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Esercizio 1.
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Per la frazione facciamo la decomposizione:
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6x+5=A(x+2)+ B(x+1)

6=A+ B, 5=2A+B

Quindi:
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Ora mettiamo tutto insieme:
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3. Facciamo la sostituzione ¢t = log log x, da cui dt = dx, quindi abbiamo
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6. Calcoliamo separatamente i casi m = +n e m # +n. Se m # +n scriviamo
le formule di addizione per il coseno (perché li abbiamo un prodotto di
seni) e troviamoci una formula per 'integrando:

cos(maz + nx) = cos mx cosnx — sinma sin nx

cos(mx — nx) = cos mx cos nx + sin max sin nx

Se sottraiamo la prima equazione alla seconda e dividiamo per 2 otteniamo

cos(ma — nx) — cos(mzx + nx)
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Invece se n = 4m usiamo che sin®(nz) = 5
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8. Facciamo la sostituzione t = %, da cui dt = e*dx, abbiamo dunque

du
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10. Come prima cosa spezziamo l'integrale negli intervalli in cui sappiamo
determinare il valore della parte intera:
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Ora calcoliamo una qualsiasi primitiva della funzione integranda, dopo
sostituiremo tutti gli estremi:
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Sostituendo gli estremi otteniamo che
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11. Sia f(z) = (el®! — 7|z| + log |z]) arctan(x) cos(z) notiamo che f(—z) =
(el*| —7|z|+log |z|) arctan(—z) cos(z) = —(el*!=7|z|+log |z|) arctan(x) cos(z) =



—f(x), quindi la funzione ¢ dispari. Dalla teoria sappiamo che 'integrale
di una funzione dispari su un dominio simmetrico ¢ sempre 0. Quindi
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ratamente i due integrali:

2

2

log x4+ 1) dz +/ (2 — 1)log(z + 1) dz. Svolgiamo sepa-
1
V2

% log(Z=+1)

v u=log(w Vel
. / i log(x + 1) dx toglz+1) / ’ u(e" —1) du =
-3 1tz log($)
[ue

log(

2 Iog(%)

. /1 (22 —1)log(z+1) dz = [(2® —x)log(:r—i—l)]%—/

2
1’2—1'

dx
a1 ox+1
vl vz
. Facciamo la sostituzione ¢t = cos z, da cui dt = — sin xzdx, dopodiché usiamo
la proprieta dei logaritmi per togliere la radice che si crea scrivendo il seno
in funzione del coseno e integriamo per parti:
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. Facendo la sostituzione ¢t = tan(3) e usando le solite espressioni di
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Esercizio 2.
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Si puo vedere che t = arcsinh(g) = log (\/ % +1 + ;), quindi il risul-
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dx, calcoliamo prima una qualsiasi primitiva di

6. Per calcolare / —
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coshl4(:1:) , per poi integrare per parti I'integrale di partenza: / coshl4(x) dr =
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7. Facciamo la sostituzione x = arctant, da cui dr = dt, quindi
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Facciamo ora la sostituzione u = /%, da cui du = %ﬁdt, ossia dt = 2udu,
poi facciamo i fratti semplici
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8. Innanzitutto osserviamo che z & & uguale ad e, dopodicheé per svolgere
I'integrale col radicando cerchiamo un cambio di Varlablle che ci faccia
672
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a questo punto basta scomporre (& lungo, quindi non riportiamo i conti,
ma ¢ meccanico) 'integrale in fratti semplici ed integrare con logaritmi ed ar-
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ottenere tale radicando come un quadrato /

cotangenti come al solito, il risultato finale ¢ il seguente /

(s—1)2+1 (s+1)2+1

1
log(u? — V2u + 1) — log(u? + V2u + 1))—|—§ (arctan(s — 1) — arctan(s + 1))+c =

1
log(tanx — vV2tanz + 1) — log(tanz + v2tanz + 1) 4 arctan(2vtanx — 1) — arctan(2vtanx + 1)) +c



f% log(—122%+v/3(42+5) /332 + 5z + T+5v/322 + 5z + T—5v/3z—252—

14\/5—42)—@ log(V3(2V/322 + 5 + T—62—5)+6/322 + b + T—

5 arctan ( 12— VB (43T T 5 T T+ 4v3r + 5V + 5))
V31

Commento: Tranquilli se non vi vengono i conti, era un esercizio un
po’ cattivo. L’importante é che abbiate capito questo metodo (chiamato
metodo di Eulero), alternativo alle sostituzioni iperboliche, per trovare un
cambio di variabile che trasformi in un integrale polinomiale un’integrale
con la radice (se in questo caso si fossero usate le funzioni iperboliche
sarebbe venuto comunque, solo che questo é un po’ pitt comodo perché
nel caso iperbolico poi andava fatta la sostituzione u = tanh = e ricavare
I'analogo delle formule parametriche per le funzioni 1perbohche un’altra
sostituzione intelliggente poteva essere mediante la tangente dopo aver

completato il quadrato, per usare che 1 + tan? 2 = COSIQ —).
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. Qui integriamo per parti, derivando I’arcoseno: / x arcsin xdx = 5 arcsin r—
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. Integriamo per parti per ricondurci ad un integrale polinomiale e poi
svolgiamo i fratti semplici:
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