AM450 - Analisi Funzionale

Luca Battaglia

Soluzioni degli esercizi sul Teorema di Hahn-Banach

Esercizio 1.

Sia H uno spazio di Hilbert, $E \triangleleft H$ e $L \in E^* \setminus \{0\}$. Fissati $x_0 \in E^{\perp}$ tale che $||x_0|| = 1$ e $c \in \mathbb{R}$, definiamo $\widetilde{L} \in \operatorname{Span}\{E, x_0\}^*$ come

$$\widetilde{L}(x+tx_0) = Lx + ct$$

1. Fissato $x \in E$ per cui $Lx \neq 0$, trovare il valore massimo di $t \mapsto \frac{\left(\widetilde{L}(x + tx_0)\right)^2}{\|x + tx_0\|^2}$.

Soluzione: Per definizione di \widetilde{L} e per l'ortogonalità $x\perp x_0$ abbiamo

$$f(t) := \frac{\left(\widetilde{L}(x + tx_0)\right)^2}{\|x + tx_0\|^2} = \frac{(Lx + ct)^2}{\|x\|^2 + t^2}.$$

Calcolando $f'(t) = \frac{2(Lx+ct)\left(c\|x\|^2-tLx\right)}{\left(\|x\|^2+t^2\right)^2}$, otteniamo che si annulla se $t=-\frac{Lx}{c}$ e $t=-\frac{Lx}{c}$

 $\frac{c\|x\|^2}{Lx};\ il\ primo\ valore\ \grave{e}\ anche\ l'unico\ zero\ di\ f,\ che\ per\ ogni\ altro\ valore\ \grave{e}\ positiva,\ e\ dunque\ sar\grave{a}\ un\ minimo,\ pertanto\ avremo$

$$\max_{t} f = f\left(\frac{c||x||^{2}}{Lx}\right) = \frac{(Lx)^{2}}{||x||^{2}} + c^{2}$$

2. Dimostrare che se $c \neq 0$ allora $\|\widetilde{L}\| > \|L\|$ e dedurne che esiste un'unica estensione di L a H che ne preservi la norma.

Soluzione: Dal punto precedente, se c > 0 abbiamo

$$\left\|\widetilde{L}\right\|^{2} = \sup_{x \in E, t \in \mathbb{R}} \frac{\left(\widetilde{L}(x + tx_{0})\right)^{2}}{\|x + tx_{0}\|^{2}} = \sup_{x \in E} \left(\frac{(Lx)^{2}}{\|x\|^{2}} + c^{2}\right) = \|L\|^{2} + c^{2} > \|L\|^{2},$$

e dunque $\|\widetilde{L}\| > \|L\|$. Pertanto, l'unica estensione $\widetilde{L} \in \operatorname{Span}\{E, x_0\}^*$ di L che abbia la stessa norma è $\widetilde{L}(x + tx_0) = Lx$, dunque l'unico modo per estendere a $\widetilde{L} \in X^*$ mantenendone la norma è $\widetilde{L}(x + y) = Lx$ per ogni $x \in E, y \in E^{\perp}$, ovvero $\widetilde{L}x = LPx$ dove $P \in \mathcal{L}(X, E)$ è la proiezione ortogonale.

Esercizio 2.

Sia X uno spazio normato e siano A, B convessi con interno disgiunto.

1. Utilizzando risultati visti a lezione, dimostrare che Å e B sono separati da un iperpiano chiuso.

- Soluzione: Essendo A, B convessi, lo saranno anche Å, B; inoltre, per ipotesi abbiamo Å \cap B = \emptyset , ed essendo entrambi aperti possiamo applicare la I forma fondamentale di Hahn-Banach per ottenere che sono separati da un iperpiano chiuso.
 - 2. Dimostrare che A e B sono separati da un iperpiano chiuso.

Soluzione: Dal punto precedente, esistono $L \in X^* \setminus \{0\}$, $\alpha \in \mathbb{R}$ per cui $Lx \leq \alpha \leq Ly$ per ogni $x \in \mathring{A}, y \in \mathring{B}$. Essendo poi A convesso, avremo $\overline{\mathring{A}} = \overline{A} \supset A$, dunque per la continuità di L possiamo estendere la disuguaglianza $Lx \leq \alpha$ su $\overline{\mathring{A}}$ e in particolare per $x \in A$; ragionando allo stesso modo su B, otterremo $Ly \geq \alpha$ per ogni $y \in B$, e dunque l'iperpiano chiuso $\{L = \alpha\}$ separa anche A e B.

Esercizio 3.

Sia X uno spazio normato, $K \subset X$ chiuso convesso e H_K l'intersezione di tutti i semi-spazi chiusi contenenti K, ovvero:

$$H_K := \bigcap_{(L,\alpha) \in A} \{L \ge \alpha\}, \qquad \mathcal{A} := \{(L,\alpha) \in X^* \times \mathbb{R} : Lx \ge \alpha \, \forall x \in K\}.$$

- 1. Dimostrare che, se $x_0 \notin K$ allora esiste $(L, \alpha) \in \mathcal{A}$ per cui $x_0 \notin \{L \geq \alpha\}$.
- Soluzione: Se $x_0 \notin K$ allora per la II forma geometrica di Hahn-Banach $\{x_0\}$ e K sono strettamente separati, cioè esistono L, α per cui $Lx_0 < \alpha < Lx$ per ogni $x \in K$; la prima disuguaglianza equivale a dire che $x_0 \notin \{L \geq \alpha\}$, la seconda implica $(L, \alpha) \in \mathcal{A}$.
 - 2. Utilizzando il punto precedente dimostrare che $K = H_K$.
- Soluzione: Poiché, per definizione di A, $K \subset \{L \geq \alpha\}$ per ogni $(L, \alpha) \in A$, allora $K \subset H_K$; inoltre, dal punto precedente abbiamo che $X \setminus K \subset X \setminus H_K$ e dunque $K = H_K$
 - 3. Dimostrare che, per un generico $Y \subset X$, H_Y coincide con la chiusura dell'inviluppo convesso di Y, ovvero:

$$\overline{\mathrm{conv}(Y)} = \bigcap_{K \in \mathcal{K}} K, \qquad \qquad \mathcal{K} = \{K \subset X : K \text{ chiuso convesso tale che } Y \subset K\}.$$

Soluzione: Poiché l'inclusione $Y \subset H_K$ è sempre valida, come dimostrato al punto precedente, e $H_K \in \mathcal{K}$, in quanto intersezione di chiusi convessi, allora $\overline{\operatorname{conv}(Y)} \subset H_K$. Per mostrare l'inclusione opposta, notiamo che $Y \subset \{L \geq \alpha\}$ se e solo se $\overline{\operatorname{Conv}Y} \subset \{L \geq \alpha\}$, perché $\{L \geq \alpha\} \in \mathcal{K}$, e quindi $H_Y = H_{\overline{\operatorname{Conv}Y}}$; ma essendo $\overline{\operatorname{Conv}Y}$ chiuso convesso, dal punto precedente otteniamo $H_{\overline{\operatorname{Conv}Y}} = \overline{\operatorname{Conv}Y}$, e dunque dev'essere $H_Y = \overline{\operatorname{Conv}Y}$.

Esercizio 4.

Sia $X = \ell_1$ e $L \in X^*$ definito da

$$Lx(k) := \left(1 - \frac{1}{k}\right)x(k).$$

1. Calcolare $||L||_{X^*}$ e dimostrare che per ogni $x \in X$ tale che $||x||_X = 1$ vale la disuguaglianza stretta $Lx < ||L||_{X^*}$.

Soluzione: Poiché L è del tipo Lx(k) = x(k)y(k), con $y(k) = 1 - \frac{1}{k}$, dal noto teorema che caratterizza il duale di X, avremo

$$||L||_{X^*} = ||y||_{\ell_{\infty}} = \sup_{k \in \mathbb{N}} \left(1 - \frac{1}{k}\right) = 1.$$

Prendiamo ora $x \in X$ con ||x|| = 1; poiché $x \not\equiv 0$, esisterà $N \in \mathbb{N}$ per cui $\sum_{k=1}^{N} |x(k)| > 0$, e dunque

$$\begin{array}{lll} Lx & = & \displaystyle \sum_{k=1}^{+\infty} x(k)y(k) \leq \sum_{k=1}^{N} |x(k)||y(k)| + \sum_{k=N+1}^{+\infty} |x(k)||y(k)| \\ & \leq & \displaystyle \left(1 - \frac{1}{N}\right) \sum_{k=1}^{N} |x(k)| + \sum_{k=N+1}^{+\infty} |x(k)| \\ & < & \displaystyle \sum_{k=1}^{N} |x(k)| + \sum_{k=N+1}^{+\infty} |x(k)| \\ & = & 1 \\ & = & \|L\|. \end{array}$$

- 2. Utilizzando il punto precedente e un corollario del Teorema di Hahn-Banach, dimostrare che ℓ_1 non è uno spazio riflessivo.
- Soluzione: Per un corollario del Teorema di Hahn-Banach sappiamo che per ogni $L \in X^{**}$ esiste $\Lambda \in X^{**}$ tale che $\|\Lambda\|_{X^{**}} = 1$ e $\Lambda L = \|L\| = 1$; se X fosse riflessivo, allora l'isometria $J: X \to X^{**}$ sarebbe suriettiva e dunque $\Lambda = J(x)$ per qualche $x \in X$, che verificherebbe $\|x\|_X = Lx = 1$, ma dal punto precedente sappiamo che ciò è impossibile.

Esercizio 5.

Sia $X = L^1([0,1])$ e $F \triangleleft X^*$ definito da:

$$F := \left\{ L : f \mapsto \int_0^1 fg : g \in C([0,1]) \right\}.$$

1. Determinare esplicitamente l'ortogonale di F in X^* , ovvero:

$$F^{\perp} := \left\{ f \in X : \int_0^1 fg = 0, \, \forall g \in C([0,1]) \right\}.$$

Soluzione: L'ortogonale di F contiene solo il vettore nullo. Infatti, se $f \in F^{\perp}$, allora per la densità delle funzioni continue esiste una successione $g_n \in C([0,1])$ uniformemente limitata tale che $g_n \underset{n \to +\infty}{\to} \operatorname{segno}(f)$ q.o.; dunque, $fg_n \underset{n \to +\infty}{\to} |f|$ q.o. $e |fg_n| \leq C|f| \in L^1([0,1])$, pertanto dal teorema di convergenza dominata otteniamo

$$0 = \int_0^1 f g_n \underset{n \to +\infty}{\to} |f|,$$

 $quindi\ f=0.$

- 2. Dire se vale $F = F^{\perp \perp}$ e confrontare con quanto visto a lezione.
- Soluzione: Poiché $F^{\perp} = \{0\}$, allora $F^{\perp \perp} = \{0\}^{\perp} = X^*$, dunque non vale l'uguaglianza $F = F^{\perp \perp}$. Questo non contraddice quanto visto a lezione, perché in generale anche per spazi lineari chiusi l'inclusione $F \subset F^{\perp \perp}$ può essere stretta; l'uguaglianza è sempre valida negli spazi riflessivi, ma come abbiamo visto X non è riflessivo.