
NORMAL FORMS FOR PERTURBATIONS OF SYSTEMS

POSSESSING A DIOPHANTINE INVARIANT TORUS

JESSICA ELISA MASSETTI

Abstract. We give a new proof of 1967’s Moser normal form theorem for

real analytic perturbations of vector fields possessing a reducible Diophantine

invariant quasi-periodic torus. The proposed approach, based on an inverse

function theorem in analytic class, is flexible and can be adapted to several

contexts. This allows us to prove in a unified framework the persistence, up

to finitely many parameters, of quasi-periodic normally hyperbolic reducible

invariant tori for vector fields originating from dissipative generalizations of

Hamiltonian mechanics. As a byproduct, generalizations of Herman’s twist

theorem and Rüssmann’s translated curve theorem are proved.
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1. Introduction

1.1. Moser’s normal form. The starting point of this article is Moser’s 1967

theorem [23] which, although it has been used by various authors, has remained

relatively unnoticed for several years. We present an alternative proof of this result,

relying on a more geometrical and conceptual construction, and we use it as inspi-

ration in order to prove new normal form theorems. We believe that such theorems

shall be useful to prove other results regarding the persistence of Diophantine tori.

Although the difficulties contained in this proof are the same as in the original one
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(proving the fast convergence of a Newton-like scheme), it relies on a relatively gen-

eral inverse function theorem - Theorem A.1 - (unlike in Moser’s approach), follow-

ing an alternative strategy with respect to the one proposed by Zehnder in [34,35].

Recently Wagener in [32] generalized the theorem to vector fields of different kind

of regularity, focusing on possible applications in the context of bifurcation theory.

We focus here on the analytic category.

Let us introduce Moser’s normal form and the frame in which the results will be

stated. Let V be the space of germs of real analytic vector fields along Tn × {0} in

Tn ×Rm. Let us fix α ∈ Rn and A ∈ Matm(R) a diagonalizable matrix of possibly

multiple or possibly zero eigenvalues a1, . . . , am ∈ Cm. The focus of our interest is

on the affine subspace of V consisting of vector fields of the form

(1.1) u(θ, r) = (α+O(r), A · r +O(r2)),

where O(rk) stands for terms of order ≥ k which may depend on θ as well. We will

denote this subset with U(α,A).

Vector fields in U(α,A) possess a reducible invariant quasi-periodic torus Tn0 :=

Tn × {0} of Floquet exponents a1, . . . , am.

We will refer to α1, . . . , αn, a1, . . . , am as the characteristic numbers or character-

istic frequencies.

Let Λ be the subspace of V of vector fields of the form

λ(θ, r) = (β, b+B · r), β ∈ Rn, b ∈ Rm, B ∈ Matm(R)

such that A · b = 0, [A,B] = 0.
(1.2)

In the following we will refer to λ as (external) parameters or counter terms.

Let G be the space of germs of real analytic isomorphisms of Tn × Rm of the form

(1.3) g(θ, r) = (ϕ(θ), R0(θ) +R1(θ) · r),

ϕ being a diffeomorphism of the torus fixing the origin and R0, R1 being respec-

tively an Rm-valued and a GLm(R)-valued functions defined on Tn such that 1

ΠkerAR0(0) = 0 and Πker[A,·](R1(0)− I) = 0 .

In order to avoid resonances and small divisors, we impose the following Diophan-

tine conditions on the characteristic numbers, for some real positive γ, τ

(1.4)

|k · α| ≥ γ

|k|τ
, ∀k ∈ Zn \ {0}

|ık · α− ai| ≥
γ

(1 + |k|)τ
, ∀k ∈ Zn and 1 ≤ i ≤ m such that ai 6= 0

|ık · α+ ai − aj | ≥
γ

(1 + |k|)τ
, ∀k ∈ Zn and 1 ≤ i, j ≤ m, i 6= j such that ai 6= aj ,

where |k| = |k1|+ · · ·+ |kn|.
It is a known fact that if τ is large enough and γ small enough, the measure of the

set of ”good frequencies” tends to the full measure as γ tends to 0. See [24,25] and

1We denoted Π∗ the projection on the vector space indicated in subscript and I the identity

matrix.
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Λ ≡ RN

G∗U(α,A)

V

g∗u

g∗u + λ

Figure 1. Geometrical interpretation of Moser’s theorem.

references therein. Also, remark that only the pure imaginary parts of the Floquet

exponents may interfere and create small divisors, due to the factor ı in front of

k · α. We will indicate with Dγ,τ the set of characteristic numbers satisfying the

Diophantine conditions (1.4).

In section 2.1 we will introduce complex extensions of manifolds and define the

corresponding spaces of real analytic vector fields having such an extension. We

shall endow such spaces with a Banach norm. All the closeness conditions appearing

in the statements of this section have thus to be understood as referred to that norm.

See formula (2.1).

Theorem 1.1 (Moser 1967). If v ∈ V is close enough to u0 ∈ U(α,A), there exists

a unique triplet (g, u, λ) ∈ G × U(α,A)× Λ, in the neighborhood of (id, u0, 0), such

that v = g∗u+ λ.

The notation g∗u indicates the push-forward of u by g: g∗u = (g′ · u) ◦ g−1.

Although the presence of the counter-term λ = (β, b + B · r) breaks the dynam-

ical conjugacy down, it is a finite dimensional obstruction: geometrically, in the

neighborhood of (id, u0, 0) the G-orbit of U(α,A) is a submanifold of V of finite

co-dimension N ≤ n + m + m2. This co-dimension depends on β ∈ Rn and the

dimension of the kernels of A and [A, ·].
Zhender’s approach and ours differ for the following reason, although both rely on

the fact that the convergence of the Newton scheme is somewhat independent of

the internal structure of variables.

Inverting the operator

φ : (g, u, λ) 7→ g∗u+ λ = v,

as we will in section 2, is equivalent to solving implicitly the pulled-back equation

(g∗ = g−1
∗ )

Φ(g, u, λ; v) = g∗(v − λ)− u = 0,

with respect to u, g and λ, as Zehnder did.

The problem is that whereas φ is a local diffeomorphism (in the sense of scales of
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Banach spaces), the linearization of Φ

∂Φ

∂(g, u, λ)
(g, u, λ; v) · (δg, δu, δλ) =

[
g∗(λ− v), g′−1 · δg

]
+ g∗δλ+ δu,

where [·, ·] is the Lie Bracket, is invertible in no neighborhood of Φ = 0. It is

invertible in a whole neighborhood of Φ = 0 only up to a second order term (see

Zehnder [34, §5]), which prevents us from using a Newton scheme in a straightfor-

ward manner. In section 2 we give the functional setting in which we prove the

theorem of Moser.

1.2. Persistence of tori: elimination of parameters. The fact that the sub-

manifold G∗U(α,A) has finite co-dimension leaves the possibility that in some cases

the obstructions represented by the counter terms can be even totally eliminated:

if the system depends on a sufficient number of free parameters - either internal

or external parameters - and λ smoothly depends on them we can try to tune the

parameters so that λ = 0.

When λ = 0 we have g∗u = v: the image g(Tn0 ) is invariant for v and u determines

the first order dynamics along this torus.

When g∗u+ λ = v, we will loosely say that

− Tn0 persists up to twist, if b = 0 and B = 0

− Tn0 persists up to translation, if β = 0 and B = 0

− Tn0 persists up to twist-translation, if B = 0.

The infinite dimensional conjugacy problem is reduced to a finite dimensional one.

In some cases the crucial point is to allow frequencies (α1, . . . , αn, a1, . . . , am) to

vary, using the fact that λ is Whitney-smooth with respect to them. Herman

understood the power of this reduction in the 80′s (see [29]) and other authors

(Rüssmann, Sevryuk, Chenciner, Broer-Huitema-Takens, Féjoz...) adopted this

technique of ”elimination of parameters” to prove invariant tori theorems in mul-

tiple contexts, at various level of generality, contributing to clarify this procedure.

See [4, 6, 7, 29,30] at instance.

1.3. Main results. The proposed geometrization of Moser’s result raises different

questions about the equivariance of the correction with respect to the groupoid

G and its canonical sub-groupoids. In section 3 and 4 we study some of these

equivariance properties in some particular cases issued from Hamiltonian dynamics

and its dissipatives versions issued from Celestial Mechanics. As a by-product,

several twisted-torus and translated-torus theorems are given (see section 5).

1.3.1. Hamiltonian-dissipative systems. We start by recalling the classic Hamilton-

ian counter part of Moser’s theorem (see section 3).

On Tn×Rn , if UHam(α, 0) ⊂ U(α,A) is the space (of germs) of Hamiltonian vector

fields of the form (1.1) (hence α is Diophantine and A = 0), contained in the space

VHam ⊂ V of Hamiltonian vector fields, and if GHam ⊂ G is the space of germs of

exact-symplectic isomorphisms of the form

g(θ, r) = (ϕ(θ), tϕ′(θ)−1 · (r + S′(θ))),
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where ϕ is an isomorphism of Tn fixing the origin and S a function on Tn fixing

the origin, the space of counter terms is reduced to the set of λ = (β, 0), β ∈ Rn:

we have Herman’s ”twisted conjugacy” theorem, see [13,14,16].

Theorem (Herman). Let α be Diophantine and u0 ∈ UHam(α, 0). If v ∈ VHam

is sufficiently close to u0, the torus Tn0 persists up to twist. In particular, the

conjugacy (up to twist) is given by an exact-symplectic transformation.

• In section 4 we prove a first dissipative-generalization of this classic result by

considering the affine spaces2

UHam(α,−η) := UHam(α, 0)⊕ (−ηr ∂r) ⊂ VHam ⊕ (−ηr ∂r),

where η ∈ R, by extending the normal direction with the constant linear term

−ηr (when η > 0 we speak of ”radial dissipation”), but keeping the same space

of exact-symplectic isomorphisms GHam and Hamiltonian corrections λ = (β, 0).

Theorem A. Fix η0 > 0 and α Diophantine. There exists ε > 0 such that for

any η ∈ [−η0, η0], letting u0 ∈ UHam(α,−η), if v ∈ VHam ⊕ (−ηr ∂r) is ε-close

to u0 the torus Tn0 persists up to twist and its final normal dynamics is always

given by −η.

Moreover, the conjugacy (up to twist) is given by an exact-symplectic transfor-

mation.

Obviously, Theorem A reduces to Herman’s theorem when η = 0.

We stress the fact that the number of counter terms breaking the dynamical

conjugacy is the same as in the purely Hamiltonian context (a twisting term

β ∂θ, β ∈ Rn in the angle’s direction). Moreover, we control both the tangent

and the normal dynamics of the torus, which survive perturbations (up to twist)

uniformly with respect to dissipation (as opposed to the classic normally hyper-

bolic frame). See Remark 4.1 in the proof of Proposition 4.1.

In the general non symplectic case, if A has simple non zero eigenvalues, the cor-

rections space is immediately given by the set of λ = (β,B ·r), with B a diagonal

matrix.

A diagram summarizing these results is given at the end of section 4.

• In UHam(α,−η) let ÛHam(α,−η) be the space of those vector fields that satisfy

a torsion hypothesis (coming from Hamiltonians with non degenerate quadratic

term). In this case, we can consider the space of perturbations

VHam ⊕ (−ηr + ζ)∂r,

where ζ ∈ Rn, but extend the space of transformations to the space Gω of sym-

plectic isomorphisms of the form

g(θ, r) = (ϕ(θ), tϕ′(θ)−1 · (r + S′(θ) + ξ)), ξ ∈ Rn.

The space of counter terms becomes the set of translations in action λ = (0, b).

2We noted ∂r = (∂r1 , . . . , ∂rn ) and omitted the tensor product sign r ⊗ ∂r
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Theorem B (vector fields à la Rüssmann). Fix η0 > 0 and α Diophantine.

There exists ε > 0 such that for any η ∈ [−η0, η0], letting u0 ∈ ÛHam(α,−η), if

v ∈ VHam ⊕ (−ηr + ζ)∂r is ε-close to u0 the torus Tn0 persists up to translation

and its final normal dynamics is always given by −η.

Moreover, the conjugacy (up to translation) is given by a symplectic transforma-

tion.

As in Theorem A, the bound on admissible perturbations is uniform with respect

to η and the translated torus g(Tn0 ) is dynamically characterised by the same

initial frequencies (α,−η).

Theorem B can be seen as a multidimensional generalization for vector fields in

this class of Rüssmann’s translated curve theorem [27].

1.3.2. General-dissipative systems. At the expense of changing its final (constant)

normal dynamics (by conjugating v − λ to a vector field u characterized by a

different A), we can prove that an α-quasi-periodic Diophantine torus resists general

perturbations. The following results will be proved in section 5, where a more

functional statement will be given (Theorem 5.1 and 5.2).

On Tn × Rm, let u ∈ U(α,A), defined in expression (1.1) be such that A has

simple, real, non zero eigenvalues a1, . . . , am. This hypothesis of course implies that

the only frequencies that can cause small divisors are the tangential ones α1, . . . , αn,

so that we only need to require the standard Diophantine condition on α.

Theorem C (Twisted torus). Let α be Diophantine, let A ∈ Matm(R) have real,

simple, non zero eigenvalues and let u0 ∈ U(α,A). There exists ε > 0 such that, if

v ∈ V is ε-close to u0, there exists A′ close to A such that the torus Tn0 persists up

to twist and its final normal dynamics is given by A′.

Let m ≥ n and consider u ∈ U(α,A). Here we loosely say that u has twist if the

matrix term u1 : Tn → Matn×m(R) in

u(θ, r) = (α+ u1(θ) · r +O(r2), A · r +O(r2)),

is such that
∫
Tn u1(θ) dθ has maximal rank n.

Theorem D (Translated torus). Let α be Diophantine, let A ∈ Matm(R) have

real, simple eigenvalues and let u0 ∈ U(α,A) have twist. There exists ε > 0 such

that, if v ∈ V is ε-close to u0, there exists A′ close to A such that the torus Tn0
persists up to translation and its final normal dynamics is given by A′.

1.4. An application to Celestial Mechanics. The motivation of the previous

geometric results on normal forms for dissipative systems comes from Celestial

Mechanics. These normal forms provide ready-to-use theorems that in some cases

fit very well concrete problems issued from Celestial Mechanics. Besides, if on the

one hand these theorems clarify in a neat way the ”lack of parameters” problem,

on the one other the procedure of elimination of parameters highlights relations

between physical parameters and the existence of invariant tori in the system.

To give a major exemple, we conclude the paper with an application of Theorem

B to the problem of persistence of quasi-periodic attractors in the spin-orbit system;



NORMAL FORMS & DIOPHANTINE TORI 7

this astronomical problem amounts to studying the dynamics of the rotation about

its spin axis of a non-rigid and non-elastic body whose center of mass revolves along

a given elliptic Keplerian orbit around a fixed massive point (see section 6.2 for the

precise formulations of the model). A study of this problem using a PDE approach

was given in [5], while a generalization in higher dimension was presented in [31],

but using Lie series techniques instead.

For the 2n-dimensional model on Tn × Rn we consider the n-parameters family

of vector fields of the form

v̂ = v − η(r − Ω)∂r

where v ∈ VHam is a perturbation of u0 ∈ ÛHam(α, 0) with non-degenerate torsion,

η ∈ R a friction constant and Ω ∈ Rn a vector of external free parameters. By simple

application of the translated torus Theorem B and the implicit function theorem

in finite dimension, the persistence result is phrased as follows (see Theorem 6.1 of

section 6.1.1).

Theorem (spin-orbit in n degrees of freedom). Fix η0 > 0, α ∈ Rn Diophantine,

and let u0 ∈ ÛHam(α, 0). There exists ε > 0 such that, for any η ∈ [−η0, η0], if v

is ε-close to u0, there exists a unique frequency adjustment Ω ∈ Rn close to 0, a

unique u ∈ ÛHam(α,−η) and a unique g ∈ Gω such that v̂ verifies g∗u = v̂. Hence

v̂ possesses an invariant α-quasi-periodic torus. This torus is η-normally attractive

(resp. repulsive) if η > 0 (resp. η < 0).

This result is finally applied to the astronomical spin-orbit problem. This prob-

lem is modelled by the following one-parameter family of non autonomous real

analytic vector fields on T× R

v = (α+ r,−ηr + η(ν − α)− ε∂θf(θ, t)),

where ν ∈ R is a free parameter. By extending the phase space in the usual

way, we get the autonomous Hamiltonian-dissipative system whose corresponding

Hamiltonian is

H(θ, r) = αr1 + r2 +
1

2
r2
1 + εf(θ, r).

By applying the translated torus Theorem B and the elimination of the translation

parameter, the result can be stated as follows.

Theorem (Surfaces of invariant tori). Let ε0 be the maximal value that the per-

turbation can attain. Every Diophantine α identifies a surface (ε, η) 7→ ν(ε, η) in

the space (ε, η, ν) = [0, ε0]× [−η0, η0]× R, which is analytic in ε, smooth in η, for

which the following holds: for any parameters (ε, η, ν(ε, η)), v̂ admits an invariant

α-quasi-periodic torus. This torus is η-normally attractive (resp. repulsive) if η > 0

(resp. η < 0).

All the appropriate reductions made (see Corollary 6.1), the proof is a partic-

ular case of Theorem B ”à la Rüssmann” and the elimination of the translation

parameter. See Theorem 6.2 and Corollary 6.2.
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2. The normal form of Moser

Theorem 1.1 will be deduced by the abstract inverse function Theorem A.1 and

the regularity propositions A.1-A.2-A.3 contained in Appendix A.

2.1. Complex extensions. Let us extend the tori

Tn = Rn/2πZn and Tn0 = Tn × {0} ⊂ Tn × Rm,

as

TnC = Cn/2πZn and TnC = TnC × Cm

and, letting s > 0, consider the corresponding s-neighborhoods defined using `∞-

balls (in the real normal bundle of the torus):

Tns =

{
θ ∈ TnC : max

1≤j≤n
|Im θj | ≤ s

}
and Tns = {(θ, r) ∈ TnC : |(Im θ, r)| ≤ s},

where |(Im θ, r)| := max (max1≤j≤n |Im θj |,max1≤j≤m |rj |).

Let now f : Tns → C be holomorphic, and consider its Fourier expansion f(θ, r) =∑
k∈Zn fk(r) ei k·θ, noting k · θ = k1θ1 + . . . + knθn. In this context we introduce

the so called ”weighted norm”:

(2.1) |f |s :=
∑
k∈Zn

|fk| e|k|s, |k| = |k1|+ . . .+ |kn|,

where |fk| = sup|r|<s |fk(r)|. Whenever f : Tns → Cn, |f |s = max1≤j≤n(|fj |s), fj
being the j-th component of f(θ, r).

It is a trivial fact that the classical sup-norm is bounded from above by the weighted

norm:

sup
z∈Tns

|f(z)| ≤ |f |s

and that |f |s < +∞ whenever f is analytic on its domain, which necessarily con-

tains some Tns′ with s′ > s. In addition, the following useful inequalities hold if f, g

are analytic on Tns′

|f |s ≤ |f |s′ for 0 < s < s′,

and

|fg|s′ ≤ |f |s′ |g|s′ .

Moreover, one can show that if f is analytic on Tns+σ and g is a diffeomorphism of

the form (1.3) sufficiently close to the identity, then |f ◦ g|s ≤ Cg|f |s+σ, where Cg
is a positive constant depending on |g − id|s. For more details about the weighted

norm, see for example [8, 22].

In general for complex extensions Us and Vs′ of Tn×Rm, we will denote A(Us, Vs′)

the set of real holomorphic functions from Us to Vs′ and A(Us), endowed with the

s-weighted norm, the Banach space A(Us,C).

Eventually, let E and F be two Banach spaces,
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− We indicate contractions with a dot ” · ”, with the convention that if l1, . . . , lk+p ∈
E∗ and x1, . . . , xp ∈ E

(l1 ⊗ . . .⊗ lk+p) · (x1 ⊗ . . .⊗ xp) = l1 ⊗ . . .⊗ lk〈lk+1, x1〉 . . . 〈lk+p, xp〉.

In particular, if l ∈ E∗, we simply denote ln = l ⊗ . . .⊗ l.

− If f is a differentiable map between two open sets of E and F , f ′(x) is considered

as a linear map belonging to F ⊗ E∗, f ′(x) : ζ 7→ f ′(x) · ζ; the corresponding

norm will be the standard operator norm

|f ′(x)| = sup
ζ∈E,|ζ|E=1

|f ′(x) · ζ|F .

Notations. In the course of the paper we will define subsets of the three spaces

of germs of transformations G, GHam, Gω introduced in sections 1.1-1.3, by adding

superscripts ∗σ and subscripts ∗s. A superscript σ > 0 indicates the set of σ-close to

the identity diffeomorphisms, a subscript s > 0 indicates the s-width of analyticity

of the diffeomorphism in the considered set.

2.2. Space of conjugacies. Let

χs := {v ∈ A(Tns ,Cn) : v(0) = 0}

be the space of vector fields on the torus vanishing at the origin, endowed with the

norm | · |s.
Let Ds be the space of maps ϕ ∈ A(Tns ,TnC) which are real holomorphic isomor-

phisms from the interior of Tns to its image and let Dσs be the neighborhood of the

identity, identified with maps ϕ = id +v : Tns → TnC, where v = ϕ− id ∈ χs is such

that |v|s < σ. If σ is small enough, according to the inverse function theorem B.1,

such a map is a biholomorphism on Tns′ for some s′ > 0.

Let Gs be the affine space passing through the identity and directed by {(ϕ− id, R0 + (R1 − I) · r)},
where ϕ− id ∈ χs, while R0 ∈ A(Tns ,Cm) and R1 ∈ A(Tns ,GLm(C)) are such that

ΠkerAR0(0) = 0 and Πker[A,·](R1(0)− I) = 0.

Let then Gσs be the neighborhood of the identity in Gs, consisting of the maps

g(θ, r) = (ϕ(θ), R0(θ) +R1(θ) · r)

such that

|ϕ− id|s < σ

and

|R0(θ) +R1(θ) · r − r|s < σ.

g

Tns+σ

Tns
Tn0

g(Tns )

g(Tn0 )

Figure 2. Deformed complex domain
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The ”Lie Algebra” TidGσs of Gσs , consists of maps

ġ(θ, r) =
(
ϕ̇(θ), Ṙ0(θ) + Ṙ1(θ) · r

)
.

Here ġ lies in A(Tns ,Cn+m); more specifically ϕ̇ ∈ χs, Ṙ0 ∈ A(Tns ,Cm) and Ṙ1 ∈
A(Tns ,Matm(C)). We endow this space with the norm

|ġ|s = max
1≤j≤n+m

(|ġj |s).

2.3. Spaces of vector fields.

− Let Vs = A(Tns ,Cn+m), endowed with the norm

|v|s := max
1≤j≤n+m

(|vj |s),

and V =
⋃
s Vs.

− For α ∈ Rn and A ∈ Matn(R), let Us(α,A) be the affine subspace of Vs consisting

of vector fields of the form

u(θ, r) =
(
α+O(r), A · r +O(r2)

)
.

2.4. The normal form operator φ. According to Theorem B.1 and Corollary

B.1, the family of operators

(2.2) φ : Gσ/ns+σ × Us+σ(α,A)× Λ→ Vs, (g, u, λ) 7→ g∗u+ λ,

is now defined. We will always assume that 0 < s < s+ σ < 1 and σ < s.

We want to solve

φ(g, u, λ) = v,

for v close to φ(id, u0, 0) = u0.

The drawback of focusing on φ is that we will need the germs of g∗u + λ and v

to match on the unknown torus g(Tn0 ) and need to pay attention to composition

operators in order not to shrink artificially the domains of analyticity, because of

the rigidity of analytic maps. In this purpose, given a diffeomorphism g ∈ Gσs and

a real analytic vector field v on g(Tns ), we define the following deformed norm

|v|g,s := |g∗v|s
depending on g, where the notation g∗ = g−1

∗ stands for the pull-back of v.

In the following we do not intend to be optimal.

2.5. Cohomological equations. Here we present three derivative operators and

estimate the solutions of the three associated cohomological equations which, in the

proof of Proposition 2.1, will allow us to straighten the first order dynamics of the

torus at the infinitesimal level.

A vector α ∈ Rn is identified with a constant vector field on the torus Tn, thus

with the derivation operator

Lα : A(Tns+σ)→ A(Tns ), f 7→ Lαf = f ′ · α :=

n∑
j=1

αj
∂f

∂θj
.
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Let now α ∈ Rn and M ∈ Matm(R), a diagonalizable matrix of simple, non zero

eigenvalues µ = (µ1, . . . , µm) ∈ Cm satisfy the following Diophantine conditions

|k · α| ≥ γ

|k|τ
, ∀k ∈ Zn \ {0}(2.3)

|ık · α+ µj | ≥
γ

(1 + |k|)τ
, ∀k ∈ Zn, j = 1, . . . ,m,(2.4)

|ık · α+ l · µ| ≥ γ

(1 + |k|)τ
, ∀(k, l) ∈ Zn × Zm \ {0}, |l| = 2.(2.5)

Lemma 1 (Straightening the dynamics on the torus). Let α ∈ Rn satisfy condition

(2.3). For every g ∈ A(Tns+σ) of zero average, there exists a unique preimage

f ∈ A(Tns ) by Lα of zero average satisfying the following estimate

|f |s =
∣∣L−1
α g

∣∣
s
≤ C1

γ

1

σn+τ
|g|s+σ,

C1 being a constant depending only on the dimension n and the exponent τ .

Proof. Let

g(θ) =
∑

k∈Zn\{0}

gke
i k·θ,

be the Fourier expansion of g. The coefficients gk decay exponentially:

|gk| =
∣∣∣∣∫

Tn
g(θ)e−i k·θ

dθ

2π

∣∣∣∣ ≤ |g|s+σe−|k|(s+σ),

by deforming the path of integration to Im θj = − sgn(kj)(s + σ). Expanding the

term Lαf too, we see that a formal solution of Lαf = g is given by

(2.6) f =
∑

k∈Zn\{0}

gk
i k · α

ei k·θ.

Taking into account the Diophantine condition (2.3) we have

|f |s ≤
|g|s+σ
γ

∑
k

|k|τe−|k|σ ≤
2n|g|s+σ

γ

∑
`≥1

(
`+ n+ 1

`

)
e−`σ`τ

≤
4n|g|s+σ
γ(n− 1)!

∑
`≥1

(n+ `− 1)n−1+τe−`σ

≤
4n|g|s+σ
γ(n− 1)!

∫ ∞
1

(`+ n− 1)n+τ−1e−(`−1)σ d`.

The integral is equal to

σ−τ−nenσ
∫ ∞
nσ

`τ+n−1e−` d`

< σ−τ−nenσ
∫ ∞

0

`τ+n−1e−` d` = σ−τ−nenσΓ(τ + n).

Hence f , of zero average, belongs to A(Tns ) and satisfies the claimed estimate. �

Let us define

Lα +M : A(Tns+σ,Cm)→ A(Tns ,Cm), f 7→ Lαf +M · f = f ′ · α+M · f.
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Lemma 2 (Relocating the torus). Let α ∈ Rn and M ∈ GLm(R) satisfy the

Diophantine condition (2.4). For every g ∈ A(Tns+σ,Cm), there exists a unique

preimage f ∈ A(Tns ,Cm) by Lα +M . Moreover the following estimate holds

|f |s =
∣∣∣(Lα +M)

−1
g
∣∣∣
s
≤ C2

γ

1

σn+τ
|g|s+σ,

C2 being a constant depending only on the dimension n and the exponent τ .

Proof. Let us start for simplicity with the scalar case g ∈ A(Tns+σ) and M = µ 6=
0 ∈ R. Expanding both sides of Lαf + µf = g we see that the Fourier coefficients

of the formal preimage f are given by

fk =
gk

ik · α+ µ
,

hence

(2.7) f = (Lα + µ)−1g =
∑
k∈Zn

gk
ik · α+ µ

eik·θ.

Taking now into account the Diophantine condition (2.4) and doing the same sort

of calculations as in Lemma 1, we get the wanted estimate.

The case where M is a diagonal matrix can be recovered from the scalar one by

working component wise.

When M is diagonalizable, let P ∈ GLn(C) be such that PMP−1 is diagonal.

Considering f ′ · α+M · f = g, and left multiplying both sides by P , we get

f̃ ′ · α+ PMP−1f̃ = g̃,

where we have set g̃ = Pg and f̃ = Pf . This equation has a unique solution with

the wanted estimates. We just need to put f = P−1f̃ .

�

Eventually, let us consider the space of analytic functions F on Tns+σ with values

in Matm(C) and define the operator

Lα + [M, ·] : A(Tns+σ,Matm(C)) → A(Tns ,Matm(C))

F 7→ LαF + [M,F ]
.

With the notation LαF (or F ′ ·α) we mean that we are applying the Lie derivative

operator to each component F ij of the matrix F ; [M,F ] is the usual commutator.

Lemma 3 (Straightening the first order dynamics). Let α ∈ Rn and M ∈ GLm(R),

satisfy the Diophantine conditions (2.3) and (2.5). For every G ∈ A(Tns+σ,Matm(C))

whose diagonal elements have zero average
∫
Tn G

i
i

dθ
(2π)n = 0, there exists a unique

F ∈ A(Tns ,Matm(C)) with
∫
Tn F

i
i

dθ
(2π)n = 0, such that the matrix equation

LαF + [M,F ] = G

is satisfied; moreover the following estimate holds

|F |s ≤
C3

γ

1

σn+τ
|G|s+σ,

C3 being a constant depending only on the dimension n and the exponent τ .
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Proof. Let us start with the diagonal case. Let M = diag(µ1, . . . , µm), where

µ1, . . . , µm ∈ R, and F ∈ Matm(C) be given, the commutator [M,F ] reads

(2.8)


0 (µ1 − µ2)F 1

2 (µ1 − µ3)F 1
3 . . . (µ1 − µm)F 1

m

(µ2 − µ1)F 2
1 0 (µ2 − µ3)F 2

3 . . . (µ2 − µm)F 2
m

...
...

...
...

...

(µm − µ1)Fm1 (µm − µ2)Fm2 . . . . . . 0

,
where we called F ij the element corresponding to the i-th line and j-th column of

the matrix F (θ). Using the components notation, the matrix reads(
[A,F ]ij

)
=
(
(µi − µj)F ij

)
,

and shows all zeros along the diagonal. Adding it now up with the matrix LαF ,

which reads

(2.9)

LαF
1
1 . . . LαF

1
m

... LαF
i
j

...

LαF
n
1 . . . LαF

m
m

,
we see that to solve the equation LαF + [M,F ] = G, we need to solve m equations

of the type of Lemma 1 and m2−m equations of the type of Lemma 2. Expanding

every element in Fourier series, we see that the formal solution is given by a matrix

F whose diagonal elements are of the form

F jj =
∑

k∈Zn\{0}

Gjj,k
ik · α

eik·θ,

while the non diagonal are of the form

F ij =
∑
k∈Zn

Gij,k
ik · α+ (µi − µj)

eik·θ.

Recall that the eigenvalues of M are simple and different from 0. By the Diophan-

tine conditions (2.3)-(2.5), via the same kind of calculations we did in the previous

lemmata, we get the wanted estimate.

To recover the general case, we consider P ∈ GLm(C) such that PMP−1 is

diagonal and the equation

Lα(PFP−1) + P [M,F ]P−1 = PGP−1,

and observe that we can see P [M,F ]P−1 as

P [M,F ]P−1 = PMP−1PFP−1 − PFP−1PMP−1 =
[
PMP−1, PFP−1

]
.

Letting F̃ = PFP−1 and G̃ = PGP−1, F̃ satisfies the wanted estimates, and

G = P−1G̃P . �

We address the reader looking for optimal estimates to the paper of Rüssmann

[28].

Remark that in case of real eigenvalues, the condition (2.4) is redundant. Condition

(2.3) suffices, choosing γ < minj(|Reµj |).
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2.6. Inversion of the operator φ: estimates on φ′−1 and φ′′. The following

theorem represents the main result of this first part from which Moser’s Theorem

1.1 follows.

Let us fix u0 ∈ Us(α,A) and denote Vσs =
{
v ∈ Vs :

∣∣v − u0
∣∣
s
< σ

}
the ball of radius

σ centered at u0.

Theorem 2.1. The operator φ is a local diffeomorphism in the sense that for any

η < s < s+ σ < 1 there exist ε > 0 and a unique C∞-map ψ

ψ : Vεs+σ → Gηs × Us(α,A)× Λ

such that φ ◦ ψ = id . Moreover ψ is Whitney-smooth with respect to (α,A).

This result will follow from the inverse function Theorem A.1 and the regularity

Propositions A.2-A.1-A.3, provided that we appropriately estimate φ′−1 and φ′′

Let us sketch the proof. In order to solve locally φ(x) = y we use Kolmogorov’s

idea and find the solution by composing infinitely many times the operator

x = (g, u, λ) 7→ x+ φ′−1(x)(y − φ(x)),

on extensions Tns+σ of shrinking width.

At each step of the induction, it is necessary that φ′−1(x) exists at an unknown

x (not only at x0) in a whole neighborhood of x0 and that φ′−1 and φ′′ satisfy

suitable estimates, in order to control the convergence of the iterates.

Let
−→
U be the vector space directing U(α,A), we start to check the invertibility of

φ′(g, u, λ) : TgGσ/ns+σ ×
−→
U s+σ × Λ→ Vg,s

if g is close to the identity, by solving

(2.10) φ′(g, u, λ) · (δg, δu, δλ) = δv.

Proposition 2.1. If g is close enough to the identity, for any δv in Vg,s+σ there

exists a unique triplet (δg, δu, δλ) such that equation (2.10) is satisfied.

Moreover, there exist τ ′, C ′ > 0 such that

(2.11) max (|δg|s, |δu|s, |δλ|) ≤
C ′

στ ′
|δv|g,s+σ,

where C ′ is a constant that depends only on n, τ and |(g − id, u− (α,A · r))|s+σ.

Proof. Let a vector field δv in Vg,s+σ be given, we want to solve the equation

(2.12) φ′(g, u, λ) · (δg, δu, δλ) =
[
g∗u, δg ◦ g−1

]
+ g∗δu+ δλ = δv,

where the Lie bracket comes from the differentiation of the map g 7→ g∗u at g,

since (g∗u)′ · δg =
[
g∗u, δg ◦ g−1

]
, by classical derivation rules on compositions and

inverse mappings. See [18] for example.

In (2.12) δv is the data, and the unknowns are δu ∈ O(r)×O(r2), δg (geometrically

a vector field along g) and δλ ∈ Λ.

Both sides are supposed to belong to Vg,s+σ; in order to solve the equation we

pull it back, obtaining the equivalent equation between germs along the standard

torus Tn0 (as opposed to the g-dependent torus g(Tn0 )). By naturality of the Lie
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bracket with respect to the pull-back operator, we thus obtain the equivalent system

in Vs+σ [
u, g∗δg ◦ g−1

]
+ δu+ g∗δλ = g∗δv.

To lighten the notation we baptize the new terms as3

(2.13) λ̇ := g∗δλ, v̇ := g∗δv, ġ := g∗δg ◦ g−1 = g′−1 · δg,

where δg = (δϕ, δR0 + δR1 · r), δλ = (δβ, δb+ δB · r), and read

(2.14) [u, ġ] + δu+ λ̇ = v̇.

The unknowns are now ġ (geometrically a germ of vector fields along Tn0 ), δu and λ̇;

the new infinitesimal vector field of counter terms λ̇ is no more constant in general,

on the other hand, we can take advantage of u in its ”straight” form.

Let us expand the vector fields along Tn0

(2.15)



u(θ, r) =
(
α+ u1(θ) · r +O(r2), A · r + U2(θ) · r2 +O(r3)

)
ġ(θ, r) =

(
ϕ̇(θ), Ṙ0(θ) + Ṙ1(θ) · r

)
λ̇(θ, r) =

(
λ̇0(θ), Λ̇0(θ) + Λ̇1(θ) · r

)
v̇(θ, r) =

(
v̇0(θ) +O(r), V̇0(θ) + V̇1(θ) · r +O(r2)

)
.

We are interested in normalizing the dynamics tangentially at the order zero with

respect to r, while up to the first order in the normal direction; we then consider

the ”mixed jet” :

j0,1v̇ =
(
v̇0(θ), V̇0(θ) + V̇1(θ) · r

)
.

Since

[u, ġ] =
(
ϕ̇′ · α− u1 · Ṙ0 +O(r2)

) ∂
∂θ

+(
Ṙ′0 · α−A · Ṙ0 + ([A, Ṙ1] + Ṙ′1 · α+ Ṙ′0 · u1 − 2U2 · Ṙ0) · r +O(r2)

) ∂
∂r
,

by taking the image by j0,1 of equation (2.14) and identifying terms of the same

order, yelds

ϕ̇′ · α− u1 · Ṙ0 = v̇0 − λ̇0,(2.16)

Ṙ′0 · α−A · Ṙ0 = V̇0 − Λ̇0,(2.17)

[A, Ṙ1] + Ṙ′1 · α+ Ṙ′0 · u1 − 2U2 · Ṙ0 = V̇1 − Λ̇1,(2.18)

where the first equation concerns the tangent direction and (2.17)-(2.18) the normal

direction. This is a triangular system that, starting from (2.17), we are able to

solve; actually these equations are of the same type as the ones we already solved

in Lemmata 1-2-3 (in the sense of their projection on the image of the operator

j0,1[u, ·]).
We remark that since δu = (O(r), O(r2)), j0,1δu = 0 and δu gives no contribution

to the previous equations. Once we have solved them, we will determine δu by

identifying the reminders.

3Here and in the following we shall use the notation ẋ for all the pulled-back tangent vectors,

which are tangent vector fields defined (again) along a neighborhood of the standard Tn
0
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Remark 2.1. Every equation contains two unknowns, ġ and λ̇, while v̇ is given. Note

that the operator j0,1[u, ·] has a kernel of finite dimension N = n + dim KerA +

dim Ker[A, ·], which consists of elements
{

(β̄, b̄+ B̄ · r)
}

such that A · b̄ = 0 and

[A, B̄] = 0; the solutions of equations (2.16)-(2.17)-(2.18) are thus determined up

to a constant term belonging to this kernel.

We shall start to solve equations modulo λ̇, eventually δλ will be uniquely chosen

to kill the component of the known terms belonging to the kernel of j0,1[u, ·] and

solve the cohomological equations.

Let us proceed with solving the system. We are going to repeatedly apply lem-

mata 1-2-3 and Cauchy’s inequality. Furthermore, we do not keep track of constants

- just know that they depend only on n, τ > 0 (from the Diophantine condition),

|g − id|s+σ and |(u− (α,A · r))|s+σ - and hence refer to them as C.

First, consider (2.17). Defining b̄ =
∏

KerA

∫
Tn V̇0 − Λ̇0

dθ
(2π)n , we have

Ṙ0 = (Lα +A)−1(V̇0 − Λ̇0 − b̄),

and ∣∣∣Ṙ0

∣∣∣
s
≤ C

γ

1

σn+τ

∣∣∣V̇0 − Λ̇0

∣∣∣
s+σ

.

Secondly, consider equation (2.16). Calling the average

β̄ =

∫
Tn
v̇0 + u1 · Ṙ0 − λ̇0

dθ

(2π)n
,

the solution reads

ϕ̇ = L−1
α (v̇0 + u1 · Ṙ0 − λ̇0 − β̄),

with

|ϕ̇|s−σ ≤
C

γ

1

σn+τ

∣∣∣v̇0 + u1 · Ṙ0 − λ̇0

∣∣∣
s
.

Thirdly, the Matm(C)-valued solution of (2.18) reads

Ṙ1 = (Lα + [A, ·])−1( ˙̃V1 − Λ̇1 − B̄),

having defined ˙̃V1 = V̇1 − Ṙ′0 · u1 + 2U2 · Ṙ0, and B̄ =
∏

Ker[A,·]
∫
Tn

˙̃V1 − Λ̇1
dθ

(2π)n .

It now remains to handle the choice of δλ such that

λ̄(θ, r) := (β̄, b̄+ B̄ · r) = 0.

Note that the defined vector field λ̄(θ, r) = (β̄, b̄+ B̄ · r) lays in Λ (recall definition

(1.2)). We so defined a map

Fg : Λ→ Λ, δλ 7→ −λ̄

in the neighborhood of δλ = 0. It is affine and, when g is sufficiently close to the

identity, invertible.4

4More specifically, the system in Λ that solves λ̄ = 0 is a linear system of N equations in N

unknowns (δβ, δb, δB), with diagonal close to 1 if g is close to the identity.
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Hence, there exists a unique δλ such that Fg(δλ) = 0, satisfying

|δλ| ≤ C

γστ+n+1
|v̇|s+σ.

We finally have

|ġ|s−2σ ≤
C

γ2σ2(τ+n)+1
|δv|g,s+σ.

By definition of ġ, we have δg = g′ · ġ. In order to uniquely determine δg we

shall fix its constant term so to meet the conditions δϕ(0) = 0,ΠkerAδR0(0) = 0

and Πker[A,·]δR1(0) = 0 (recall remark 2.1). Since g is close to the identity, these

equations have a unique solution and similar kind of estimates hold for δg:

|δg|s−2σ ≤ σ
−1(1 + |g − id|s+σ)

C

γ2σ2(τ+n)+1
|δv|g,s+σ.

Eventually, we see that δu is actually well defined in
−→
U s−3σ and have

|δu|s−3σ ≤
C

γ2σ2(τ+n)+3
|δv|g,s+σ.

Letting τ ′ = 2(τ + n) + 3 and C ′ = C/γ2, up to defining σ′ = σ/4 and s′ = s+ σ,

the proposition is proved for all indexes s′ and σ′ with s′ < s′ + σ′. �

Lemma 4 (Bounding φ′′). The bilinear map

φ′′(x) : (TgGσ/ns+σ ×
−→
U s+σ × Λ)⊗2 → Vs,

where x = (g, u, λ), satisfies the following estimate∣∣φ′′(x) · δx⊗2
∣∣
g,s
≤ C ′′

στ ′′
|δx|2s+σ,

C ′′ being a constant depending on |x|s.

Proof. For simplicity call x = (g, u, λ) and δx = (δg, δu, δλ). Recall the expression

of φ′(x) · δx =
[
g∗u, δg ◦ g−1

]
+ g∗δu+ δλ. Differentiating again with respect to x

yelds[[
g∗u, δg ◦ g−1

]
+ g∗δu, δg ◦ g−1

]
−
[
g∗u, δg

′ ◦ g−1 · δg−1
]

+
[
g∗δu, δg ◦ g−1

]
.

Since δg−1 = −(g′−1 · δg) ◦ g−1,

g∗φ′′(x) · δx⊗2 = 2[δu, ġ] + [[u, ġ], ġ] +
[
u, g∗(δg′ · g′−1 · δg) ◦ g−1

]
,

where the last term simplifies in[
u, g′−1 · (δg′ · g′−1 · δg)

]
.

The wanted bound follows from repeatedly applying Cauchy’s inequality, triangular

inequality and Lemma 15. �
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2.7. Proof of Moser’s theorem. Proposition 2.1 and Lemma 4 guarantee to

apply Theorem A.1, which provides the existence of (g, u, λ) such that g∗u+λ = v.

Uniqueness and smooth differentiation follow from propositions A.1, A.2 and A.3,

once
∣∣v − u0

∣∣
s+σ

satisfies the required bound. The only brick it remains to add is

the log-convexity of the weighted norm: let x ∈ Es, to prove that s 7→ log |x|s is

convex one can easily show that

|x|s ≤ |x|
1−µ
s1
|x|µs0 , µ ∈ [0, 1], ∀s = (1− µ)s1 + s0µ

by Hölder inequality with conjugates (1 − µ) and µ, with the counting measure

on Zn, observing that |x|s coincides with the `1-norm of the sequence (|xk|e|k|s).
Theorem 2.1 follows, hence Theorem 1.1.

3. Hamiltonian systems. Herman’s twisted conjugacy theorem

The Hamiltonian analogue of Moser’s theorem was presented by Michael Herman

in a colloquium held in Lyon in 1990. It is also an extension of the normal form

theorem of Arnold for vector fields on Tn (see [2]).

In what follows we rely on the formalism developed by Féjoz in his papers [13,15,16].

This frame will be also used in section 4, for generalizing Herman’s result. Vector

fields will be defined on Tn × Rn. As always the standard identification Rn∗ ≡ Rn

will be used.

3.1. Spaces of vector fields. Let H be the space of germs of real analytic Hamil-

tonians defined on some neighborhood of Tn0 = Tn×{0} ⊂ Tn×Rn, and VHam the

corresponding set of germs along Tn0 of real analytic Hamiltonian vector fields.

In this and the following sections we will only need to consider the standard Dio-

phantine condition (2.3), for some γ, τ > 0.

Fixing α ∈ Dγ,τ ⊂ Rn, consider the following affine subspace of H,

Kα =
{
K ∈ H : K(θ, r) = c+ α · r +O(r2), c ∈ R

}
.

Kα is the set of Hamiltonians K for which Tn0 is invariant by the flow uK and

α-quasi-periodic:

(3.1) uK =

{
θ̇ = ∂K

∂r (θ, r) = α+O(r)

ṙ = −∂K∂θ (θ, r) = O(r2).

We define

UHam(α, 0) =
{
uK ∈ VHam : K ∈ Kα

}
and introduce the set of counter terms

ΛHam =
{
λ ∈ VHam : λ(θ, r) = (β, 0)

}
≡ Rn.

We define the complex extension of width s of Tn×Rn as in section 2.1, and denote

Hs = A(Tns ) the space of Hamiltonians defined on this extension. Kαs is the affine

subspace consisting of those K ∈ Hs of the form K(θ, r) = c+ α · r +O(r2).
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3.2. Spaces of conjugacies. As introduced in section 2.2, let Dσs be the space of

real holomorphic invertible maps ϕ = id +v : Tns → TnC, fixing the origin such that

|v|s = max
1≤j≤n

(|vj |s) < σ.

We consider the contragredient action of Dσs on Tns , with values in TnC:

ϕ(θ, r) = (ϕ(θ), tϕ′−1(θ) · r).

This is intended to linearize the dynamics on the tori.

Let Bσs be the space of exact 1-forms ρ(θ) = dS(θ) on Tns (where S is a map Tns → C,

vanishing at the origin) such that

|ρ|s = max
1≤j≤n

(|ρj |s) < σ;

we hence consider the space GHam,σ
s = Dσs × Bσs of those Hamiltonian transforma-

tions g = (ϕ, ρ) acting this way

g(θ, r) = (ϕ(θ), tϕ′−1(θ) · (r + ρ(θ))),

that is identified, locally in the neighborhood of the identity, to an open set of the

affine space passing through the identity and directed by {(ϕ− id), S}. The form

ρ = dS being exact, it doesn’t change the cohomology class of the torus.5

Let χs be the space of vector fields on Tns which fix the origin. The tangent

space at the identity of GHam
s , TidGHam

s = χs × Bs is endowed with the norm

|ġ|s = max(|ϕ̇|s, |ρ̇|s).

Theorem 3.1 (Herman). Let α ∈ Dγ,τ and K0 ∈ Kαs+σ. If H ∈ Hs+σ is close

enough to K0, there exists a unique (g,K, β) ∈ GHam
s ×Kαs×ΛHam close to (id,K0, 0)

such that

H = K ◦ g + β · r.

Moreover the normal form is Whitney smooth with respect to α.

Here too, the presence of β · r breaks the dynamical conjugacy between H and

K: the orbits of K ′s ∈ Kα under the action of diffeomorphisms in GHam, form a

subspace of co-dimension n.

For a proof of this result, known also as ”twisted conjugacy theorem”, see [14, 19],

and [13] for an analogue in the context of Hamiltonians with both tangent and

normal frequencies.

Phrased in terms of vector fields, the theorem becomes

Theorem 3.2 (Herman). Let α ∈ Dγ,τ and uK
0 ∈ UHam

s+σ (α, 0). If vH ∈ VHam
s+σ is

close enough to uK
0

, there exists a unique (g, uK , β) ∈ GHam
s ×UHam

s (α, 0)×ΛHam,

close to (id, uK0 , 0) such that

g∗u
K + β ∂θ = vH.

5In this work we indicated derivations sometimes by ” ′ ”, ”d” or ”D” to avoid heavy notations.
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4. Hamiltonian-dissipative systems. Generalization of Herman’s

theorem and translated tori à la Rüssmann

4.1. A generalization of Herman’s theorem. Here we generalize to a particular

class of dissipative vector-fields the theorem of Herman.

4.1.1. Spaces of vector fields. Let Hs = A(Tns ) and VHam
s be the space of Hamil-

tonian vector fields corresponding to Hamiltonians H ′s ∈ Hs. For any η ∈ R, let us

extend VHam
s as

(
VHam ⊕ (−ηr∂r)

)
s
. The corresponding affine subspace becomes

UHam
s (α,−η) =

{
u ∈

(
VHam ⊕ (−ηr∂r)

)
s

: u(θ, r) = (α+O(r),−ηr +O(r2))
}
.6

When η > 0 (resp. η < 0) the invariant quasi-periodic torus Tn0 of u is η-normally

attractive (resp. repulsive).

The class VHam ⊕ (−ηr∂r), η ∈ R, is mathematically peculiar: it is invariant under

the Hamiltonian transformations in GHam. Physically, when η 6= 0 the described

system undergoes a constant linear friction (resp. amplification) which is the same

in every direction.

According to Theorem B.1 and Corollary B.1, the operators

(4.1)

φ : GHam,σ2/2n
s+σ ×UHam

s+σ (α,−η)×ΛHam →
(
VHam ⊕ (−ηr∂r)

)
s
, (g, u, β) 7→ g∗u+β∂θ,

commuting with inclusions, are well defined.

Theorem 4.1 (”Dissipative Herman”). Fix η0 > 0 and α ∈ Dγ,τ . There ex-

ists ε > 0 such that for any η ∈ [−η0, η0], letting u0 ∈ UHam
s+σ (α,−η), if v ∈(

VHam ⊕ (−ηr∂r)
)
s+σ

is such that
∣∣v − u0

∣∣
s+σ

< ε, there exists a unique triplet

(g, u, β) ∈ GHam
s × UHam

s (α,−η)× ΛHam, close to (id, u0, 0), such that

g∗u+ β∂θ = v.

The case η = 0 corresponds to Herman’s theorem.

The key point for such a result to be true, relies on the following two technical

lemmata.

Lemma 5. If g ∈ GHam and v ∈ VHam ⊕ (−ηr∂r), the vector field g∗v is given by

(4.2) g∗v =

{
Θ̇ = ∂Ĥ

∂R

Ṙ = −∂Ĥ∂Θ − ηR,

where

Ĥ(Θ, R) = H ◦ g−1(Θ, R)− η
(
S ◦ ϕ−1(Θ)

)
.

The fact that η ∈ R is fundamental to maintain the Hamiltonian structure, which

would be broken even if η was a diagonal matrix. Geometrically, the action of g on

H is ”twisted” by the dissipation.

6We recall that the notation r∂r is a shortcut for
∑n

j rj∂rj .
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Proof. g(θ, r) = (Θ, R), that is,{
Θ = ϕ(θ)

R = tϕ′−1(θ) · (r + dS(θ)).

We have

− in the tangent direction

Θ̇ = ϕ′(θ) · θ̇ =
∂(H ◦ g−1)

∂R
.

− The derivation of Ṙ requires a little more attention:

Ṙ = ( tϕ′−1(θ))′ · r · θ̇︸ ︷︷ ︸
A

+ tϕ′−1(θ) · ṙ︸ ︷︷ ︸
B

+ tϕ′−1(θ) ·D2S(θ) · θ̇︸ ︷︷ ︸
C

+ ( tϕ′−1(θ))′ · dS(θ) · θ̇︸ ︷︷ ︸
D

where, expanding and composing with g−1

A =
(
− tϕ′−1 · tϕ′′ · tϕ′−1

)
◦ ϕ−1(Θ) · ( tϕ′ ◦ ϕ−1(Θ) ·R− dS ◦ ϕ−1(Θ)) · ∂H

∂r

B = − tϕ′−1 ◦ ϕ−1(Θ) · ∂H
∂θ
− ηR+ η tϕ′−1 ◦ ϕ−1(Θ) · dS ◦ ϕ−1(Θ)

C = tϕ′−1(θ) ·D2S(θ) · ∂H
∂r

= tϕ′−1 ◦ ϕ−1(Θ) ·D2S ◦ ϕ−1(Θ) · ∂H
∂r

D = −
(
tϕ′−1 · tϕ′′ · tϕ′−1

)
◦ ϕ−1(Θ) · dS ◦ ϕ−1(Θ) · ∂H

∂r

Remark that if

H ◦ g−1(Θ, R) = H
(
ϕ−1(Θ), tϕ′ ◦ ϕ−1(Θ) ·R− dS ◦ ϕ−1(Θ)

)
,

we have

∂H

∂Θ
=
∂H

∂θ
· ϕ′−1 ◦ ϕ−1(Θ)

+
∂H

∂r
·
[
tϕ′′ ◦ ϕ−1(Θ) · ϕ′−1 ◦ ϕ−1(Θ) ·R−D2S ◦ ϕ−1(Θ) · ϕ′−1 ◦ ϕ−1(Θ)

]
.

Summing terms we get

Ṙ = −∂H ◦ g
−1

∂Θ
− ηR+ η

(
tϕ′−1 ◦ ϕ−1(Θ) · dS ◦ ϕ−1(Θ)

)
.

Introducing the modified Hamiltonian Ĥ as in the statement, the transformed sys-

tem has the claimed form (4.2). �

The same is true for the pull-back of such a v:
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Lemma 6. If g ∈ GHam and v ∈ VHam ⊕ (−ηr∂r), the vector field g∗v = g−1
∗ v is

given by

(4.3) g∗v =

{
θ̇ = ∂Ĥ

∂r

ṙ = −∂Ĥ∂θ − ηr,

Ĥ being Ĥ(θ, r) = H ◦ g (θ, r) + ηS(θ).

4.1.2. The linearized problem. Theorem 4.1 will follow - again - from the inverse

function theorem A.1, once we check the existence of a right (and left) inverse7 for

φ′ : TgGHam
s+σ ×

−→
U Ham
s+σ × ΛHam → VHam

g,s ,

when g is close to the identity, and bounds on it and φ′′.

Except from a minor difference, the system that solves the linearized problem is

the same as the one in the purely hamiltonian context.

Proposition 4.1. If g is close enough to the identity, for every δv in VHam
g,s+σ there

exists a unique triplet (δg, δu, δβ) in TgGHam
s ×

−→
U Ham
s × ΛHam such that

(4.4) φ′(g, u, β) · (δg, δu, δβ) = δv;

moreover, there exist τ ′, C > 0 such that

(4.5) max (|δg|s, |δu|s, |δβ|) ≤
C

στ ′
|δv|g,s+σ,

where C is a constant that depends only on n, τ and
(
|g − id|s+σ, |u− (α,−ηr)|s+σ

)
.

Proof. The proof is recovered from the one of proposition 2.1, additionally imposing

that the transformation is Hamiltonian and that the vector fields belong to this

particular class ”Hamiltonian + dissipation”. The interesting fact relies on the

homological equation intended to ”relocate” the torus.

Calculating φ′(x) · δx and pulling back equation (4.4) we get

[u, ġ] + δu = v̇ − λ̇,

where we used the same notations as in (2.13) for ġ = g′−1 · δg, v̇ = g∗δv and

λ̇ = g∗δλ. Here ġ has the form ġ = (ϕ̇,−r · ϕ̇′ + ρ̇), where ϕ̇ ∈ χs and ρ̇ = dṠ ∈ Bs
(see section 3.2 where these spaces were defined). By Lemma 6, v̇ is a Hamiltonian

vector field too. Identifying terms of the equation in the first order jet j0,1v̇ =

(v̇H0 , V̇
H
0 + V̇ H1 · r), the system corresponding to (2.16)-(2.17)-(2.18) translates in

ϕ̇′ · α− u1 · dṠ = v̇H0 − λ̇0,

dṠ′ · α+ ηdṠ = V̇ H0 − Λ̇0,

−tDϕ̇′ · α+ tD(u1 · dṠ) = V̇ H1 − Λ̇1,

where λ̇0 = ϕ′−1 · δβ, Λ̇0 = −D(tϕ′−1 · dS(θ)) · δβ and Λ̇1 = − tDλ̇0, while u1 is

the coefficient of the linear term of u in the θ̇-direction (where we indicated by D

the derivative with respect to θ). In particular, V̇ H0 and V̇ H1 are of 0-average and,

7Like in proposition 2.1, we denoted the tangent space of
(
VHam ⊕ (ηr∂r)

)
s

(which coincides

with VHam
s ) by VHam

g,s , the subscript ∗g indicating the presence of the g-dependant norm.
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according to the symmetry of a Hamiltonian system, V̇ H1 = −tDv̇H0 so the first two

equations determine the whole systems.

Coherently, also the term Λ̇0 has 0-average and the dṠ-equation can readily be

solved.

Remark 4.1. Since

dṠ(θ) = 0 +
∑
k 6=0

V̇ H0,k
i k · α+ η

ei k·θ

has 0 average, we can bound the divisors uniformly with respect to η, by |i k · α+ η| >
|i k · α|. Thus only the standard Diophantine condition (2.3) on α is required. As a

consequence, the bound
∣∣v − u0

∣∣
s+σ

< ε entailed in Theorem A.1 holds uniformly

with respect to η. This is fundamental for the results in the last section.

Solutions and inequalities follow readily from Lemmata 1-2 and Cauchy’s in-

equality. �

Remark 4.2. When η = 0 the system above is the one that solves the infinitesimal

problem of the ”twisted conjugacy” theorem presented in [14, §1.1]. Hence, up

to the slight difference in the equation determining dṠ, the proof of Theorem 4.1

follows the same steps and difficulties as in [14] (application of Theorem A.1 in the

frame of remark A.1 an regularity propositions A.1-A.2-A.3).

4.1.3. A first portrait. If the eigenvalues ai of A are all distinct and different from

zero, it is immediate to see that the external parameters are of the form λ =

(β,B · r), with B a diagonal matrix as well (recall definition (1.2) in relation to

Lemma 3).

Corollary 4.1 (of Moser’s theorem). Let A ∈ Matm(R) be diagonalizable with

simple, non 0 eigenvalues and let (α, a) satisfy the Diophantine condition (1.4). If

v is sufficiently close to u0 ∈ U(α,A), there exists a unique (g, u, λ) ∈ G×U(α,A)×
Λ(β,B · r), close to (id, u0, 0), such that

g∗u+ λ = v,

λ being of the form λ = (β,diagB · r).

Here a diagram that summarizes our results, from the most general to the purely

Hamiltonian one. We emphasize the needed counter-terms in the notation of Λ.

Moser: G × U(α,A)× Λ(β, b+B · r)
' loc.

// V

General dissip. (diagA): G × U(α,A)× Λ(β,diagB · r)
' loc.

// V

Herman dissip.: GHam × UHam(α, η)× Λ(β, 0)
?�

OO

' loc.
// VHam ⊕ (ηr ∂r)

?�

OO

Herman (η = 0): GHam × UHam(α, 0)× Λ(β, 0)
' loc.

// VHam
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4.2. Normal form ”à la Rüssmann”. In the context of the diffeomorphisms of

the cylinder T×R, Rüssmann proved a result that admits large applications in the

study of dynamical systems: the ”theorem of the translated curve”, see [3, 27, 33]

for instance.

We give here an extension to vector fields of this theorem.

If the Hamiltonians considered in section 4.1 are non degenerate (see below for

a formal definition), we can define a ”hybrid normal form” that both relies on

the peculiar structure of the vector fields and this torsion property; this makes

unnecessary the introduction of all the counter terms a priori needed if we would

have attacked the problem in the pure spirit of Moser.

4.2.1. Twisted vector fields. The starting context is the one of section 4.1 and no-

tations are the same.

Let α ∈ Rn. We are interested in those K ∈ Kα of the form

(4.6) K(θ, r) = c+ α · r +
1

2
Q(θ) · r2 +O(r3),

where Q is a non degenerate quadratic form on Tns : det 1
(2π)n

∫
Tn Q(θ) dθ 6= 0.

There exist s0 and ε0 such that ∀s > s0, K0 ∈ Hs and for all H ∈ Hs such that∣∣H −K0
∣∣
s0
< ε0 one has∣∣∣∣det

∫
Tn

∂2H

∂r2
(θ, 0)

dθ

(2π)n

∣∣∣∣ ≥ 1

2

∣∣∣∣det

∫
Tn

∂2K0

∂r2
(θ, 0)

dθ

(2π)n

∣∣∣∣ 6= 0.

From now on, we assume that s ≥ s0 and define

Kαs =
{
K ∈ Kαs :

∣∣K −K0
∣∣
s0
≤ ε0

}
.

We hence consider the corresponding space of vector fields with twist and call it

(4.7) ÛHam
s (α, 0) =

{
uK(θ, r) = (α+

1

2
Q(θ) · r +O(r2), O(r2))

}
,

affine subspace of V̂Ham
s =

{
vH ∈ VHam

s :
∣∣H −K0

∣∣
s0
≤ ε0

}
.

Now, let η ∈ R and consider the extended spaces

(4.8) ÛHam
s (α,−η) and

(
V̂Ham ⊕ (−ηr + ηRn)∂r

)
s
.

Remark 4.3. We enlarged the target space with the translations in actions

ζ 7→ vH ⊕ (−ηr + ηζ)∂r

in order to handle symplectic transformations and guarantee the well definition of

the normal form operator (see below). Note that the constant η multiplying ζ is

unessential; it just lighten notations in calculations and make the results below

ready-to-use for the application presented in section 6.

Like in the previous section, Dσs is the space holomorphic invertible maps ϕ =

id +v : Tns → TnC, fixing the origin with |v|s < σ.

Let Zσs be the space of closed 1-forms on Tns ρ(θ) = dS(θ) + ξ, where S : Tns → C
and ξ ∈ Rn are uniquely determined assuming S(0) = 0, such that

|ρ|s := max(|ξ|, |dS|s) < σ.
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Let Gω,σs = Dσs ×Zσs , whose elements g = (ϕ, ρ) define symplectic transformations

(4.9) g(θ, r) = (ϕ(θ), tϕ′−1(θ) · (r + dS(θ) + ξ)).

The tangent space at the identity TidGωs = χs ×Zs is endowed with the norm

|ġ|s = max(|ϕ̇|s, |ρ̇|s).

Concerning the space of constant counter terms we define the space of translations

in action as

Λb = {λ = (0, b), b ∈ Rn}.

According to the following lemmata and Corollary B.1, the normal form operators

(4.10)
φ : Gω,σ

2/2n
s+σ × ÛHam

s+σ (α,−η)× Λb →
(
V̂Ham ⊕ (−ηr + ηRn)∂r

)
s
,

(g, u, λ) 7→ g∗u+ b

are well defined.

Lemma 7. If g ∈ Gω and v ∈ VHam⊕ (−ηr+ηζ)∂r), the push-forward g∗v is given

by

g∗v =

{
Θ̇ = ∂Ĥ

∂R

Ṙ = −∂Ĥ∂Θ − η(R− ζ̂), ζ̂ = ζ + ξ

where Ĥ(Θ, R) = H ◦ g−1 − η(S ◦ ϕ−1(Θ) + ζ̂ · (ϕ−1(Θ)−Θ)).

The proof is the same as for lemma 5, taking care of the additional term η tϕ′−1◦
ϕ−1 · (ξ + ζ) coming from the non exactness of ρ(θ) and the translation ζ.

Lemma 8. If g ∈ Gω and v ∈ VHam ⊕ (−ηr + ηζ)∂r, the pull-back g∗v is given by

(4.11) g∗v =

{
θ̇ = ∂Ĥ

∂r

ṙ = −∂Ĥ∂θ − η(r − ζ̂), ζ̂ = ζ − ξ,

where Ĥ(θ, r) = H ◦ g(θ, r) + η(S(θ)− ζ · (ϕ(θ)− θ)).
If v ∈ VHam ⊕ (ηζ)∂r,

g∗v =

{
θ̇ = ∂Ĥ

∂r

ṙ = −∂Ĥ∂θ + ηζ,

where Ĥ(θ, r) = H ◦ g(θ, r) + ηζ · (ϕ(θ)− θ)

The proof of these results are immediate from the definition of g and follow the

one of Lemma 5.

Theorem 4.2 (Translated torus). Fix η0 > 0 and α ∈ Dγ,τ .

There exists ε > 0 such that for any η ∈ [−η0, η0], letting u0 ∈ ÛHam
s+σ (α,−η) if

v ∈
(
V̂Ham ⊕ (−ηr + ηR)∂r

)
s+σ

is such that
∣∣v − u0

∣∣
s+σ

< ε, there exists a unique

(g, u, b) ∈ Gωs × UHam
s (α,−η)× Λb, close to (id, u0, 0), such that

g∗u+ b ∂r = v.
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From the normal form, the image g(Tn0 ) is not invariant by the flow of v, but

translated in the action direction during each infinitesimal time interval.

The proof can still be recovered from the inverse function theorem A.1 (in the frame

of Remark A.1) and propositions A.1-A.2-A.3.

Proof. The main part consists in checking the invertibility of φ′. Let

φ : Gω,σ
2/2n

s+σ × ÛHam
s+σ (α,−η)× Λb → (V̂Ham ⊕ (−ηr + ηRn)∂r)s,

(g, u, b) 7→ g∗u+ b = v.

We want to solve

(4.12) φ′(g, u, b) · (δg, δu, δb) = [g∗u, δg ◦ g−1] + g∗δu+ δb = δv,

for any δv = δvH + ηδζ ∈
(
V̂Ham ⊕ (ηRn)∂r

)
g,s+σ

, when g is close to the identity.

As in Proposition 2.1, we pull (4.12) back and expand the pulled-back vector fields

along Tn0 .

Using the same notations as in (2.13)-(2.15), since g is of the form (4.9) ġ reads

ġ = g′−1 · δg = (ϕ̇,− tϕ̇′ · r + dṠ + ξ̇),

where Ṡ ∈ A(Tns ) and ϕ̇ ∈ χs fix the origin, and ξ̇ ∈ Rn.
According to Lemma 8, the vector field v̇ = g∗δv is given by a Hamiltonian vector

field translated by +ηδζ∂r in the normal direction.

Thus, the image by the jet j0,1 of the pull-back of equation (4.12) splits into these

equations

ϕ̇′ · α−Q(θ) · (dṠ + ξ̇) = v̇H0 ,(4.13)

dṠ′ · α+ η(dṠ + ξ̇) = V̇ H0 + ηδζ − ḃ,(4.14)

− tDϕ̇′ · α+ tD(Q(θ) · (dṠ + ξ̇)) = V̇ H1 ,(4.15)

where ḃ is of the form tϕ′ · δb = (id +tv′) · δb (remember that ϕ = id +v). Fur-

thermore, as in the Hamiltonian-dissipative system in the proof of Proposition 4.1,

V̇ H1 = −tDv̇H0 and the whole system of equations is satisfied once we determine

dṠ, ξ̇, ϕ̇ and ḃ from (4.13)-(4.14).

We are now going to repeatedly apply lemmata 1, 2 and Cauchy’s estimates. As

before we do not keep track of constants.

− By averaging equation (4.14) on the torus, we determine

δb = η(δζ − ξ̇),

and solve the average free

dṠ′ · α+ ηdṠ = V̇ H
0 − tv′ · δb.

Denoting V̇0 = V̇ H
0 − ηtv′ · δζ, the solution can be written as

(4.16) dṠ(θ) =
∑
k 6=0

V̇0,k

i k · α+ η
ei kθ + ηM(θ) · ξ̇,
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where M(θ) is the matrix whose (ij) component reads (
∑
k 6=0

tv′ij,k
i k·α+η e

i k·θ).

Note that the Fourier coefficients smoothly depend on η ∈ [−η0, η0] and Remark

4.1 holds; moreover |ηM |s ≤ |η0|σ−τ
′
C|v|s+σ, which will remain small in all the

iterates not bothering the torsion term (see below).

Remark 4.4. In the proof we never use that η 6= 0. Taking the limit η → 0, the

system (4.13)-(4.14)-(4.15) corresponds to the linearized problem of the classical

Kolmogorov theorem: vector fields of both sides are entirely Hamiltonian (with

twist), δb = 0, dṠ = L−1
α V̇ H

0 , and the torus persists. See [14–16].

− Let S0 =
∑
k 6=0

V̇0,k

i k·α+η e
i kθ (the first part of (4.16)). Averaging on the torus

equation (4.13), by the torsion hypotheses we can determine

(4.17) ξ̇ = −
(

1

(2π)n

∫
T
Q · (ηM + id) dθ

)−1

·
(

1

(2π)n

∫
T
v̇H

0 +Q · S0 dθ

)
,

with ∣∣∣ξ̇∣∣∣ ≤ C

γστ+n
|δv|g,s+σ,

hence ∣∣∣dṠ∣∣∣
s
≤ C

γστ+n
|δv|g,s+σ and |δb| ≤ C

γστ+n
|δv|g,s+σ.

− There remains to solve equation (4.13); the average free part determines δϕ with

|ϕ̇|s−σ ≤
C

γ2σ2τ+2n
|δv|g,s+σ.

The same sort of estimates hold for the wanted δg:

|δg|s−2σ ≤
C

γ2σ2τ+2n+1
|δv|g,s+σ.

− Again, [u, ġ] + δu = v̇ − ḃ determines δu explicitly, and we have

|δu|s−2σ ≤
C

γ2σ2τ+2n+1
|δv|g,s+σ.

Up to defining σ′ = σ/3 and s′ = s+ σ we have proved the following lemma for

all s′, σ′ such that s′ < s′ + σ′.

Lemma 9. If g is close enough to the identity, for every δv in (V̂Ham ⊕ (ηRn)∂r)g,s+σ,

there exists a unique triplet (δg, δu, δb) ∈ TgGωs ×
−−−→
ÛHam
s × Λb such that

φ′(g, u, λ) · (δg, δu, δb) = δv.

Moreover, there exist τ ′, C ′ > 0 such that

max (|δg|s, |δu|s, |δb|) ≤
C ′

στ ′
|δv|g,s+σ,

where C ′ depends only on n, τ, |g − id|s+σ and |u− (α,−ηr)|s+σ.

Concerning the bound on φ′′, the analogue of lemma 4 follows readily.

It just remains to apply Theorem A.1 and the regularity propositions A.1-A.2-A.3

and complete the proof for the chosen v in
(
V̂Ham ⊕ (−ηr + ηRn)∂r

)
s+σ

. �
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We conclude the section with a second diagram.

Moser: G × U(α,A)× Λ(β, b+B · r)
' loc.

// V

”à la Rüssmann”: Gω × ÛHam(α,−η)× Λb ' loc.
// VHam ⊕ (−ηr + ηRn)∂r

?�

OO

5. Extension of Herman’s and Rüssmann’s theorems to simple

normally hyperbolic tori

The peculiarity of the normal forms proved in the previous section, is that the

translated (or twisted) α-quasi-periodic torus g(Tn0 ) of the perturbed v keeps its

η-normally attractive dynamics (resp. repulsive, if η < 0), the reason of such a

result relying on the Hamiltonian nature of perturbations.

On Tn×Rm, let u ∈ U(α,A). We will say that Tn0 is simple normally hyperbolic

if A has simple, real, non zero eigenvalues.

Note that the space of matrices A ∈ Matm(R) with simple, non zero real eigenvalues

is open in Matm(R), thus it provides a consistent interesting set of frequencies to

work on.

We show here that for general perturbations, at the expense of conjugating v−λ to

a vector field u with different (opportunely chosen) normally hyperbolic dynamics,

we can show that a translated or twisted reducible α-quasi-periodic Diophantine

torus exists (theorems C and D stated in the introduction).

Notations are the same as in section 2. Let ∆si
m(R) ⊂ Matm(R) be the space of

m×m matrices with simple, non zero, real eigenvalues and let

Us =
⋃

A∈∆si
m(R)

Us(α,A) =
{
u(θ, r) = (α+O(r), A · r +O(r2)), A ∈ ∆si

m(R)
}
.

Theorem 5.1 (Twisted torus). For every u0 ∈ Us+σ(α,A0) with α Diophantine

and A0 ∈ ∆si
m(R), there is an ε > 0 and a germ of C∞-maps

ψ : Vs+σ → Gs ×Us × Λβ , v 7→ (g, u, β),

at u0 7→ (id, u0, 0), such that for all v satisfying
∣∣v − u0

∣∣
s+σ

< ε, then v = g∗u +

β ∂θ.

Proof. We denote by φA the operator φ, as now we want A to vary. Locally, in the

neighborhood of (A0, u0) let us define the map

ψ̂ : ∆si
m(R)× Vs+σ → Gs ×Us × Λ, ψ̂A(v) := φ−1

A (v) = (g, u, λ),

associating to any (A, v) the triplet given by Moser’s theorem such that g∗u+λ = v,

where λ = (β,B · r), with β ∈ Rn and B ∈ Matm(R) which satisfies [B,A] =

0.8 Equivalently, B is simultaneously diagonalizable with A, since A has simple

spectrum; we can thus restrict our analysis to a neighborhood of A0 in the subspace

of those matrices commuting with A0. Note that we can choose such a neighborhood

8Since any A ∈ ∆si
m(R) is invertible, the counter term b ∈ Rm is automatically 0, recall

conditions (1.2)
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so that it is contained in ∆si
m(R). Then we study the dependence of B on A in their

diagonal form.

Without loss of generality, let A0 be in its canonical form, and let ∆A0 be the

subspace of diagonal matrices, namely the matrices which commute with A0. Let

us consider the restriction of ψ̂ to ∆A0 and write u0 as

u0 =
(
α+O(r), A · r + (A0 −A) · r +O(r2)

)
,

where A ∈ ∆A0 is close to A0.

Since

φA
(
id, u0 + (0, (A−A0) · r), (0, (A0 −A) · r)

)
≡ u0,

locally for all A close to A0 we have

ψ̂(A, u0) = (id, u,B · r), B(A, u0) = (A0 −A) = δA,

by local uniqueness of the normal form, where [B,A] = 0. Remark that, since

A ∈ ∆A0 has simple spectrum, B is indeed in ∆A0 . In particular

∂B

∂A
= − id,

hence A 7→ B(A) is a local diffeomprhism on ∆A0 ; thus by the implicit function

theorem locally for all v there exists a unique Ā such that B(Ā, v) = 0. Remark

that since Ā is invertible, the unique counter term in fact needed is β ∈ Rn. It

remains to define ψ(v) = ψ̂(Ā, v). �

Remark 5.1. The fact that A0 has real eigenvalues makes the correction A = A0 −
δA of A0 (provided by the implicit function theorem) well defined. If we had

considered possibly complex eigenvalues, submitted to Diophantine condition (1.4),

the procedure would have been more delicate, using the Whitney dependence of φ

in A. In this line of thought see [13] and the ”hypothetical conjugacy” theorem

therein.

Remark 5.2. If we let the possiblility of having an eigenvalue equal to zero, the

torus would be twisted-translated, due to the presence of b ∈ kerA ≡ R, providing

a generalization in higher dimension, for vector fields, of Herman’s translated torus

theorem for perturbations of smooth embeddings of F : Tn × [−r0, r0] → Tn × R
verifying F (θ, 0) = (θ + α, 0), see [33].

On Tn × Rm, with m ≥ n, let Û(α,A) ⊂ U(α,A) be the space of vector fields

with twist in the following sense: the coefficient u1 : Tn → Matn×m(R) in

u(θ, r) = (α+ u1(θ) · r +O(r2), A · r +O(r2))

is such that
∫
Tn u1(θ) dθ

(2π)n has maximal rank n.

Theorem 5.2 (Translated torus). Let α be Diophantine, let A0 ∈ Matm(R) have

real, simple, non 0 eigenvalues and let u0 ∈ Ûs+σ(α,A0). There exists an ε > 0

such that every v satisfying
∣∣v − u0

∣∣
s+σ

< ε possesses a translated simple normally

hyperbolic torus, of constant normal dynamics close to A0 and α-quasi-periodic

tangential dynamics.
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Like in Theorem 4.2, if on the one hand we take advantage of the twist hypothesis

in order to avoid the twist-term β à la Herman, on the other one the linear term A·r
necessairily gives out a constant (translation) term, which one need to keep track

of by the introduction of a translation parameter (remember the form of equation

(2.17) or (4.14)).

Proof. Without loss of generality let us suppose that A0 is a diagonal matrix and

let ϕ̂ be the function defined on Tn taking values in Matn×m(R) which solves the

(matrix of) homological equation9

Lαϕ̂(θ) + ϕ̂(θ) ·A0 + u1(θ) =

∫
Tn
u1(θ)

dθ

(2π)n
,

and let F : (θ, r) 7→ (θ+ ϕ̂(θ) · r, r). The diffeomorphism F restricts to the identity

at Tn0 = Tn × {0}. At the expense of substituting u0 and v with F∗u
0 and F∗v

respectively, we can assume that

u0(θ, r) = (α+ u1 · r +O(r2), A0 · r +O(r2)), u1 =

∫
Tn
u1(θ)

dθ

(2π)n
.

The germs so obtained are close to one another.

Let us define

u0
A(θ, r) := (α+ u1 · r +O(r2), A · r + (A0 −A) · r +O(r2)),

where A is a diagonal matrix close to A0 in the subspace ∆A0 of those matrices

commuting with A0, and consider the family of trivial perturbations obtained by

translating u0
A in actions as u0

c,A(θ, r) := u0
A(θ, c + r) where c ∈ Rm is close to 0.

So consider u0
c,A and vc,A := vA(θ, c+ r).

By Moser’s theorem there exists a triple (gc,A, uc,A, λc,A) such that

vc,A = gc,A∗uc,A + λc,A

where λc,A = (βc,A, Bc,A · r), with Bc,A commuting with A. In order to prove the

theorem we have to show that there exists (c, A) ∈ Rm×∆A0 such that the counter

terms (βc,A, Bc,A) vanish.

We claim that the map (c, A) 7→ (βc,A, Bc,A) is a local submersion. Since this is

an open property, and vc,A is close to u0
c,A, it suffices to show it for the trivial

perturbation u0
c,A.

By taking its Taylor expansion and the approximation obtained by cutting it from

terms O(c) that possibly depend on angles, we immediately read its normal form

where β0
c,A = u1 · c + O(c2) and B0

c,A = A0 − A. In particular, the torus Tn0 is

translated by b0c,A = A0 · c + O(c2). The map (c, A) 7→
(
β0
c,A, B

0
c,A

)
is indeed a

submersion by the twist hypotesis on u0
c,A, since ∂cβ

0
c,A|c=0 = u1 and ∂AB

0
c,A =

− id.

The analogous map for vc,A, being its small C1 perturbation, is thus submersive

too. Hence there exist (c, A) close to (0, A0) such that vc,A = gc,A∗uc,A + bc,A.

When n = m, c ∈ Rn is unique. �

9Each component reads as an equation of the scalar case in Lemma 2
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6. An application to Celestial Mechanics

The normal forms constructed in section 4 fit well in the dissipative spin-orbit

problem. We deduce here the central results of [31, Theorem 3.1] and [5, Theorem

1], by easy application of the translated torus theorem 4.2 and the elimination of

the translation parameter.

6.1. Spin-orbit in n degrees of freedom.

6.1.1. Normal form & elimination of b. Let Ω ∈ Rn and consider a vector field on

Tn × Rn of the form

(6.1) v̂ = vH ⊕ (−η(r − Ω)∂r)

where vH is a Hamiltonian vector-field whose Hamiltonian H is close to the Hamil-

tonian in Kolmogorov normal form with non degenerate quadratic part introduced

in section 4.2.1:

K0(θ, r) = α · r +
1

2
Q(θ) · r2 +O(r3).

The vector field v̂ is hence close to the corresponding unperturbed û :

(6.2) û = uK
0

⊕ (−η(r − Ω)∂r).

Ω ∈ Rn is a vector of free parameters representing some ”external frequencies”

on which the vector field depends when η 6= 0. In the spin-orbit model, when no

dissipation occurs (η = 0), equations are Hamiltonian and parameters-free [5,9,31].

We will better see in section 6.2 the physical meaning of Ω, in the small dimensional

astronomical case of the spin-orbit problem.

We will denote by v and u0 the part of v̂ and û with Ω = 0.

Theorem 6.1 (Dynamical conjugacy). Fix η0 > 0, α ∈ Rn Diophantine and let

uK
0 ∈ ÛHam(−η, 0). There exists ε > 0 such that, if vH is ε-close to uK

0

, for any

η ∈ [−η0, η0], there exists a unique10 Ω ∈ Rn close to 0, a unique u ∈ ÛHam(α,−η)

and a unique g ∈ Gω such that v̂ = v+ηΩ∂r (close to û = u0 +ηΩ∂r) is conjugated

to u by g: v̂ = g∗u. Hence v̂ possesses an invariant α-quasi-periodic torus. This

torus is η-normally attractive (resp. repulsive) if η > 0 (resp. η < 0).

Proof. Let us write the non perturbed û :

(6.3) û =

{
θ̇ = α+O(r)

ṙ = −ηr + ηΩ +O(r2).

We remark that ηΩ is the first term in the Taylor expansion of the counter term b

appearing in the normal form of theorem 4.2, applied to v̂ close to û. In particular

û = id∗ u
0 + ηΩ∂r by uniqueness of the normal form and, if Ω = 0, Tn0 is invariant

for (6.3).

10To be rigorous, the uniqueness of Ω formally loses its sense when η = 0, since η is a factor

of Ω in the system; nevertheless since Ω admits a continuous extension as η → 0, we agree to take

its limit as the stated unique value.
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Hence consider the family of maps

ψ : (V̂Ham ⊕ (−η(r − Ω)∂r, û) →
(
Gω × ÛHam(α,−η)× Λb, (id, u

0, ηΩ)
)

v̂ 7→ ψ(v̂) := φ−1(v̂) = (g, u, b)

(which are continuous, differentiable and Whitney differentiable by Theorem A.1

and propositions A.2-A.1-A.3) associating to v̂ the unique triplet provided by the

translated torus theorem 4.2.

In order to prove that the equation b = 0 implicitly defines Ω, it suffices to show that

Ω 7→ b(Ω) is a local diffeomorphism; since this is an open property with respect to

the C1-topology, and v̂ is close to û, it suffices to show it for û, which is immediate.

Note in particular that b = ηΩ +
∑
k≥1 δbk where δbk, uniquely determined at each

step of the Newton scheme, is of the form11 δbk = −ηδξk (recall Lemma 8 and

system (4.13)-(4.14)-(4.15)).

Hence b = ηΩ + (perturbations << ηΩ). So there exists a unique value of Ω, close

to 0, such that b(Ω) = 0. �

Note that the distance |v̂ − û|s+σ =
∣∣vH − uH

∣∣
s+σ

is independent of Ω and that

constants C ′ and C ′′ (appearing in (A.1) and (A.2) in the proof of Theorem A.1)

are uniform with respect to Ω and η.

Remark 6.1. When η 6= 0, Ω is the value that compensates the ”total translation”

of the torus, sum of the successive translations by ξ′s at each step of the Newton

algorithm.

When η = 0, the standard KAM theory applies since (6.1)-(6.2) are entirely Hamil-

tonian.

6.2. Spin-Orbit problem of Celestial Mechanics. Applying theorems 4.2 and

6.1, the elimination of the obstructing translation parameter b provides here a pic-

ture of the space of parameters proper to this physical system (see theorem 6.2).

A satellite (or a planet) is said to be in n : k spin-orbit resonance when it accom-

plishes n complete rotations about its spin axis, while revolving exactly k times

around its planet (or star). There are various examples of such a motion in Astron-

omy, among which the Moon (1 : 1) or Mercury (3 : 2).

The ”dissipative spin-orbit problem” of Celestial Mechanics can be modeled by

the following equation of motion in R:

(6.4) θ̈ + η(θ̇ − ν) + ε∂θf(θ, t) = 0,

where (θ, t) ∈ T2, the angular variable θ determines the position of an oblate

satellite (modeled as an ellipsoid) whose center of mass revolves on a given elliptic

Keplerian orbit around a fixed massive major body, η > 0 is a dissipation constant

depending on the internal non rigid structure of the body that responds in a non-

elastic way to the gravitational forces, ε > 0 measures the oblateness of the satellite

while ν ∈ R an external free parameter proper to the physical problem. We suppose

that the potential function f is real analytic in all its variables.

11Because of the form of g and the fact that ξ ∈ Rn, the terms δξ and ξ̇ appearing in δg and

ġ = g′−1 · δg coincide.
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See [9] and references therein for a complete physical discussion of the model and

deduction of the equation.

Let now α be a fixed Diophantine frequency. In the coordinates (θ, r = θ̇ − α)

the system associated to (6.4) is

(6.5)

{
θ̇ = α+ r

ṙ = −ηr + η(ν − α)− ε∂θf(θ, t).

We immediately see that when ε = 0 and η 6= 0, r = 0 is an invariant torus provided

that ν = α. Furthermore, the general solution of θ̈ + η(θ̇ − ν) = 0 is given by

θ(t) = νt+ θ0 +
r0 − (ν − α)

η
(1− e−ηt),

showing that the rotation tends asymptotically to a ν-quasi-periodic behavior. Here

the meaning of ν is revealed: ν is the frequency of rotation to which the satellite

tends because of the dissipation, if no ”oblate-shape effects” are present.

On the other hand when ε 6= 0 and η = 0 we are in the conservative regime, and

the classical KAM theory applies.

The main question then is: fixing α Diophantine does there exist a value of the

proper rotation frequency ν such that the perturbed system possesses an α-quasi-

periodic invariant η-attractive torus?12

6.2.1. Extending the phase space. In order to apply our general scheme to the non

autonomous system (6.5), as usual we extend the phase space by introducing the

time (or its translates) as a variable. The phase space becomes T2×R2 with variable

θ2 corresponding to time and r2 its conjugated.

Hence consider the family of vector fields (parametrized by Ω ∈ R)

v = vH ⊕ (−ηr + ηΩ)∂r,

where Ω = (ν − α, 0), ν ∈ R, and vH corresponds to

H(θ, r) = α · r1 + r2 +
1

2
r2
1 + εf(θ1, θ2).

The following objects are essentially the ones introduced in section 4.2.1, taking

into account the introduction of the time-variable θ2 = t and its conjugated r2. Let

ᾱ = (α, 1) satisfy

(6.6) |k1α+ k2| ≥
γ

|k|τ
, ∀k ∈ Z2 \ {0}.

Let H̄ be space of real analytic Hamiltonians defined in a neighborhood of T0 =

T2 × {0} such that for H ∈ H̄, ∂r2H ≡ 1. For these Hamiltonians the frequency

θ̇2 = 1 (corresponding to time) is fixed. Let ᾱ = (α, 1) and K̄ = H̄ ∩ Kᾱ. Let also

Ḡω be the subset of Gω such that ξ̄ = (ξ, 0), ϕ(θ) = (ϕ1(θ), θ2). The corresponding

ġ ∈ TidḠω are ġ = (ϕ̇,− tϕ̇′ · r + dṠ + ξ̇) with ϕ̇ = (ϕ̇1, 0) and ξ̇ = (ξ̇1, 0) and

12In [5] Celletti and Chierchia look for a function u : T2 → R of the form θ(t) = αt+ u(αt, t)

satisfying (6.4) for a particular value ν. This function is found as the solution of an opportune

PDE.
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Λ̄ =
{
λ : λ(θ, r) = b ∂

∂r1

}
≡ R.

By restriction, the normal form operator

φ̄ : Ḡω,σ
2/2n

s+σ × ÛHam
s+σ (ᾱ,−η)× Λ̄→

(
V̂Ham ⊕ (−ηr + ηR∂r1)

)
s
,

(g, u, λ) 7→ g∗u+ b∂r1 ,

and the corresponding

φ̄′(g, u, λ) : TgGω,σ
2/2n

s+σ ×
−−−→
ÛHam
s+σ × Λ̄→

(
V̂Ham ⊕ (ηR)∂r1

)
g,s
,

are now defined. The notation
−−−→
ÛHam
s+σ always stands for the vector space directing

ÛHam
s+σ (ᾱ,−η).

Corollary 6.1 (Normal form for time-dependent perturbations). The operator

φ̄ : Ḡω,σ
2/2n

s+σ × ÛHam
s+σ (ᾱ,−η)× Λ̄→

(
V̂Ham ⊕ (−ηr + ηR∂r1)

)
s

is a local diffeomorphism.

The proof is recovered from the one of the translated torus theorem 4.2, taking

into account that the perturbation belongs to the particular class H̄.

Lemma 10 (Inversion of φ̄′). If g is close to the identity, for every δv ∈
(
VHam ⊕ (ηR)∂r1

)
g,s+σ

there exists a unique triplet (δg, δu, δb) such that φ̄′(g, u, b) · (δg, δu, δb) = δv.

Moreover there exist τ ′, C ′ > 0 such that

max {|δg|s, |δu|s, |δb|} ≤
C ′

στ ′
|δv|g,s+σ,

where the constant C ′ depends only on τ, n, |g − id|s+σ and |u− (α,−ηr)|s+σ.

Proof. Following the calculations made to prove lemma 9 in the demonstration of

Theorem 4.2, we get to the following system of homological equations:

ϕ̇′1 · ᾱ−Q11 · (dṠ1 + ξ̇1) = v̇H1,0

dṠ′1 · ᾱ+ η(dṠ1 + ξ̇1) = V̇ H1,0 + ηδΩ− (δb+ ∂θ1v
1δb)

dṠ′2 · ᾱ+ ηdṠ2 = V̇ H2,0 − ∂θ2v1δb,

(6.7)

As usual, ġ = g′−1 · δg = (ϕ̇,− tϕ̇′ · r+ dṠ+ ξ̇); Q11 is the element of the torsion

matrix Q = (Qi,j). The lower indexes of vector fields indicate the component and

the order of the corresponding term in r whose they are the coefficient.13 Hence,

the first one corresponds to the direction of θ and the second twos to the zero order

term in r in the normal direction.

The tangential equation relative to the time component (that we omitted above) is

easily determined: computation gives v̇2,0 = 0, because of δv∂θ2 = δ1 = 0 and the

form of g′−1, and ϕ̇2 = 0 as well as Q(θ) · dṠ = 0 in the θ̇2-direction.

13We denoted by v1 = ϕ1 − id, the vector field coming from the first component of ϕ − id =

(ϕ1, id)− id.
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Equations relative to the linear term, follow from the Hamiltonian character. So-

lutions follows from lemmata 1 and 2, the same kind of estimates as in lemma 9

hold, hence the required bound. �

Lemma 11. There exists a constant C ′′, depending on |x|s+σ such that in a neigh-

borhood of (id, u0, 0) ∈ Ḡωs+σ×ÛHam
s+σ (ᾱ,−η)× Λ̄ the bilinear map φ′′(x) satisfies the

bound ∣∣φ′′(x) · δx⊗2
∣∣
g,s
≤ C ′′

στ ′′
|δx|2s+σ.

The proof of corollary 6.1 follows.

6.3. Surfaces of invariant tori. The results below will follow from corollary 6.1

and theorem 6.1.

Theorem 6.2 (Cantor set of surfaces). Let ε0 be the maximal value that the per-

turbation can attain. Every Diophantine α identifies a surface (ε, η) 7→ ν(ε, η) in

the space (ε, η, ν) = [0, ε0]× [−η0, η0]× R, which is analytic in ε, smooth in η, for

which the following holds: for any parameters (ε, η, ν(ε, η)), v̂ admits an invariant

α-quasi-periodic torus. This torus is η-normally attractive (resp. repulsive) if η > 0

(resp. η < 0).

Fixing an admissible perturbation ε > 0, we obtain the following straightforward

corollary.

Corollary 6.2 (A curve of normally hyperbolic tori). Fixing α Diophantine and

ε sufficiently small, there exists a unique analytic curve Cα, in the plane (η, ν) =

[0, ε0]×[−η0, η0] of the form ν = α+O(ε2), along which the counter term b(ν, α, η, ε)

”à la Rüssmann” vanishes, so that the perturbed system possesses an invariant α-

quasi-periodic torus. This torus is attractive (resp. repulsive) if η > 0 (resp. η < 0).

ε

ν

η

ε0

plane containing the Cα’s

α

Cα

Figure 3. The Cantor set of surfaces: transversely cutting with

a plane ε = const we obtain a Cantor set of curves like the one

described in corollary 6.2
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α ν

η

Hamiltonian
axis η = 0

Cα : b(ν, η, α, ε) = 0

Figure 4. The corresponding Cantor set of curves on the plane

ε = const, whose points correspond to an attractive/repulsive in-

variant torus

Proof of theorem 6.2. We just need to observe the following facts.

The existence of the unique local inverse for φ̄′ and the bound on it and φ̄′′ allow

to apply theorem 4.2 and prove the result once we guarantee that∣∣v − u0
∣∣
s+σ

= max

(
ε

∣∣∣∣ ∂f∂θ1

∣∣∣∣
s+σ

, ε

∣∣∣∣ ∂f∂θ2

∣∣∣∣
s+σ

)
≤ δ σ2τ

28τC2
,

(here we have replaced the constant η appearing in the abstract function theorem

with δ, in order not to generate confusion with the dissipation term). This en-

sures that the inverse mapping theorem can be applied, as well as the regularity

propositions (A.1, A.2 and A.3). Note that the constant C appearing in the bound

contains a factor 1/γ2 coming from the diophantine condition (6.6), independent

of η, since the remark 4.1 still holds here.

For every η ∈ [−η0, η0], apply theorem 6.1 and find the unique ν, such that

b(ν, η, α, ε) = 0,

(as in the multidimensional case of theorem 6.1 b is of the form b = η(ν − α+
∑
k δξk),

smooth with respect to ν and η and analytic in ε).

In particular the value of ν that satisfies the equation is of the form

ν(ε, η) = α+O(ε2).

This follows directly from the very first step of Newton’ scheme

x1 = x0 + φ′−1(x0) · (v − φ(x0)),

where x0 = (id, u0, η(ν−α)). Developing the expression one sees that δξ1 (the term

of order ε) is necessarily 0, due to the particular perturbation and the constant

torsion. �

6.4. An important dichotomy. The results obtained for the spin-orbit problem,

Theorem 6.1, Theorem 6.2 and Corollary 6.2, are intimately related to the very

particular nature of the equations of motions and point out an existing dichotomy

between generic dissipative vector fields and the Hamiltonian-dissipative to which

the spin-orbit system belongs.

In the case of a general perturbation, if we want to keep the characteristic frequen-

cies (α,−η) fixed, even if the system satisfies some torsion property, two counter
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terms are still necessary: a counter term b to keep track of the average of the equa-

tion relocating the torus and B ∈ Matn(R) (recall condition [B, η] = 0). Disposing

of just n free parameters Ω1, . . . ,Ωn, one possible result is to eliminate b, but it is

hopeless to get rid of the obstruction represented by B and have a complete control

on the normal dynamics of the torus.

In particular, for the spin-orbit problem in one and a half degrees of freedom, by

using diffeomorphisms of T2 × R of the form g(θ, r) = (ϕ(θ), θ2, R0(θ) +R1(θ) · r),
the system corresponding to (6.7) reads

ϕ̇′ · ᾱ− Ṙ0 = v̇0,

Ṙ′0 · ᾱ+ ηṘ0 = V̇0 − ḃ,

Ṙ′1 · ᾱ+ Ṙ′0 = V̇1 − Ḃ, ᾱ = (α, 1), δb, δB ∈ R.

and disposing of ν ∈ R only, we could at best solve b = 0, for any η up to a small

neighborhood of the origin, since b = ην +O(ε, ε/η).

Besides, in the case of no torsion, the direct application of Moser’s theorem with

counter-terms β,B ∈ R (by considering η(ν−α) part of the perturbation) immedi-

ately gives that β = ν−α+
∫
V0

η +
∫
v0 at the first order, and one could solve β = 0

with respect to ν, for any η in the complementary of a small neighborhood of the

origin. In fact, the Diophantine condition |i k · ᾱ+ η| ≥ γ/(1 + |k|)−τ ∀k ∈ Z2 is

necessary in order to control the constant part of Ṙ0 (not necessarily of zero mean),

implying that the bound on ε of theorem A.1 depends on η through γ:

ε < γ4C ′ ≤ η4C ′.

Once ε is fixed, the curves Cα entailed in Corollary 6.2 (obtained by eliminating

β) cannot be defined till the axis η = 0 in the plane ε = const. (we grouped in a

unique constant C ′ all the other terms appearing in the bound).

ε

ν

Cα for non Hamiltonian perturbation

Cα for Hamiltonian perturbationη

Figure 5. The two situations: 1)blue surfaces ν = ν(η, ε) corre-

sponding to the case ”Hamiltonian + dissipation” of theorem 6.2

2) Red surfaces corresponding to the case of generic perturbations:

they corresponds to invariant tori of co-dimension 1 (B 6= 0).
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Appendix A. Inverse function theorem & regularity of φ

We present here the inverse function theorem we used to prove Theorems 2.1-4.1-

4.2. This results follows from Féjoz [14, 16]. Remark that we endowed functional

spaces with weighted norms and bounds appearing in Proposition 2.1 and Lemma

4 may depend on |x|s (as opposed to the statements given in [14, 16]); however we

take here account of these (slight) differences.

Let E = (Es)0<s<1 and F = (Fs)0<s<1 be two decreasing families of Banach

spaces with increasing norms |·|s and let BEs (σ) = {x ∈ E : |x|s < σ} be the ball of

radius σ centered at 0 in Es.

On account of composition operators, we additionally endow F with some deformed

norms which depend on x ∈ BEs (s) such that

|y|0,s = |y|s and |y|x̂,s ≤ |y|x,s+|x−x̂|s .

Consider then operators commuting with inclusions φ : BEs+σ(σ) → Fs, with 0 <

s < s+ σ < 1, such that φ(0) = 0.

We then suppose that if x ∈ BEs+σ(σ) then φ′(x) : Es+σ → Fs has a right inverse

φ′−1(x) : Fs+σ → Es (for the particular operators φ of this work, φ′ is both left

and right invertible).

φ is supposed to be at least twice differentiable.

Let τ := τ ′ + τ ′′ and C := C ′C ′′.

Theorem A.1. Under the previous assumptions, assume∣∣φ′−1(x) · δy
∣∣
s
≤ C ′

στ ′
|δy|x,s+σ(A.1) ∣∣φ′′(x) · δx⊗2

∣∣
x,s
≤ C ′′

στ ′′
|δx|2s+σ, ∀s, σ : 0 < s < s+ σ < 1(A.2)

C ′ and C ′′ depending on |x|s+σ, τ ′, τ ′′ ≥ 1.

For any s, σ, η with η < s and ε ≤ η σ2τ

28τC2 (C ≥ 1, σ < 3C), φ has a right inverse

ψ : BFs+σ(ε)→ BEs (η). In other words, φ is locally surjective:

BFs+σ(ε) ⊂ φ(BEs (η)).

Define

(A.3) Q : BEs+2σ(σ)×BEs+2σ → Fs, (x, x̂) 7→ φ(x̂)− φ(x)− φ′(x)(x̂− x),

the reminder of the Taylor formula.

Lemma 12. For every x, x̂ such that |x− x̂|s < σ,

(A.4) |Q(x, x̂)|x,s ≤
C ′′

2σ2
|x̂− x|2s+σ+|x̂−x|s

.

Proof. Let xt = (1 − t)x + tx̂, 0 ≤ t ≤ 1, be the segment joining x to x̂. Using

Taylor’s formula,

Q(x, x̂) =

∫ 1

0

(1− t)φ′′(xt)(x̂− x)2 dt,
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hence

|Q(x, x̂)|x,s ≤
∫ 1

0

(1− t)
∣∣φ′′(xt)(x̂− x)2

∣∣
x,s
dt

≤
∫ 1

0

(1− t)
∣∣φ′′(xt)(x̂− x)2

∣∣
xt,s+|xt−x|s

dt

≤
∫ 1

0

(1− t) C
′′

σ2
|(x̂− x)|2s+σ+|xt−x|s

dt

≤ C ′′

2σ2
|x̂− x|2s+σ+|x̂−x|s

.

�

Proof of theorem A.1. Let η < s, σ and ε be fixed positive real numbers and let

y ∈ BFs+σ(ε). We define the following map:

f : BEs+σ(σ)→ Es, x 7→ x+ φ′−1(x)(y − φ(x)).

We want to prove that, if ε is sufficiently small, there exists a sequence defined by

induction by {
x0 = 0

xn+1 = f(xn),

converging towards some point x ∈ BEs (η), the preimage of y by φ.

Let us introduce two sequences

− a sequence of positive real numbers (σn)n≥0 such that 3
∑
n σn = σ be the total

width of analyticity we will have lost at the end of the algorithm,

− the decreasing sequence (sn)n≥0 defined inductively by s0 = s+ σ (the starting

width of analyticity), sn+1 = sn − 3σn. Of course, sn → s when n→ +∞.

Let Ck = 2Cσ−τk ≥ 1 for all k ∈ N and define ζn =
∏

0≤k≤n C
2−k

k and ζ =∏
k≥0 C

2−k

k . We start to prove that for every n ≥ 1, there exist x0, ..., xn and that

|xn − xn−1|sn ≤ (εζn−1)2n−1

and |xn|sn ≤
n−1∑
k=0

(εζ)2k .

From xk − xk−1 = φ′−1(xk−1)(y−φ(xk−1)) we see that y−φ(xk) = −Q(xk−1, xk),

which permits to write xk+1 − xk = −φ′−1(xk)Q(xk−1, xk), for k = 1, ..., n.

First, remark that

|x1 − x0|s1 = |x1|s1 ≤
C ′

(3σ0)τ ′
|y − φ(x0)|s0 ≤

C

2στ0
|y|s+σ ≤ C0ε

and |x1|s1 ≤ ζε, the assertion is thus true for n = 1.

Assuming that |xk − xk−1|sk ≤ σk, for k = 1, ...n, from the estimate of the right

inverse and the previous lemma we get

|xn+1 − xn|sn+1
≤ C

2στn
|xn − xn−1|2sn ≤ . . . ≤ CnC

2
n−1 . . . C

2n−1

1 |x1 − x0|2
n

s1
.
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Second, observe that since Ck ≥ 1 (see remark below),

|xn+1 − xn|sn+1
≤ Cn(εζn−1)2n = (εζn)2n ≤ (εζ)2n =

ε∏
k≥0

C2−k

k

2n

and |xn+1|sn+1
≤ |xn|sn + |xn+1 − xn|sn+1

≤
∑n

0 (εζ)2k .

Third, note that ∑
n≥0

z2n = z + z2 + z4 + . . . ≤ z
∑
n≥0

zn ≤ 2z,

if z ≤ 1
2 .

The key point is to choose ε such that ε
∏
k≥0 C

2−k

k ≤ 1
2 (or any positive number

< 1) and
∑
n≥0 |xn+1 − xn|sn+1

< η, in order for the whole sequence (xk) to exist

and converge in Bs(η) ⊂ Es. Hence, using the definition of the Cn’s and the fact

that (
C

2

)−2−k

=

(
2

C

)( 1
2 )
k

=⇒
∏(

2

C

)( 1
2 )
k

=

(
2

C

)∑
1

2k

=

(
2

C

)2

,

within
∑
k

1
2k

=
∑
k k

1
2k

= 2, we obtain as a sufficient value

(A.5) ε = η
2

C2

∏
k≥0

σ
τ ( 1

2 )k

k .

Eventually, the constraint 3
∑
n≥0 σn = σ gives σk = σ

6

(
1
2

)k
, which, plugged into

(A.5), gives:

ε = η
2

C2

( σ
12

)2τ

>
σ2τη

28τC2
,

hence the theorem.

A posteriori, the exponential decay we proved makes straightforward the further

assumption |xk − xk−1|sk < σk to apply lemma 12.

Concerning the bounds over the constant C, as
∑
k |xk+1 − xk|sk+1

≤ η, we see that

all the |xn|sn are bounded, hence the constants C ′ and C ′′ depending on them.

Moreover, to have all the Cn ≥ 1, as we previously supposed, it suffices to assume

C ≥ σ/3. �

Remark A.1. In case the operator φ is defined only on polynomially small balls

φ : BEs+σ(c0σ
`)→ Fs, c0 > 0,∀s, σ

the statement and the proof of theorem A.1 still hold, provided that η is chosen

small enough (η < 2c0(σ/12)` suffices).

This is the case of the operators defined in sections 4.1 and 4.2, where ` = 2.

A.1. Local uniqueness and regularity of the normal form. We want to show

the uniqueness and some regularity properties of the right inverse ψ of φ, assuming

the additional left invertibility of φ′ (which is the case, for the particular operator

φ′ of interest to us).
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Definition A.1. We will say that a family of norms (|·|s)s>0 on a grading (Es)s>0

is log-convex if for every x ∈ Es the map s 7→ log |x|s is convex.

Lemma 13. If (| · |s) is log-convex, the following inequality holds

|x|2s+σ ≤ |x|s|x|s+σ̃, ∀s, σ, σ̃ = σ(1 +
1

s
).

Proof. If f : s 7→ log |x|s is convex, this inequality holds

f

(
s1 + s2

2

)
≤ f(s1) + f(s2)

2
.

Let now x ∈ Es, then

log |x|s+σ ≤ log |x| 2s+σ̃
2
≤ 1

2

(
log |x|s + log |x|s+σ̃

)
=

1

2
log(|x|s|x|s+σ̃),

hence the lemma. �

Let us assume that the family of norms (|·|s)s>0 of the grading (Es)s>0 are

log-convex. To prove the uniqueness of ψ we are going to assume that φ′ is also

left-invertible.

Proposition A.1 (Lipschitz continuity of ψ). Let σ < s. If y, ŷ ∈ BFs+σ(ε) with

ε = 3−4τ2−16τ σ6τ

4C3 , the following inequality holds

|ψ(y)− ψ(ŷ)|s ≤ L|y − ŷ|x,s+σ,

with L = 2C ′/στ
′
. In particular, ψ being the unique local right inverse of φ, it is

also its unique left inverse.

Proof. In order to get the wanted estimate we introduce an intermediate parameter

ξ, that will be chosen later, such tat η < ξ < σ < s < s+ σ.

To lighten notations let us call ψ(y) =: x and ψ(ŷ) =: x̂. Let also ε = ξ2τη
28τC2 so that

if y, ŷ ∈ BFs+σ(ε), x, x̂ ∈ BEs+σ−ξ(η), by theorem A.1, provided that η < s+σ−ξ - to

check later. In particular, we assume that any x, x̂ ∈ BEs+σ−ξ satisfy |x− x̂|s+σ−ξ ≤
2η. Writing

(x− x̂) = φ′−1(x) · φ(x)(x− x̂),

and using

φ′(x)(x− x̂) = φ(x̂)− φ(x̂)−Q(x, x̂),

we get

x− x̂ = φ′−1(x)(φ(x̂)− φ(x)−Q(x, x̂)).

Taking norms we have

|x− x̂|s ≤
C ′

στ ′
|y − ŷ|x,s+σ +

C

2ξτ
|x− x̂|2s+2ξ+|x−x̂|s+ξ

,

≤ C ′

στ ′
|y − ŷ|x,s+σ +

C

2ξτ
|x− x̂|2s+2ξ+2η,
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by lemma 12 and the fact that |x− x̂|s+ξ ≤ |x− x̂|s+σ−ξ (choosing ξ so that 2ξ < σ

too).

Let us define σ̃ = (2ξ + 2η)(1 + 1/s) and use the interpolation inequality

|x− x̂|2s+2η+2ξ ≤ |x− x̂|s|x− x̂|s+σ̃

to obtain

(1− C

2ξτ
|x− x̂|s+σ̃)|x− x̂|s ≤

C ′

στ ′
|y − ŷ|x,s+σ.

We now choose η so small to have

− σ̃ ≤ σ − ξ, which implies |x− x̂|s+σ̃ ≤ 2η. It suffices to have η ≤ σ
2(1+ 1

s )
− 3

2ξ.

− η ≤ ξτ

2C in order to have C
2ξτ |x− x̂|s+σ ≤

1
2 .

A possible choice is ξ = σ2

12 and η =
(
σ
12

)2τ 1
4C , hence our choice of ε. �

Proposition A.2 (Smooth differentiation of ψ). Let η < s < s+ σ and ε be as in

proposition A.1. There exists a constant K such that for every y, ŷ ∈ BFs+σ(ε) we

have ∣∣ψ(ŷ)− ψ(y)− φ′−1(ψ(y))(ŷ − y)
∣∣
s
≤ K(σ)|ŷ − y|2x,s+σ,

and the map ψ′ : BFs+σ(ε) → L(Fs+σ, Es) defined locally by ψ′(y) = φ′−1(ψ(y))

is continuous. In particular, if φ : BEs+σ(σ) → Fs is Ck, 2 ≤ k ≤ ∞, so is

ψ : BFs+σ(ε)→ Es.

Proof. Let’s baptize some terms

− ∆ := ψ(ŷ)− ψ(y)− φ′−1(x)(ŷ − y)

− δ := ŷ − y, the increment

− ξ := ψ(y + δ)− ψ(y)

− Ξ := φ(x+ ξ)− φ(x).

With these new notations we can see ∆ as

∆ = ξ − φ′−1(x) · Ξ

= φ′−1(x)(φ′(x) · ξ − Ξ)

= φ′−1(x)(φ′(x)ξ − φ(x+ ξ) + φ(x))

= −φ′−1(x)Q(x, x+ ξ)

Taking norms we have

|∆|s ≤ K|ŷ − y|
2
x,s+σ̄

by proposition A.1 and lemma 12, for some σ̄ which goes to zero when σ does, and

some constant K > 0 depending on σ . Up to substituting σ for σ̄, we have proved

the statement.

In addition

ψ′(y) = φ−1(y)′ = φ′−1 ◦ φ−1(y) = φ′−1(ψ(y)),

the inversion of linear operators between Banach spaces being analytic, the map

y 7→ φ′−1(ψ(y)) has the same degree of smoothness as φ′. �
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It is sometimes convenient to extend ψ to non-Diophantine characteristic fre-

quencies (α, a). Whitney smoothness guarantees that such an extension exists. Let

suppose that φ(x) = φν(x) depends on some parameter ν ∈ Bd (the unit ball of Rd)
and that it is C1 with respect to ν and that estimates on φ′−1

ν and φ′′ν are uniform

with respect to ν over some closed subset D of Rd.

Proposition A.3 (Whitney differentiability). Let us fix ε, σ, s as in proposition

A.1. The map ψ : D×BFs+σ(ε)→ BEs (η) is C1-Whitney differentiable and extends

to a map ψ : Rd × BFs+σ(ε) → BEs (η) of class C1. If φ is Ck, 1 ≤ k ≤ ∞, with

respect to ν, this extension is Ck.

Proof. Let y ∈ BFs+σ(ε). For ν, ν + µ ∈ D, let xν = ψν(y) and xν+µ = ψν+µ(y),

implying

φν+µ(xν+µ)− φν+µ(xν) = φν(xν)− φν+µ(xν).

It then follows, since y 7→ ψν+µ(y) is Lipschitz, that

|xν+µ − xν |s ≤ L|φν(xν)− φν+µ(xν)|xν ,s+σ,

taking y = φν+µ(xν), ŷ = φν+µ(xν+µ). In particular since ν 7→ φν(xν) is Lipschitz,

the same is for ν 7→ xν . Let us now expand φν+µ(xν+µ) = φ(ν +µ, xν+µ) in Taylor

at (ν, xν). We have

φ(ν + µ, xν+µ) = φ(ν, xν) +Dφ(ν, xν) · (µ, xν+µ − xν) +O(µ2, |xν+µ − xν |2s),

hence formally defining the derivative ∂νxν := −φ′−1
ν (xν) · ∂νφν(xν), we obtain

xν+µ − xν − ∂νxν · µ = φ′−1
ν (xν) ·O(µ2),

hence

|xν+µ − xν − ∂νxν · µ|s = O(µ2)

by Lipschitz property of ν 7→ xν , when µ 7→ 0, locally uniformly with respect

to ν. Hence ν 7→ xν is C1-Whitney-smooth and by Whitney extension theorem,

the claimed extension exists. Similarly if φ is Ck with respect to ν, ν 7→ xν is

Ck-Whitney-smooth. See [1] for the straightforward generalization of Whitney’s

theorem to the case of interest to us: ψ takes values in a Banach space instead of

a finite dimension vector space; but note that the extension direction is of finite

dimension though. �

Appendix B. Inversion of a holomorphism of Tns
We present here a classical result on the inversion of holorphisms on the complex

torus Tns that intervened to guarantee the well definition of normal form operators

φ.

All complex extensions of manifolds are defined at the help of the `∞-norm,

Tns =

{
θ ∈ TnC : |θ| := max

1≤j≤n
|Im θj | ≤ s

}
.

Let also define Rns := Rn × (−s, s) and consider the universal covering of Tns ,

p : Rns → Tns .
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Theorem B.1. Let v : Tns → Cn be a vector field such that |v|s < σ/n. The

map id +v : Tns−σ → Rns induces a map ϕ = id +v : Tns−σ → Tns which is a

biholomorphism and there is a unique biholomorphism ψ : Tns−2σ → Tns−σ such that

ϕ ◦ ψ = idTns−2σ
.

Furthermore, the following inequalities hold:

|ψ − id|s−2σ ≤ |v|s−σ
and, if |v|s < σ/2n

|ψ′ − id|s−2σ ≤
2

σ
|v|s.

Proof. Let ϕ̂ := id +v ◦ p : Rns → Rns+σ be the lift of ϕ to Rns .

Let’s start proving the injectivity and surjectivity of ϕ̂; the same properties for ϕ

descend from these.

− ϕ̂ is injective as a map from Rns−σ → Rns .

Let ϕ̂(x) = ϕ̂(x′), from the definition of ϕ̂ we have

|x− x′| = |v ◦ p(x′)− v ◦ p(x)| ≤
∫ 1

0

n∑
k=1

|∂xk v̂|s−σ|x
′
k − xk| dt ≤

n

σ
|v|s|x− x

′|

< |x− x′|,

hence x′ = x.

− ϕ̂ : Rns−σ → Rns−2σ ⊂ ϕ̂(Rns−σ) is surjective.

Define, for every y ∈ Rns−2σ the map

f : Rns−σ → Rns−σ, x 7→ y − v ◦ p(x),

which is a contraction (see the last but one inequality of the previous step).

Hence there exists a unique fixed point such that ϕ̂(x) = x+ v ◦ p(x) = y.

For every k ∈ 2πZn, the function Rns → Rns , x 7→ ϕ̂(x+k)− ϕ̂(x) is continuous and

2πZn-valued. In particular there exists A ∈ GLn(Z) such that ϕ̂(x+k) = ϕ̂(x)+Ak.

− ϕ : Tns−σ → Tns is injective.

Let ϕ(p(x)) = ϕ(p(x′)), with p(x), p(x′) ∈ Tns−σ, hence ϕ̂(x′) = ϕ̂(x) + k′, for

some k′ ∈ 2πZn. Hence ϕ̂(x′ − A−1k′) = ϕ̂(x), and for the injectivity of ϕ̂,

p(x) = p(x′). In particular ϕ is biholomorphic:

Lemma 14 ( [17]). If G ⊂ Cn is a domain and f : G → Cn injective and

holomorphic, then f(G) is a domain and f : G→ f(G) is biholomorphic.

− That ϕ : Tns−σ → Tns−2σ ⊂ ϕ(Tns−σ) is surjective follows from the one of ϕ̂.

− Estimate for ψ : Tns−2σ → Tns−σ the inverse of ϕ.

Let ψ̂ : Rns−2σ → Rns−σ be the inverse of ϕ̂, and y ∈ Rns−2σ. From the definition

of ϕ̂, v ◦ p(ψ̂(y)) = y − p(ψ̂(y)) = y − ψ̂(y). Hence∣∣∣ψ̂(y)− y
∣∣∣
s−2σ

=
∣∣∣v ◦ p(ψ̂(y))

∣∣∣
s−2σ

≤ |v|s−2σ ≤ |v|s−σ.

− Estimate for ψ′ = ϕ′−1 ◦ ϕ−1. We have

|ψ′ − id|s−2σ ≤
∣∣ϕ′−1 − id

∣∣
s−σ ≤

|ϕ′ − id|s−σ
1− |ϕ′ − id|s−σ

≤ 2n

2n− 1

|v|s
σ
≤ 2
|v|s
σ
,
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by triangular and Cauchy inequalities.

�

Corollary B.1 (Well definition of the operators φ). For all s, σ

− if g ∈ Gσ/ns+σ, then g−1 ∈ A(Tns ,T
n
s+σ)

− if g ∈ Gω,σ
2/2n

s+σ , then g−1 ∈ A(Tns ,T
n
s+σ).

As a consequence, the operators φ in (2.2), (4.1) and (4.10) are well defined.

Proof. We recall the form of g ∈ Gσ/ns+σ:

g(θ, r) = (ϕ(θ), R0(θ) +R1(θ) · r).

g−1 reads

g−1(θ, r) = (φ−1(θ), R−1
1 ◦ ϕ−1(θ) · (r −R0 ◦ ϕ(θ))).

Up to rescaling norms by a factor 1/2 like ‖x‖s := 1
2 |x|, the first statement is

straightforward from theorem B.1. By abuse of notations, we keep on indicating

‖x‖s with |x|s.

Concerning those g ∈ Gω,σ
2/2n

s+σ we recall that g−1 is given by

g−1(θ, r) = (ϕ′−1(θ), tϕ′ ◦ ϕ−1(θ) · r − ρ ◦ ϕ−1(θ));

if
∣∣ϕ−1 − id

∣∣
s
< σ and |ρ|s+σ < σ/2 with

∣∣r · ϕ′ ◦ ϕ−1(θ)
∣∣
s
< σ/2 we get the wanted

thesis. Just note that∣∣ t(ϕ′ − id) · r
∣∣
s
≤ n|r|

σ
|ϕ− id|s+σ ≤ σ/2,

the factor n coming from the transposition. �

Appendix C. Estimates on the Lie brackets of vector fields

This is just an adaptation to vector fields on Tns+σ of the analogous lemma for

vector fields on the torus Tns in [26].

Lemma 15. Let f and g be two real analytic vector fields on Tns+σ. The following

inequality holds

| [f, g] |s ≤
2

σ

(
1 +

1

e

)
|f |s+σ|g|s+σ.

Proof. Consider f = (fθ, fr) =
∑n
j=1 f

θj ∂
∂θj

+frj ∂
∂rj

and g = (gθ, gr) =
∑n
j=1 g

θj ∂
∂θj

+

grj ∂
∂rj

. From the definition of the Lie Brackets we have [f, g] =
∑
k f(gk)− g(fk),

where every component k reads

[f, g]k =

n∑
j=1

(fθj
∂gk

∂θj
+ frj

∂gk

∂rj
)− (gθj

∂fk

∂θj
+ grj

∂fk

∂rj
)

= (Dg · f −Df · g)k.

We observe that for an holomorphic function h : Tns+σ → C, one has∣∣∣∣ ∂h∂rj
∣∣∣∣
s

=
∑
k

∣∣∣∣∂hk(r)

∂rj

∣∣∣∣
s

e|k|s ≤
∑
k

1

σ
|hk(r)|s+σe

|k|s ≤ 1

σ
|h|s+σ,
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and ∣∣∣∣ ∂h∂θj
∣∣∣∣
s

=
∑
k

|kj ||hk(r)|se
|k|s ≤

∑
k

|k||hk(r)|se
|k|(s+σ) e−|k|σ

≤ 1

eσ

∑
k

|hk(r)|s+σe
|k|(s+σ) =

1

eσ
|h|s+σ,

where we bound |k|e−|k|σ with the maximum attained by xe−xσ, x > 0, in 1/σ,

that is 1/eσ.

Therefore, consider f and g in their Fourier’s expansion, Dg · f read

Dg·f =
∑
k,`

ik · fθ` gkei(k+`)θ+Drgk·fr` ei(k+`)·θ =
∑
k,`

i k·fθ`−kgk ei`·θ+Drgk·fr`−kei`·θ.

Passing to norms we have the following inequality

|Dg · f |s ≤
∑
k,`

|k|
∣∣fθ`−k∣∣|gk|e|k|se|`−k|s + |Drgk|

∣∣fr`−k∣∣e|k|se|`−k|s ≤
≤
∑
k,`

|k||gk|e−|k|σe|k|(s+σ)
∣∣fθ`−k∣∣e|`−k|s + |Drgk|e|k|s

∣∣fr`−k∣∣e|`−k|s
≤ 1

eσ
|g|s+σ|f |s+σ +

1

σ
|g|s+σ|f |s+σ,

which follows from the previous remark. Hence the lemma. �
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volume 103 of Astérisque. Société Mathématique de France, Paris, 1983. With an appendix

by Albert Fathi, With an English summary.

[21] M.-R. Herman. Séminaires de systèmes dynamiques. 1997.
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[24] J. Pöschel. On elliptic lower-dimensional tori in Hamiltonian systems. Math. Z., 202(4):559–

608, 1989.
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