C.4) 1 ≤

x+
∑
l≥2

n̂l

1−θ

,

which is indeed true, since
∑
i≥2 n̂i ≥ n̂2 ≥ 1 holds, by mass conservation. �

Proof of Lemma 7.1 . In this subsection we will take

(C.5) α,β ∈ NZ with 1 ≤ |α| = |β| <∞ .

Given u ∈ ZZ, with |u| <∞, consider the set

{j 6= 0 , repeated |uj | times} ,

where D <∞ is its cardinality. Define the vector m = m(u) as the reordering of the elements of the set above

such that |m1| ≥ |m2| ≥ · · · ≥ |mD| ≥ 1. Given α 6= β ∈ NZ, with |α| = |β| < ∞ we consider m = m(α − β)

and n̂ = n̂(α + β). If we denote by D the cardinality of m and N the one of n̂ we have

(C.6) D + α0 + β0 ≤ N

and

(C.7) (|m1|, . . . , |mD|, 1, . . . , 1︸ ︷︷ ︸
N−D times

) ≤ (n̂1, . . . n̂N ) .

Set

σl = sign(αml − βml) .

For every function g defined on Z we have that∑
i∈Z

g(i)|αi − βi| = g(0)|α0 − β0|+
∑
l≥1

g(ml) ,∑
i∈Z

g(i)(αi − βi) = g(0)(α0 − β0) +
∑
l≥1

σlg(ml) .(C.8)
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Lemma C.3. Assume that g defined on Z is non negative, even and not decreasing on N. Then, if α 6= β,

(C.9)
∑
i∈Z

g(i)|αi − βi| ≤ 2g(m1) +
∑
l≥3

g(n̂l) .

Proof. By (C.8) ∑
i∈Z

g(i)|αi − βi| = g(0)|α0 − β0|+
∑
l≥1

g(ml)

≤ g(1)(α0 + β0) + 2g(m1) +
∑
l≥3

g(ml)

and (C.9) follows by (C.6) and (C.7). �

We denote as before the momentum by π so by (C.8)

(C.10) π =
∑
i∈Z

(αi − βi)i =
∑
l

σlml

and

(C.11)
∑
i

(αi − βi)i
2 =

∑
l

σlm
2
l .

Analogously

(C.12)
∑
i

|αi − βi| = D + |α0 − β0|
(C.6)

≤ N .

Finally note that

(C.13) σlσl′ = −1 =⇒ ml 6= ml′ .

Note that

(C.14) α 6= β =⇒ N ≥ 3 or π 6= 0 ,

indeed, by mass conservation, |α| = |β| = 1 therefore if N = 2 we get α − β = ej1 − ej2 so if π = 0 we have

α = β. Note also that

(C.15) α 6= β =⇒ D ≥ 1 ,

indeed, if D = 0 then αl − βl = 0 for every |l| ≥ 1 and, by mass conservation α0 = β0, contradicting α 6= β .

Lemma C.4. Given α 6= β ∈ NZ, with 1 ≤ |α| = |β| <∞ and satisfying (7.1), we have32

(C.16) |m1| ≤ 20|π|+ 31
∑
l≥3

n̂2
l .

Proof. In the case D = 1 by (C.10) |π| = |m1| and (C.16) follows. Let us now consider the case D = 2, i.e.

α− β = σ1em1
+ σ2em2

+ (α0 − β0)e0 .

Let us start with the case σ1σ2 = 1. By mass conservation |σ1 + σ2| = |β0 − α0| = 2. By (C.12) N ≥ 4. Then

conditions (7.1) and (C.12) imply that

m2
1 +m2

2 ≤ 20 + 10|α0 − β0| = 40.

32Note that by (C.14) the r.h.s. of (C.16) is at least 20.
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Then

|m1| ≤
√

40 ≤
√

40

2

N∑
`=3

n̂2
`

since N ≥ 4 and n̂` ≥ 1. When σ1σ2 = −1 we have m1 6= m2, |π| = |m1 −m2| ≥ 1 and by mass conservation

α0 − β0 = 0. Then

(|m1|+ |m2|)(|m1| − |m2|) = m2
1 −m2

2 ≤ 20 .

If |m1| > |m2| then

(C.17) |m1| ≤ 20 ≤ 20|π| .

Otherwise m1 = −m2 and, therefore, |π| = 2|m1|, completing the proof in the case D = 2.

Let us now consider the case D ≥ 3. By (7.1),(C.11) and (C.12)

m2
1 + σ1σ2m

2
2 ≤ 10N +

D∑
l=3

m2
l ≤ 10N +

N∑
l=3

n̂2
l

= 20 +

N∑
l=3

(10 + n̂2
l )≤20 + 11

N∑
l=3

n̂2
l

N≥3

≤ 31

N∑
l=3

n̂2
l .

If σ1σ2 = 1 then

|m1|, |m2| ≤
√

31
∑
l≥3

n̂2
l .

If σ1σ2 = −1

(|m1|+ |m2|)(|m1| − |m2|) = m2
1 −m2

2 ≤ 31
∑
l≥3

n̂2
l .

Now, if |m1| 6= |m2| then

|m1|+ |m2| ≤ 31
∑
l≥3

n̂2
l .

Conversely, if |m1| = |m2|, by (C.13), m1 6= m2, hence m1 = −m2. By substituting this relation into (C.10),

we have

2|m1| ≤ |π|+
∑
l≥3

|ml| ≤ |π|+
∑
l≥3

n̂2
l ,

concluding the proof. �

Conclusion of the proof of Lemma 7.1. As above, given α,β ∈ NZ, with 1 ≤ |α| = |β| < ∞ we consider

m = m(α− β) and n̂ = n̂(α + β). Note that N := |α + β| ≥ 2.

We have33 ∑
i

|αi − βi|〈i〉θ/2
(C.9)

≤ 2|m1|
θ
2 +

∑
l≥3

n̂
θ
2

l

(C.16)

≤ 2

20|π|+ 31
∑
l≥3

n̂2
l

 θ
2

+
∑
l≥3

n̂
θ
2

l

≤ 2(20|π|)
θ
2 + 2(31)

θ
2

∑
l≥3

n̂θl +
∑
l≥3

n̂
θ
2

l

≤ 13

1− θ

(1− θ)|π|+ (2− 2θ)

∑
l≥3

n̂θl

 ,(C.18)

33Using that for x, y ≥ 0 and 0 ≤ c ≤ 1 we get (x+ y)c ≤ xc + yc.
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using that 1− θ ≤ 2− 2θ for 0 ≤ θ ≤ 1. Then by Lemma 6.1 and (C.18) we get∑
i

|αi − βi|〈i〉θ/2 ≤ 13

1− θ

(
(1− θ)|π|+

∑
i

〈i〉θ(αi + βi) + θ|π| − 2n̂θ1

)

≤ 13

1− θ

[∑
i

〈i〉θ(αi + βi) + |π| − 2〈j〉θ
]
,

proving (7.2).

Let us now prove (7.3) passing to the logarithm. We have

(C.19)

∑
i

ln(1 + |αi − βi|〈i〉)

=
∑
|i|≤1

ln(1 + |αi − βi|) +
∑
|i|≥2

ln(1 + |αi − βi||i|)

≤ 3 ln(1 +N) +
∑
|i|≥2

ln(1 + |αi − βi||i|)

≤ 3 ln 2 + 3 lnN +
3

2

∑
|i|≥2

|αi − βi| ln |i| ,

using that 1 + cx ≤ 3
2x

c for c ≥ 1, x ≥ 2. If αi − βi = 0 for every |i| ≥ 2 then (7.3) follows. Assume now that

αi − βi 6= 0 for some |i| ≥ 2. By (C.14) we have

(C.20) N ≥ 3 or π 6= 0 .

We claim that, when N ≥ 3,

(C.21) ln

(
N∑
l=3

n̂2
l

)
≤ lnN +

N∑
l=3

ln n̂2
l .

Let S := {3 ≤ l ≤ N, s.t. n̂l ≥ 2}. If S = ∅ we have the equality in (C.21). Otherwise
∑
l∈S n̂

2
l ≥ 4 and34

ln

(
N∑
l=3

n̂2
l

)
≤ ln

(
N +

∑
l∈S

n̂2
l

)
≤ lnN +

∑
l∈S

ln n̂2
l ,

proving (C.21).

We claim that

(C.22) ln

(
20|π|+ 31

N∑
l=3

n̂2
l

)
≤ ln(1 + |π|) + lnN +

N∑
l=3

ln n̂2
l + ln 20 + ln 31 .

Indeed consider first the case π = 0, then N ≥ 3 by (C.20) and (C.22) follows by (C.21). Consider now the case

|π| ≥ 1. If N < 3 (C.22) follows (there is no sum). If N ≥ 3 we have35

ln

(
20|π|+ 31

N∑
l=3

n̂2
l

)
≤ ln (20|π|) + ln

(
31

N∑
l=3

n̂2
l

)

≤ ln(|π|) + ln

(
N∑
l=3

n̂2
l

)
+ ln 20 + ln 31 .

Recalling (C.21) this complete the proof of (C.22).

34 Use that ln(x+ y) ≤ lnx+ ln y if x, y ≥ 2.
35Recall footnote 34.
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Let us continue the proof of (7.3). Set g(i) := 0 if |i| ≤ 1 and g(i) := ln |i| if |i| ≥ 2 and apply (C.9) to

(C.19); we get ∑
|i|≥2

|αi − βi| ln |i| ≤ 2 ln |m1|+
∑
l≥3

ln |n̂l|

(C.16)

≤ 2 ln

20|π|+ 31
∑
l≥3

n̂2
l

+
∑
l≥3

ln n̂l

(C.22)

≤ 2 ln(1 + |π|) + 2 lnN + 5

N∑
l=3

ln n̂l + 16 .

Inserting in (C.19) we obtain∑
i

ln(1 + |αi − βi|〈i〉) ≤ 3 ln(1 + |π|) + 6 lnN +
15

2

N∑
l=3

ln n̂l + 27 .

concluding the proof of (7.3). �

Proof of Lemma 7.2 . First of all we note that∑
i

fi(|`i|) =
∑

i s.t. `i 6=0

fi(|`i|)

since fi(0) = 0. We have that36

fi(x) ≤ − σ

C∗
〈i〉 θ2 x+ 2 ln(x) + (2 + q) ln〈i〉+ 1 , ∀x ≥ 1 .

We have that

max
x≥1

(
− σ

C∗
〈i〉 θ2 x+ 2 ln(x)

)
=


− σ

C∗
〈i〉 θ2 if 〈i〉 ≥ i0 ,

−2 + 2 ln
2C∗
σ
− θ ln〈i〉 if 〈i〉 < i0 ,

where

i0 :=

(
2C∗
σ

) 2
θ

,

since the maximum is achieved for x = 1 if 〈i〉 ≥ i0 and x = 2C∗
σ〈i〉θ/2 if 〈i〉 < i0. Note that i0 ≥ e. Then we get∑

i

fi(|`i|) =
∑

i s.t. `i 6=0

fi(|`i|) ≤

∑
〈i〉≥i0 s.t. `i 6=0

(
(2 + q) ln〈i〉+ 1− σ

C∗
〈i〉 θ2

)
+
∑
〈i〉<i0

(
2 ln

2C∗
σ

+
(

2 + q − θ
)

ln〈i〉
)
.

We immediately have that∑
〈i〉<i0

(
2 ln

2C∗
σ

+
(

2 + q − θ
)

ln〈i〉
)
≤ 3i0

(
2 ln

2C∗
σ

+ (2 + q) ln i0

)

= 3

(
2 +

2

θ
(2 + q)

)(
2C∗
σ

) 2
θ

ln
2C∗
σ

.

36Using that ln(1 + y) ≤ 1 + ln y for every y ≥ 1.
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Moreover, in the case 〈i〉 ≥ i0 ≥ e,

(2 + q) ln〈i〉+ 1− σ

C∗
〈i〉 θ2 ≤ (2 + q + 1) ln〈i〉 − σ

C∗
〈i〉 θ2 =

2

θ
(2 + q + 1)

(
ln〈i〉 θ2 − 2C〈i〉 θ2

)
where

C :=
σθ

4C∗(2 + q + 1)
< 1 .

Therefore

S∗ :=
∑

〈i〉≥i0 s.t. `i 6=0

(
(2 + q) ln〈i〉+ 1− σ

C∗
〈i〉 θ2

)
satisfies

S∗ ≤
∑

〈i〉≥i0 s.t. `i 6=0

2

θ
(2 + q + 1)

(
ln〈i〉 θ2 − 2C〈i〉 θ2

)
.

We have that37

ln〈i〉 θ2 − 2C〈i〉 θ2 ≤ −C〈i〉 θ2 , when 〈i〉 ≥ i∗ :=

(
2

C
ln

1

C

) 2
θ

.

Note that

i] ≥ max{i0, i∗} .

Therefore

S∗ ≤ 2

θ
(2 + q + 1)

 ∑
〈i〉<i]

ln〈i〉 θ2 −
∑

〈i〉≥i] s.t. `i 6=0

(
C〈i〉 θ2

)
≤ (2 + q + 1)

(
3i] ln i] −

2C

θ
M

θ
2

`

)
.

where

M` := max{|i| ≥ i], s.t. `i 6= 0}

and M` := 0 if |`i| = 0 for every |i| ≥ i]. In conclusion we get

∑
i

fi(|`i|) ≤ 3

(
2 +

2

θ
(2 + q)

)(
2C∗
σ

) 2
θ

ln
2C∗
σ

+ (2 + q + 1)

(
3i] ln i] −

2C

θ
M

θ
2

`

)
≤ 6(q + 3)i] ln i] −

σ

2C∗
M

θ
2

`

≤ 7(q + 3)i] ln i] −
σ

2C∗

(
n̂1(`)

) θ
2 ,

noting that n̂1(`) = M` if M` 6= 0, otherwise n̂1(`) < i], and, therefore,

σ

2C∗

(
n̂1(`)

) θ
2 <

σ

2C∗
i
θ
2

] ≤ (q + 3)i] ln i]

�

37Using that, for every fixed 0 < C ≤ 1, we have Cx ≥ lnx for every x ≥ 2
C

ln 1
C
.
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Proof of Lemma 4.1 . For ` ∈ ZZ with 0 < |`| <∞ we define

R` :=

ω ∈ Ωq : |ω · `| ≤ γ

1 + |`0|µ1

∏
n 6=0

1

(1 + |`n|µ1 |n|µ2+q)


− if ` is such that `n = 0 ∀n 6= 0 then

µ(R`) =
γ

1 + |`0|µ1

− Otherwise: let s = s(`) > 0 be the smallest positive index i such that |`i| + |`−i| 6= 0 and S = S(`) be the

biggest. Then we have38

µ(R`) ≤
γsq

(1 + |`0|µ1)

∏
n6=0

1

(1 + |`n|µ1 |n|µ2+q)
.

Let us write

1

1 + |`0|µ1

∏
n 6=0

1

(1 + |`n|µ1 |n|µ2+q)
=

1

1 + |`0|µ1

∏
n>0

1

(1 + |`n|µ1 |n|µ2+q)

1

(1 + |`−n|µ1 |n|µ2+q)

=
1

1 + |`0|µ1

∏
s(`)≤n≤S(`)

1

(1 + |`n|µ1 |n|µ2+q)

1

(1 + |`−n|µ1 |n|µ2+q)

Now

µ(Ωq \ Dγ,q) ≤
∑
`

µ(R`) =
∑
`0

γ

1 + |`0|µ1
(C.23)

+
∑
s>0

∑
`:s(`)=S(`)=s

1

1 + |`0|µ1

γsq

|`s|(1 + |`s|µ1 |s|µ2+q)

1

(1 + |`−s|µ1 |s|µ2+q)
(C.24)

+
∑

0<s<S

∑
`:s(`)=s,
S(`)=S

γsq

1 + |`0|µ1

∏
s≤n≤S

1

(1 + |`n|µ1 |n|µ2+q)

1

(1 + |`−n|µ1 |n|µ2+q)
.(C.25)

Let us estimate (C.24)∑
s>0

∑
`0∈Z

1

1 + |`0|µ1

∑
`s,`−s∈Z
|`s|+|`−s|>0

γsq

(1 + |`s|µ1 |s|µ2+q)

1

(1 + |`−s|µ1 |s|µ2+q)

≤ c(µ1)γ
∑
s>0

sq
∑

`s,`−s∈Z
|`s|+|`−s|>0

1

(1 + |`s|µ1 |s|µ2+q)

1

(1 + |`−s|µ1 |s|µ2+q)

Now since
∞∑
h=1

1

(1 + hµ1 |n|µ2+q)
≤
∞∑
h=1

1

hµ1 |n|µ2+q
≤ c(µ1)

|n|µ2+q

we have ∑
h∈Z

1

(1 + |h|µ1 |n|µ2+q)
≤ 1 +

2c(µ1)

|n|µ2+q
.

Then we have ∑
`s,`−s∈Z
|`s|+|`−s|>0

1

(1 + |`s|µ1 |s|µ2+q)

1

(1 + |`−s|µ1 |s|µ2+q)
≤ c1(µ1)

|s|µ2+q

38Assume, e.g. that `s 6= 0, then |∂ξsω · `| ≥ s−q .
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and consequently (C.24) is bounded by

c2(µ1)γ
∑
s>0

|s|b ≤ c3(µ1, µ2)γ.

Regarding the third line in (C.23), we note that for all n we have∑
`n,`−n∈Z

1

(1 + |`n|µ1 |n|µ2+q)

1

(1 + |`−n|µ1 |n|µ2+q)
≤
(

1 + 2
c(µ1)

|n|µ2+q

)2

.

Hence ∑
`:s(`)=s,
S(`)=S

1

1 + |`0|µ1

∏
s≤n≤S

1

(1 + |`n|µ1 |n|µ2+q)

1

(1 + |`−n|µ1 |n|µ2+q)

=
∑
`0∈Z

1

1 + |`0|µ1
×

∑
`s,`−s∈Z
|`s|+|`−s|>0

1

(1 + |`s|µ1 |s|µ2+q)

1

(1 + |`−s|µ1 |s|µ2+q)

×
∑

`S ,`−S∈Z
|`S |+|`−S |>0

1

(1 + |`S |µ1 |S|µ2+q)

1

(1 + |`−S |µ1 |S|µ2+q)

×
∏

s<n<S

∑
`n,`−n∈Z

1

(1 + |`n|µ1 |n|µ2+q)

1

(1 + |`−n|µ1 |n|µ2+q)

≤ c4(µ1)

sµ2+qSµ2+q

∏
s<n<S

(
1 + 2

c(µ1)

|n|µ2+q

)2

≤ c4(µ1)

sµ2+qSµ2+q
exp

∑
n≥1

ln

(
1 + 2

c(µ1)

|n|µ2+q

)2


≤ c5(µ1, µ2)

sµ2+qSµ2+q
.

Then, multiplying by γsq and taking the
∑

0<s<S , we have that also (C.25) is bounded by some constant

Cmeas(µ1, µ2)γ. �
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[BFG18] J. Bernier, E. Faou, and B. Grébert. Rational normal forms and stability of small solutions to nonlinear schrödinger

equations, 2018. arXiv:1812.11414.



54 LUCA BIASCO, JESSICA ELISA MASSETTI, AND MICHELA PROCESI

[BFN15] A. Bounemoura, B. Fayad, and L. Niederman. Double exponential stability for generic real-analytic elliptic equilibrium

points. 2015. Preprint ArXiv : arxiv.org/abs/1509.00285.
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Astérisque, 341, 2012.

[DS04] J.-M. Delort and J. Szeftel. Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres.

Int. Math. Res. Not., (37):1897–1966, 2004.

[DS06] J.-M. Delort and J. Szeftel. Bounded almost global solutions for non Hamiltonian semi-linear Klein-Gordon equations

with radial data on compact revolution hypersurfaces. Ann. Inst. Fourier (Grenoble), 56(5):1419–1456, 2006.
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