Università degli Studi Roma Tre - Corso di Laurea in Matematica

Esercitazione di AM310

A.A. 2017 - 2018 - Esercitatore: Luca Battaglia

Esercitazione 5 del 14 Dicembre 2017 Argomento: Spazi L^p

- 1. Sia $\{x_n\}_{n\in\mathbb{N}}\subset \ell_1$ definita da $x_n(k)=\left\{\begin{array}{ll} 1 & n=k\\ 0 & n\neq k \end{array}\right.$ Dimostrare che:
 - (a) $||x_n||_p = 1$ per ogni $n \in \mathbb{N}, p \in [1, +\infty];$
 - (b) x_n non ha estratte convergenti per nessun $p \in [1, +\infty]$.
- 2. Sia $\{x_n\}_{n\in\mathbb{N}}\subset \ell_1$ definita da $x_n(k)=\frac{1}{\sqrt{n}}e^{-\frac{k}{n}}$.
 - (a) Calcolare $||x_n||_p$ per ogni $p \in [1, +\infty]$;
 - (b) Dimostrare che x_n è limitata in ℓ_p se e solo se $p \geq 2$;
 - (c) Dimostrare che x_n converge se e solo se p > 2 e trovarne il suo limite.
- 3. Sia $p \in [1, +\infty]$, $a \in \ell_p$ e $L_a : \ell_{\frac{p}{p-1}} \to \mathbb{R}$ l'operatore lineare definito da $L_a(x) = \sum_{k \in \mathbb{N}} a(k)x(k)$. Dimostrare che la sua norma operatoriale è $\|L_a\| := \sup_{\|x\|_{\frac{p}{p-1}} \le 1} |L_a(x)| = \|a\|_p$. Trovare, ove possibile, $x \in \ell_{\frac{p}{p-1}}$ tale che $\|x\|_{\frac{p}{p-1}} = 1$ e $L_a(x) = \|L_a\|$.
- 4. Sia (X, Σ, μ) uno spazio misura e sia f misurabile rispetto a Σ .
 - (a) Dimostrare che $\liminf_{p\to +\infty} \|f\|_p \ge \|f\|_{\infty}$;
 - (b) Dimostrare che se $\mu(X) = +\infty$ allora $\limsup_{p \to +\infty} \|f\|_p \le \|f\|_\infty$ e quindi $\|f\|_p \xrightarrow[p \to +\infty]{} \|f\|_\infty$;
 - (c) Mostrare con un controesempio che la precedente affermazione è falsa se si toglie l'ipotesi $f \in L^{p_0}(X,\mu)$ per qualche p_0 .
- 5. Sia (X, Σ, μ) uno spazio misura e siano $p, q, r \in [1, +\infty]$ con p < r < q.
 - (a) Dimostrare che ogni $f \in L^p(X,\mu) \cap L^q(\Sigma,\mu)$ verifica

$$||f||_r \le ||f||_p^{\frac{p(q-r)}{r(q-p)}} ||f||_q^{\frac{q(r-p)}{r(q-p)}};$$

dedurne che $L^p(X,\mu) \cap L^q(X,\mu) \subset \bigcap_{r \in (p,q)} L^r(X,\mu)$.

(b) Sia ora $\{f_n\}_{n\in\mathbb{N}}$ una successione limitata sia in $L^p(X,\mu)$ che in $L^q(X,\mu)$. Dimostrare che se converge a 0 in $L^p(X,\mu)$ oppure in $L^q(X,\mu)$ allora converge a 0 anche in $L^r(X,\mu)$ per ogni $r \in (p,q)$.