Università degli Studi Roma Tre - Corso di Laurea in Matematica

Esercitazione di AM310

A.A. 2018-2019 - Esercitatore: Luca Battaglia

ESERCITAZIONE 3 DEL 31 OTTOBRE 2018 ARGOMENTO: MISURE, PASSAGGIO AL LIMITE SOTTO INTEGRALE, COMPLETEZZA

1. Utilizzando opportune serie di funzioni, dimostrare le uguaglianze

$$\int_0^1 \frac{\log \frac{1}{x}}{1-x} dx = \sum_{n=0}^{+\infty} \frac{1}{(n+1)^2} \qquad \qquad \int_0^1 \frac{\log \frac{1}{x}}{1+x} dx = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)^2}.$$

- 2. Sia (X, Σ, μ) uno spazio misura.
 - (a) Se μ è completa e f è misurabile rispetto a Σ , allora ogni $g: X \to \mathbb{R}$ tale che f(x) = g(x) per μ -q.o. $x \in X$ è anch'essa misurabile.
 - (b) Se μ non è completa e f è misurabile rispetto a Σ , allora esiste $g: X \to \mathbb{R}$ tale che f(x) = g(x) per μ -q.o. $x \in X$ ma g non è misurabile.
- 3. Sia (X, Σ, μ) uno spazio misura, $f: X \to \mathbb{R}$ μ -misurabile e

$$A_n := \{ x \in X : n \le |f(x)| < n+1 \}.$$

Dimostrare che le seguenti condizioni sono equivalenti:

- (a) f è essenzialmente limitata, cioè esiste M > 0 tale che $|f(x)| \le M$ per μ -q.o. $x \in X$;
- (b) $\mu(A_n) > 0$ solo per finiti n;
- (c) Se $g \in L^1(\mu)$ allora anche $fg \in L^1(\mu)$.

Dimostrare che, assumendo inoltre $\mu(X) < +\infty$, $f \in L^1(\mu)$ se e solo se $\sum_{n=0}^{+\infty} n\mu(A_n) < +\infty$.