Università degli Studi Roma Tre - Corso di Laurea in Matematica

Esercitazione di AM310

A.A. 2017 - 2018 - Esercitatore: Luca Battaglia

ESERCITAZIONE 1 DEL 12 OTTOBRE 2017 ARGOMENTO: MISURE, PASSAGGIO AL LIMITE SOTTO INTEGRALE

- 1. Calcolare $\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} n^2 x \cos(x) e^{-n^2 x^2} dx$.
- 2. Sia f continua e non negativa su $[0, +\infty)$ tale che $\int_0^{+\infty} f(x) dx < +\infty$. Dimostrare che $\int_0^{+\infty} \frac{f(x)}{1+nx} dx \bigvee_{n \to +\infty} 0.$
- 3. Calcolare $\lim_{n \to +\infty} \sum_{k=0}^{+\infty} \frac{\arctan(nk)}{e^k}$.
- 4. Sia $\{f_n\}_{n\in\mathbb{N}}$ una successione di funzioni continue e non negative su \mathbb{R} e tali che $f_n(x) \leq f(x)$ per ogni $x \in \mathbb{R}$, per un'opportuna f con $\int_{-\infty}^{+\infty} f(x) dx < +\infty$. Dimostrare che

$$\int_{-\infty}^{+\infty} \limsup_{n \to +\infty} f_n(x) dx \ge \limsup_{n \to +\infty} \int_{-\infty}^{+\infty} f_n(x) dx.$$

Dimostrare, utilizzando la successione $f_n = \chi_{[n,+\infty)}$, che è necessario assumere l'esistenza della maggiorante f con integrale finito.

5. Sia μ una misura Boreliana su \mathbb{R} e finita sui compatti e sia $f(x) := \mu((x-1,x+1))$. Dimostrare che f è inferiormente semi-continua, ovvero che per ogni successione convergente $x_n \underset{n \to +\infty}{\to} x$ si ha $f(x) \leq \liminf_{n \to +\infty} f(x_n)$.

Dimostrare, utilizzando la misura di Dirac $\mu(A)=\left\{\begin{array}{ll} 1 & \text{se } 0\in A\\ 0 & \text{se } 0\not\in A \end{array}\right.$, che la disuguaglianza precedente potrebbe essere stretta.

6. Sia Σ la famiglia di insiemi definita da

$$\Sigma := \{ A \subset \mathbb{R} : [0, +\infty) \subset A \text{ oppure } A \subset (-\infty, 0) \}.$$

Dimostrare che Σ è una σ -algebra su $\mathbb R$ e che la funzione $\mu(A) = \left\{ \begin{array}{ll} 1 & \text{se } A \cap [0,+\infty) \neq \emptyset \\ 0 & \text{se } A \subset (-\infty,0) \end{array} \right.$ è una misura su Σ .

Dimostrare che μ non è una misura sui Boreliani di \mathbb{R} .