Esercitazione di AM310

A.A. 2018-2019 - Esercitatore: Luca Battaglia

ESERCITAZIONE 6 DEL 20 DICEMBRE 2018 ARGOMENTO: MISURE PRODOTTO, OPERATORI LINEARI, SPAZI DUALI

- 1. Sia $a(j,k): \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ tale che $\sum_{j,k} |a(j,k)| < +\infty$.
 - (a) Dimostrare che $\sum_{j\in\mathbb{N}}\left(\sum_{k\in\mathbb{N}}a(j,k)\right)=\sum_{k\in\mathbb{N}}\left(\sum_{j\in\mathbb{N}}a(j,k)\right).$
 - $\begin{array}{l} \text{(b) Sia ora } b(j,k) := \left\{ \begin{array}{l} 1 & k=j \\ -1 & k=j+1 \\ 0 & \text{altrimenti} \end{array} \right. \text{ Dimostrare che} \sum_{j \in \mathbb{N}} \left(\sum_{k \in \mathbb{N}} b(j,k) \right) \neq \sum_{k \in \mathbb{N}} \left(\sum_{j \in \mathbb{N}} b(j,k) \right) \\ \text{e spiegare perché ciò non è in contraddizione con il punto precedente.} \end{array}$
- 2. Sia (X, Σ, μ) uno spazio misura, $f: X \to [0, +\infty]$ μ -misurabile e $A := \{(x, y) \in X \times \mathbb{R} : 0 \le y \le f(x)\}$. Dimostrare che A è misurabile rispetto alla misura prodotto tra μ e la misura di Lebesgue su \mathbb{R} e la sua misura è data da

$$(m \times \mu)(A) = \int_X f d\mu.$$

- 3. Sia (X, Σ, μ) uno spazio misura finito, $f: X \to [0, +\infty)$ Σ -misurabile con $\int_X f d\mu = +\infty$ e $\lambda = f\mu$.
 - (a) Dimostrare che λ è assolutamente continua rispetto a μ .
 - (b) Dimostrare che esiste una successione di insiemi Σ -misurabili disgiunti $A_n \in \Sigma$ tali che $\mu(A_n) \underset{n \to +\infty}{\to} 0$ e $\lambda(A_n) \underset{n \to +\infty}{\to} +\infty$. Confrontare con quanto visto a lezione. (Suggerimento: utilizzare la famiglia di insiemi $B_{l,m} := \{x \in X : l < f(x) \leq m\}$)
- 4. Sia (X, Σ, μ) lo spazio misura definito da: $X = \{0, 1\}, \Sigma = \mathcal{P}(X), \mu(\{0\}) = 1, \mu(\{1\}) = +\infty.$
 - (a) Descrivere gli spazi $L^p(X, \Sigma, \mu)$ al variare di $p \in [1, +\infty]$.
 - (b) Stabilire per quali $p \in [1, +\infty)$ vale l'isomorfismo canonico tra $(L^p(X, \Sigma, \mu))^*$ e $L^{\frac{p}{p-1}}(X, \Sigma, \mu)$ e confrontare con quanto visto a lezione.
- 5. Sia $L_n: C([-1,1]) \to \mathbb{R}$ il funzionale lineare dato da

$$L_n f := \int_0^1 n e^{-nx} f(x) dx - \int_{-1}^0 \frac{f(x)}{1 + n^2 x^2} dx.$$

- (a) Calcolare la norma operatoriale $||L_n||$ e dedurre che $\{L_n f\}_{n \in \mathbb{N}}$ è limitata per ogni $f \in C([-1,1])$.
- (b) Trovare una misura con segno di Borel regolare μ tale che $L_n f \underset{n \to +\infty}{\to} \int_{-1}^1 f d\mu$ per ogni $f \in C([-1,1])$.
- 6. Sia $Lf = \int_0^x (x t)f(t)dt$ per $x \in [0, 1]$.
 - (a) Dimostrare che se $f \in L^p([0,1])$ allora $Lf \in L^p([0,1])$ per ogni $p \in [1,+\infty]$.
 - (b) Calcolare la norma dell'operatore $L: L^{\infty}([0,1]) \to L^{\infty}([0,1])$.
 - (c) Calcolare la norma dell'operatore $L: L^1([0,1]) \to L^1([0,1])$.