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Esercizio 1 (8 punti) Calcolare l’integrale ˆ 1
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Esercizio 2 (8 punti) Discutere la convergenza degli integrali impropri:

(4 punti)

ˆ 1
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dx; (a = 2, 3, 4, 5)

Soluzione: Poiché
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= 1, allora l’integrale ha lo
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CONVERGE.

(4 punti)
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cioè
NON CONVERGE.

∗ISTRUZIONI:
Scrivere nome, cognome e numero di matricola.
Svolgere ciascun esercizio sotto al rispettivo testo; non consegnare altri fogli.
Non usare libri, appunti né calcolatrici.
Il tempo a disposizione è di due ore.



Esercizio 3 (8 punti) Discutere la convergenza delle serie:

(4 punti)

∞∑
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Soluzione: Poiché lim
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> 1, dal criterio del rapporto otteniamo che la serie

NON CONVERGE.

(4 punti)
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Soluzione: Come nel punto precedente, dal criterio del rapporto segue che la serie non è infinitesima e cioè

NON CONVERGE.

Esercizio 4 (8 punti) Risolvere l’equazione differenziale{
y′(x) = 3ax2y(x) + bx8

y(0) = 0
. (a = ±1, b = ±1)

Soluzione:
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