Universita degli Studi di Roma Tre
A.A. 2025/2026
Corso di Laurea Triennale in Fisica e

Matematica
AM110 - Analisi Matematica I

Docente: Luca Battaglia
Esercitatrice: Michela Procesi
Tutori: Francesco Caristo, Leonardo Loepp

Tutorato 9

Esercizio 1. Risolvere i seguenti problemi di Cauchy.
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Suggerimento: In alcune equazioni potrebbe essere utile fare un cambio di

variabile.



Esercizio 2. Si consideri z(t) la soluzione del problema di Cauchy
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Mostrare che z(t) > 0 per ogni ¢t > 0.

Esercizio 3. Si consideri z(t) la soluzione del problema di Cauchy

e Mostrare che z(t) é invertibile (nell’intervallo di esistenza).

e Determinare U'inversa t(z).



