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Abstract

The thesis starts from the study of scalar field equations on RY. The interesting question
is to overcome the evident lack of compactness due to the fact that we are not working
on bounded domains. We are looking for both ground-states and bound-states solutions,
considering both subcritical and critical nonlinearities. In particular, we give original
results about multiplicity of solutions in critical case. A wide-studied generalization is
the Choquard-type equation. In this case, the significative technical problem that arise
is the presence of a nonlocal term, which is the convolution with Riesz’s potential.
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Notations

We will make use of the following notations in the whole thesis:

N denotes the set of natural numbers, not including 0; we define Ny := NU {0};
R denotes the set of real numbers, while R* denotes the set of positive real numbers;
for N € N, RV denotes the N-dimensional euclidean space;

given any pair of vectors = = (21,...,zy) and y = (y1, ..., yn) in R, we denote the
scalar product x -y := le\il TiYi;

given = := (z1,...,xN) € RN with z; € R for i = 1,..., N, we denote its norm:

|z| := V& - x;

given z := (z1,...,2x5) € RY with z; € R V1 < i < N, we denote its 1-norm:
1= 2L s

C denotes the set of complex numbers; ¢ € C denotes the imaginary unit;
given a V' a R-vector space, we denote dim (V') as its dimension;

given V a R-vector space equipped with a scalar product < -, >, let us consider
W a subspace of V. We denote W+ as its orthogonal complement defined by

Wh={veV: <vw>=0 YwecW}

given R > 0 and 2y € R, we denote the open ball of radius R centered in zg:
Br(zo) := {x € RY; |z — 29| < R}. When 29 = 0 € RV, we denote Bg(0) := Bg,
Furthermore, we denote SN=1 the unit sphere in RY with N > 2 and its measure
as wy. For the sake of completeness, S° = {£1};

given E a Lebesgue measurable set on RV, we denote |E| as its Lebesgue measure;

1 i=j
0 i#j

given two indices %, j, we denote the Kronecker-delta as ¢; ; = {



1 if >0
given x € R, we denote its sign as sign(z), where sign(z) = ¢ -1 if <0 ;
0 if z=0

given x > 0, we denote logx as its logarithm to base e, where e is the Neper’s
number;

given a function u, we denote u™ as its positive part and u~ as its negative part,
respectively ™ (z) := max{u(z),0} and v~ (z) := max{—u(z),0};

given a continuous function u, its classical support is denoted by supp(u);

given an open subset Q C RY and zg € Q. let us consider f,g: Q\ {zo} — R such
that g(z) #0 V0 < |z — x| < 9, for some § > 0. Then we say:

(i) f = O(g) near to gy <& IM > 0 and 0 < & < 0 such that |f(z)] <
Mlg(z)] VO<|z—mzo| <

(ii) f = o(g) near to zg < limy_,4, % =0.

Equivalent definitions may be given for sequences {a, }nen as n — +o0;

given an open subset @ C RY and k € N, we will denote C*(Q) the space of
functions which are k times differentiable with continuity in 2. On the other hand,
CO(Q) := C(Q) denotes the space of continuous functions on  and C®(Q) :=
Mnen, C" (€2) denotes the space of smooth functions on €;

given an open subset Q C RY and k € Ny U {co}, we will denote CF(Q) the space
of functions lying in C*(Q) which have compact support in €;

given an open subset @ C RV, k € N and 0 < v < 1, we denote the space C*7(Q)
as

P (Q) = {u € CMUR) : Jullcray = Y. ID%Ullsnt Y [D*ulco ) < +oo},
| <k jal=k

where the 4*"-Holder semi-norm of u : Q — R is

u(z) — u(y)]
u , = su —_—
[ ]CO ") :v;éng ’l' - y|"/

)

and the norm |[|-||o q is defined below;

given an open subset © C RN let us consider p € [1,400] and u : @ — R a
Lebesgue-measurable function. We denote LP(2) the usual Lebesgue space en-
dowed with the norm [|ul[zr(q) == (Jq \u|pdaj)%; on the other hand [|ul|pe~(q) =
essupglul = inf{a € R: |[{z € Q: |u(x)| > a}| = 0}. Sometimes we will indicate
[ull oy as [Jullze for 1< p < oo, and [|Jul e @y as [|ulloo;

5



e given an open subset @ C RY, let us consider any p,q € [1,4+0c0] and u : @ — R
a Lebesgue-measurable function. We say that v € LP(Q2) + L4(Q) if u = v + w for
some v € LP(Q) and w € LI(N);

e given an open subset Q C RY | let us consider 1 < p < co. We denote Lf () the
space of functions lying in LP(€)') for every Q' C © compact subset;

e given an open subset 2 C RN , let us consider 1 < k < oo and 1 < p < oc.
We denote W*P(Q) the usual Sobolev space of functions in LP(£2) whose weak
derivatives up to order k are also in LP(Q2), endowed with the norm [[ul|ysp(q) :=
2 lal <kl D%ul[Lp(0), where Du is defined below. In particular, we denote H'(Q) :=
Wh2(Q) with the equivalent norm lull iy = (fq |Vul?dz + [, u?dx)'/?. Some-
times we will indicate [ul| g1 (yy as [[ul g1;

e given an open subset Q C RY, let us consider 1 < k < oo and 1 < p < co. We
denote Wég P(€2) the space given by the closure of C§°(Q2) in W*P(Q). In particular
we denote H}(Q) := W(}’2(Q);

e given an open subset @ C RY and u : © — R a Lebesgue measurable func-
tion, we denote DH2(€2) as the closure of C§°(2) of the semi-norm [u|pr2(g) =

(Jg |Vu|2da:)% (it is well-known that ||-||p1.2 is a norm on H'(RY)); furthermore
we denote Dp?(Q) as the subspace of D2(Q) formed by the radial functions;

e if N > 3 we denote 2* := % the critical Sobolev exponent and we recall that
S N+2.
- N—2

e given an open subset QO C RV, we denote H!(2) as the subspace of H'(2) formed
by the radial functions, endowed with the H'(Q2)-topology;

e given an open subset Q C RY and u : Q — R differentiable at zo € 2, we denote
its gradient:
Vula0) = () o o (c0))
as the vector of the partial derivatives of u in zg, also denoted by u;(z); while if u
is radial, we denote w, its radial derivative and u,. as its second radial derivative.
The same notation will be held when « € W*P(Q) with k > 1 , intended as "weak"
gradient;

e given an open subset Q@ C RY and u : Q — R twice differentiable at zq € §Q, we
denote its laplacian:
N 42
0°u

Au(xg) := 1
— Ou;

(o).

The same notation will be held when u € W*?(Q) with k > 2 | intended as "weak"
laplacian. We denote u;j(x) as the second partial derivative of u respect to x; and
x; respectively;



given an open subset Q C RV, consider a = (a1,...,ay) € NY and v : Q@ — R
differentiable |a|; times at xg € 2. We denote

Aol (ag)

D = —
u(zo) ozt -+ 0z

as the multi-index derivative of u;

given E a Banach space, let {u,}nen C E. We denote as u, — u the convergence
of u, in the weak-topology o(E,E*) as n — +o00; we denote as u, — u the
convergence in F-norm as n — +00;

given two Banach spaces F and F', we denote ¥ — F' as the continuous embedding
of F into F;

given F Banach space, we denote E’ as its dual; we identify the dual of H' with
H






Introduction

The study of partial differential equations (PDE’s) started in the 18th century in the
work of Euler, d’Alembert, Lagrange and Laplace as the principal mode of analytical
study of models in the physical science. This duality of viewpoints has been central to
the study of PDE’s through the 19-th and 20-th century.

The aim of the present issue is to demonstrate some important results on scalar field
equation theory on RY with N > 2, and its generalization known as Choquard-type
equations. In 1983, Berestycki & Lions gave important results concerning the existence
of nontrivial solutions for some semi-linear equations. Such problems are motivated by
the search for certain kinds of solitary waves in nonlinear equations of the Klein-Gordon
or Schrédinger type.

Consider the following nonlinear Klein-Gordon equation

Dy — AP+ a*d = f(P), (0.0.1)

where ®(t, z) is a complex-valued function defined on ¢t € R, z € RY and a € R. Suppose
f:R — R is a continuous odd function satisfying f(0) = 0 and

f(pe”) = f(p)f(e) Vp=>0,v0 € 0,2m). (0.0.2)

Then, looking for a "standing wave" in (0.0.1), that is, ® of the form ® = e™'u(z),
w € Rand u:RY = R, one is led to the equation

—Au+mu=f(u) in RV, (0.0.3)

where m = a? — W2

Another classical type is that of travelling waves. Consider a real Klein-Gordon
equation (0.0.1). Then, looking for a travelling wave solution of the form ®(¢,z) =
u(x — ct) where u : RY — R and ¢ = (cy, ..., cn) € RY is a fixed vector such that |c| < 1,
one obtains the following equation

N 0%u
- Z (055 — CiCj)m +a®u= f(u) in RV, (0.0.4)
i,7=1
It is easily checked, using the fact that |c| < 1, that the constant coefficient operator in
the left hand side of (0.0.4) is elliptic. Thus, after a change of coordinates, (0.0.4) can

be converted into an equation of type (0.0.3).



Stationary states of nonlinear Schréodinger equations lead to similar problems. Indeed,
consider the equation
1Py — AP = f(D), (0.0.5)

where @ : R x RV — C and f satisfies the simmetry property (0.0.2). Then, looking for
standing wave solutions, that is ®(¢,z) = e~ u(z), one is again led to problem (0.0.3).
To sum up, we consider the following semi-linear elliptic problem

() {—Au = g(u)
ue€ H'(RN), u#0

where N > 3 and g : R — R is an odd continuous function. The fact that we seek
solutions on the Sobolev space H'(RY), gives us the first "restrictions" on g, in view of
continuous (not compact) embeddings

HY(RN) — LP(RV) V2<p<2* if N>3;
H'(RN) — LP(RY) V2<p<oo if N=2.
So it comes natural to consider two classes of functions g when N = 3:
(i) g subcritical at infinity:  limg_ 400 Sgﬁ—i)l =0;

(ii) g critical at infinity:  limg_ 40 Sgis_)l e R\ {0}.

Let us consider the energy & = %T — V where

T(u) = /]RN \Vul|?dz,  V(u) = o G(u)dz, G(s)= /08 g(t)dt.

The problem (*) on bounded domains in RY is widely studied by using standard vari-
ational methods. Evidently, a striking contrast between semi-linear elliptic boundary
value problems on a bounded domain and on R is the apparent lack of compactness in
treating the latter. Therefore, a first natural approach to (*) would be to approximate a
solution of (*) by a solution of an analogous problem on the ball Bp, that is, first solve
—Aupr = g(ur) in Bg, ur|op, = 0, and then let R — 4o00. One of the difficulties to
overcome in such an approach is the absence of uniform (of R) a priori bounds.

We study (*) by using variational methods, working with an appropriate constraint
in order to have some compactness. This constraint can be made transparent because of
the "autonomous" character of (*) and the fact that one can use scale changes in RY. A
special feature of (*) is its invariance under the group of displacements. That is, if R is
a rotation in RV and C € R¥ is a fixed vector, then for any solution of (*), the function
v(z) = u(Rx + C) is also a solution of (*). Such an indeterminacy will not be present in
this thesis, since we will be seeking radial solutions of (*). In this case, u, as a function
of r = |z|, satisfies the ordinary differential equation:

N -1

Uy~ Un = g(u), re€(0,400),
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used in particular to show the regularity of u.

In the first chapter we prove, under suitable conditions, the existence of a ground-
state solution in subcritical case using above variational methods. In particular we show,
following an argument of [11], that the solution ug of (*) which we derive from our varia-
tional arguments is a ground-state, that is it has the property of having the least energy
among all possible solutions of (*). It can be shown that a ground-state is necessarily a
positive and radial solution of (*). On the other hand, the critical case is quite different.
Since the compactness is guaranteed under a certain energy level, we require a "growth-
boost" hypothesis on g. So in Section 1.4 we show the existence of a ground-state using
also a min-max characterization by [11].

Obviously, the case N = 2 in Section 2.5 is totally different because 2* = oco. Then,
in view of Moser-Trudinger inequality [1], the notions of (sub)criticality of a function g
become:

(i) g subcritical at infinity:  limg_ 40 96) 0 v > 0;

6952 -
(ii) g critical at infinity: limg_ 40 fé—j@ =0 (4+o00) if 0>4m (0 <4m).

In the second chapter, we are focused to seek solutions of (*) which are radial but not
necessarily positive, and which correspond to higher values of energy. Such solutions are
called bound-states. As said above, since the energy of these solutions is arbitrarily large,
we study only the subcritical case. We define a sequence {by }1, by involving Krasnosel’skii
genus for N > 2. A standard variational theorem in [3] ensure that {by} are critical points
of V over a particular constraint. After the proper scale changes, one gets infinitely many
distinct solutions {ug} of (*). This will be guaranteed by the fact that S(uy) — +o0o as
k — +o0.

In Section 2.6 we give original multiplicity results for N > 2, in particular we extend
works [26],[27] on the whole R™. let us consider the problem

~Au+u=f(u) in RN
ue HYRYN), u#0,

where f is a continuous critical function and |f(s)] > A|s|7! Vs € R, for some ¢ €

(2,2%) and A > 0. We prove that, given any k € N, there exists Ay > 1 such that the

problem has k pairs of nontrivial solutions for all A > Aj.
In the last chapter of the thesis we consider the Choquard problem

(%) —Au+4u= (In* F(u))F'(u) in RN
u€ HYRY), u#0,
where F' € C1(R;R), a € (0, N) and the Riesz potential I, is defined on RV \ {0} by
F(M)

Iy(z) := 2 .
“ (%)% 20|z|N-o

The notion of criticality of a function changes completely here. Indeed, f is critical
respect to the Hardy-Littlewood-Sobolev inequality, i.e.,
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(i) f subcritical at infinity:  limg_ 100 555 = 0;

sN—2
(i) f critical at infinity:  limg 4 JJ;E% € R\ {0}.
SR

First, we show the existence of a positive radial ground-state in dimension N > 2
when F” is subritical at infinity. We use a minimax principle in [42] to get a Palais-
Smale sequence converging to the mountain pass level associated to S. The novelty is to
construct a Palais-Smale sequence which satisfies asymptotically the Pohozaev’s identity,
in order to get its boundedness.

On the other hand, we prove the existence of a ground-state solution also in critical case.
As in critical case for scalar field equations, for N > 3 we assume the further condition

at2
[f(s)] > [s]7=2 + pls|""! Vs eR
for some ¢ € (2, §£%). We consider the functional Sy = 37— AV for A € [3,1], and
we apply a general minimax theorem in [16] to get bounded Palais-Smale sequences at
mountain pass level ¢y. The crucial thing is to estimate ¢y at energy level of Sobolev

functions. Finally the case N = 2 is quite different and we require the Ambrosetti-
Rabinowitz condition

360 >2 suchthat 0<0F(s) <2F'(s)s Vs#0

to get the boundedness of Palais-Smale sequences to the mountain pass level.

The last section of the thesis is dedicated to the existence of infinitely many bound-
states as in the scalar field case. We prove the result in a particular class of subcritical
functions. A fountain-like theorem [42, theorem 1.28] gives us an unbounded sequence of
critical values ¢; which may consider radial. Following the proof of [43|, we remove the
Ambrosetti-Rabinowitz condition using some arguments involved in previous subcritical
case. Finally, as the last contribution, we proved the existence of infinitely many solutions
also in the planar case N = 2.
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Chapter 1

Ground-states

1.1 Main result

In this chapter, we consider the problem:

() {—Au = g(u)
ue H'RY), uw#0

where N > 3 and g : R — R is a continuous function satisfying ¢g(0) = 0 and the following
conditions:
9(s) 9(s)

—oo < liminf == <limsup —= =: —m < 0, (1.1.1)
s—0t S s—07t S

9(s)

2*—1 —

—oo < limsup 0, (1.1.2)

s—4o0 S

3
3¢ > 0 such that G(§) = / g(s)ds > 0. (1.1.3)
0

We will prove the existence of a ground state solution ug, namely with the property of
having the least action among all possible solutions of (*). Also, we will show that a
ground state is necessarily a positive and radial solution.

The action

S(u):%T(u)—V(u) where T(u) = /R (IVuPde. V= [ Gl

is defined on the space H'(R™) and after a suitable modification of g (see below), S is a
C*'-functional on H*(RY). So it seems natural to find directly critical points of S to get
a solution of (*).

14



However, a first difficulty in this approach is that S is not bounded from above (due to
the presence of the gradient term) nor from below. In fact, from hypotheses (1.1.3) there
exists w € H'(R") such that [ G(w)dz > 0 (see below). Now consider a scale change
in RY: wy(z) = w(%) for o > 0; one readily checks that

O‘N_2

S(ws) = 5 T(w) — NV (w).

It follows from V' (w) > 0 that S(w,) — —o0 as 0 — +o00. Therefore, rather than looking
for global critical points of S, we will consider the following constrained minimization
problem:

minimize {T'(w);w € H'(RY), V(w) = 1}.
The following theorem concerns the existence of a ground state of (*).

Theorem 1.1.1. Suppose the dimension N > 3 and that g satisfies conditions (1.1.1)-
(1.1.3). Then (*) possesses a solution u(xz) = u(r) such that

(i) u >0 on RY;
(i1) u(x) = u(r) where r = |z|, and u decreases with respect to r;
(iii) u € C*(RN);

() |Du(z)| < Ce 1 Yo e RN, for some C,6 > 0 and for multi-indez |a|; < 2.

1.2 Necessary conditions

In this section we will present several conditions about general features of a solution to
(*). Indeed, a solution w satisfies an identity which is due to Pohozaev. It asserts that,
under some assumptions, u necessarily satisfies:
N -2
2
This fact will be derived as a corollary of the following more general proposition, valid
also for N =2 .

Jen [Vul?dz = N [pn G(u)dz.

Proposition 1.2.1. Let g : R — R continuous function such that g(0) = 0 and consider
G(t) = fgg(s)ds. Let u satisfy in a distributional sense

—Au = g(u)
and assume that

we LERY), |Vul € LARY), G(u) € LYRY).

loc

Then u satisfies:
— |Vul|*de = N G(u)dzx.
2 RN RN

15



Proof. We want to multiply the equation by z;u; and integrate by parts to get the identity
on Bg. Then, we will show that the boundary term on dBg approaches to 0 as R — +oc.
So, integrating by parts:

ZZ»:/BR g(u)ux;de = ZZ»:/BR

Observe that all the integrals above on Bp are finite because u € L%’C(RN ) implies that

u € I/Vlicq (RN) for any 1 < g < 400 due to standard regularity theory. Furthermore we

have — >, uj; = g(u) and then

— Z/ ujjuimidaz = Z/ uj(éijui + xlu”)dm — Z/ anjl‘iuids =
ij /PR ij PR ij Y OBr

N 1 2
/ \Vu|?dz — / |Vul*dx — /
Br 2 JBg 2 JoBy

1 /
8BR

Now it suffices to show that the right hand side of the last equation converges to 0 for
at least one suitably sequence R, — +o00. In polar coordinates we have

0
G(u))zide = —N G(u)dx+ G(u)xin;dS.
5 (Gl) , Gty [ 6t

ou

on

Thus we deduce:

ou |

(N — 2)/ \Vul?dz — 2N [ G(u)dx = —2R
Br 8n

Br

s + G(u)dS] .
OBg

/RN (|G| + [Vul’] dz = /;Oo { /{)BR (IG(w)] + [Vul?] dS}dR < too.  (1.21)

Hence by (1.2.1), there exists a sequence R,, — +00 such that

R, [|G(u)| + [Vul*] dS — 0
dBr,,

as n — —+oo. In fact, by contradiction if

liminfR/ 1G(w)| + |Val?] dS = a > 0,
R—+oc0 9BRr

then the function R +— [;p [|G(w)] + [Vu|?] dS would not be in L'(0,40c0). Finally,

by dominated convergence theorem and the fact that |Vu|?, G(u) € LY(RY), it follows
that

/ |Vu|*dx —>/ |Vu|?dz, G(u)dx — G(u)dx
Br,, RN Br, RN

as n — +oo. O]
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Corollary 1.2.1. Assume g satisfies (1.1.1) and (1.1.2). Then any solution u of (*)
satisfies the PohoZaev’s identity.

Proof. We may consider u # 0. If u satisfies the assumptions, since G(u) € L*(RY) by
Theorem A.0.1, we suffice to prove that u € Lf(fc(]RN ). Indeed, u satisfies the equation

—Au=q(zx)u in RY

where ¢(z) = %. If g satisfies the strong condition (1.3.1) (see below), one has
‘g(U)

4
u

Since u € HY(RY), by Sobolev embedding theorem we also have u € L?" (R"). Noticing

that 2* = N4 2];[, we see that ¢ € L%(RN). Now, using a result of Brezis and Kato

(see [8]), we obtain u € LI (RY) for 1 < p < +00. A classical bootstrap argument then

shows that u € L (RV). O

loc

An important consequence of PohoZaev’s identity is a relation between a solution u
of (*) and its respective action S(u). Indeed this type of relation will be used for proving
that the solution given by Theorem (1.1.1) is a ground state solution.

Corollary 1.2.2. If u is any nontrivial solution of (*), then S(u) = T (u) > 0.
Proof. From previous proposition, it follows that

S(u) = %T(u) —V(u) = % [1 — ]\7]\72] T(u) = NT(U) > 0.

1.3 The constrained minimization method

Before starting with the proof of main theorem, we need to modify the function g in

order to make V of class C1(H'(RY)) as we said above. Indeed, V is well-defined if ¢
satisfies the condition (see Theorem (A.0.2)):

lim sup \g(s)] < +o00. (1.3.1)
|s]—4oc0 1S 2l

So, taking £ = {x : G(z) > 0} (see(1.1.3)), we define a new function g : R — R as follows:

(i) if g(s) > 0 for all s > &, set g = g for s > 0;
(ii) otherwise, set sop = inf{s > ¢ : g(s) < 0} and
{ for 0<s<sg

or s> 5p.
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(iii) for s <0, g is defined as g(s) = —g(—s).

Note that g satisfies the same conditions as g and also condition (1.3.1). Furthermore,
by the strong maximum principle, solutions of problem (*) with § are also solution of the
same problem with g. Indeed, in case (ii) above, a solution wu satisfies |u| < sg, whence
g(u) = g(u). Hence, we will always adopt the convention that g has been replaced by g;
we keep however the same notation g.

So, the minimization problem:

minimize {T(w);w € H' (RY),V(w) = 1}, (1.3.2)

is well-defined since T and V are of class C'(H'(R")). Minimizers are solutions of (*).
In fact, if u solves (*), there exists a Lagrange multiplier 6 such that 7"(u) = 0V’ (u),
namely

—Au = fg(u) in RY

in a distributional sense. We will show that necessarily 6 > 0 and so, letting u, (z) = u(%)
with ¢ > 0, one obtains

0 .
—Au = ﬁg(ua) in RV,

Therefore, choosing o = v/f, one get a solution of (*).
In order to proof Theorem 1.1.1, we will give some results concerned the minimization
problem summed up in the following

Theorem 1.3.1. Under the hypotheses of Theorem 1.1.1, the minimization problem
(1.3.2) admits a nontrivial solution u € H*(RY) which is positive, spherically symmetric
and decreases with r = |x|. Furthermore, there exists a Lagrange multiplier 6 > 0 such
that u satisfies —Au = 0g(u) in RN in the distributional sense.

Proof. This will be divided into four steps:
(i) Check that the set {w € HY(RY): V(w) = 1} is not empty;
(ii) Selection of an appropriate minimizing sequence {u,} and estimates for {uy};
(iii) Passage to the limit;
(iv) Conclusion.

Step 1. It is merely a consequence of hypothesis (1.1.3), which it is used only in
this step. Let £ > 0 be such that G(§) > 0. Now, for R > 1 define:

13 for |z| <R
wr(z) =C&(R+1—|z]) for R<|z|<R+1
0 for |z| > R+1.
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In such way, wg € H'(RY) and one has:

V(wg) = [ G(wr)dr = G(§)|Br| — (m[gé |G(s))|Br+1 — Br| > CRY — C'RN™!
RN se|0,

for some positive constant C,C’. So for R > 1 large enough, we have V(wg) > 0. Then,
introducing a scale change in RY: wg,(z) = wgr(%) for o > 0, we obtain V(wgps) =

oV (wg). Finally, choosing o = (V (wg)) ¥, we have V(wpes) = 1.

Step 2. Thanks to Step 1, there exists a sequence {u,} C H 1(RN ) such that
V(uy) = 1 and limy, 400 T(uy) = inf{T(w) : w € HY(RY),V(w) = 1} = I > 0.
Consider now the Schwarz symmetrization rearrangement u) of |u,| (see Appendix).
Due to {u,} C H*(RY), one has {u:} ¢ HY(RY),V(u}) =1 and I < T(u}) < T(uy).
This means that {u)} is also a minimizing sequence by definition of I. Hence, replacing
{un} by {u}, we will consider wu, a nonnegative, radially symmetric and decreasing
function with r = |z|, for all n € N.

Now we will prove that [|us|[g1gy) is bounded. For s > 0, define g1(s) := (g(s) +
ms)T and ga(s) := g1(s) — g(s), where m > 0 refers to (1.1.1). While for s < 0, extend
both of them as odd functions. Then we have g;, g2 > 0 on RT. Furthermore, conditions
(1.1.1) and (1.1.2) imply that:

_ C qim 96)
gi(s) =o0(s) as s—0; lim =75 =0; ga2(s) >2ms Vs >0. (1.3.3)
|s| =400 S
let us consider Gy(z) = [ gi(s)ds for i = 1,2. Then, from continuity of G;(z) and (1.3.3)
we obtain that Ve > 0, 3C. > 0 such that

G1(s) < Cels|* +€Ga(s), VseR.

Since T'(un) — I, ||Vuyl|/r2 is bounded, which implies by Sobolev embedding theorem
that [Juy| 2+ < C’ for some constant C’ > 0 independent of n. Now we will show the
boundedness of ||uy||72. In fact, writing the condition V(uy) =1 in the form:

G1(up)dz = Go(uy)dx + 1, (1.3.4)
RN RN

1
and using the last inequality with € = 50 e deduce that

Golun)dz +1< C' + ;/ G (un)dz.

RN RN

Hence [pn Go(uy)dz < C' and by (1.3.3) one has:

m m
c' > G de > — 2 — — 2.
> [ Galude = G [ = T
Thus ||uy|| 71 is bounded.
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Step 3. First, note that u,(z) — 0 as |x| — +oo uniformly with respect to n.
Indeed, since 0 < u, is radial and decreasing function for all n, it is easily seen that (see
Lemma (A.0.1)) |up(z)] < C’|x|_%||un||L2 Vo € RV \ {0}, where C > 0 is independent
of n. By taking supremum over n in this relation, since ||u,|2(g~y is bounded, we have

sup,, lun(z)] < C’\x!_% Vo € RV \ {0}.

Now, since ||un|| 1wy is bounded, we may extract a subsequence of u,, (again de-
noted by u,) such that u, — u in H'(R") and a.e. in RY. It is important to see that
u € H'(RY) remains nonnegative, spherically symmetric and decreasing function with
|z| when we pass to the limit a.e. in RY.

Now we want to deduce conditions about 7T'(u) and V' (u) in order to verify that u
is a solution of the minimizing problem. Define Q(s) = 52+ [s|** Vs € R. From (1.3.3)
and 2* > 2, we derive:

Gi(s)
Q(s)
Previously we proved that sup,, f]RN Q(up)dr < 4o00; furthermore, by continuity of Gy,

we know that G1(u,) — G1(u) a.e. in RY. Then, the compactness lemma due to Strauss
(see Theorem (A.0.2)) implies that

—0 as |[s|] = +o0, s—0.

G1(up)dx — Gi(u)dx
RN RN

as n — 400. Using Fatou’s lemma, by continuity of G5 we have

Gi(u)dx > Ga(u)dzx + 1,
RN RN

that is, V(u) > 1. On the other hand, by weak semicontinuity of the H! norm, one has
T(u) < limJirnf T(un) = I. Now we want to prove that actually V(u) = 1. Suppose by
n—-+0oo

contradiction that V'(u) > 1; then, by the scale change uy(z) = u(Z) we have

V(uy) = oNV(u) = 1 if we choose o := (V(u))_% < 1. Moreover, T'(u,) = oV 72T (u) <
o2 but, by definition of I, T'(u,) > I. This would imply I = 0, namely T'(u) = 0,
i.e. u =0, contradicting V' (u) > 0. This leads to a contradiction and therefore V' (u) =1
and T'(u) = I > 0. Then u is a solution of problem (*).

Step 4. Since T and V are C*(H'(R™)) functionals, there exists a Lagrange mul-

tiplier 6 such that %T’(u) = 0V’ (u). Observe first that 6 # 0, since if § = 0 we would
have the trivial solution v = 0. So, we will prove that 8 > 0. Suppose for contradiction
that # < 0. Note that V’(u) # 0 because V'(u) = 0 gives g(u) = 0, which implies u = 0.
Then we can take w € H'(RY) such that



Since T'and V of class C'*!, by Taylor’s expansion one has: V (u+ew) = V (u)+eV' (u)[w]+
o(e) and T'(u + ew) = T(u) + 20V’ (u)[w] + o(e) as € — 0. We can find € > 0 small
enough such that v := u + ew satisfies V(v) > V(u) = 1 and T'(v) < T(u) = I. Again
by a scale change, there exists 0 < o = (V(u))fﬁ < 1 such that V(v,) = 1 and
T(vy) = oN=2T(v) < I, which is absurd by definition of I.

Thus u satisfies (in the weak formulation) the desired equation

—Au=0g(u) in RY

and so u_z; is a solution of problem (*). O

Remark 1.3.1. In dimension N =1 and N = 2, the constrained minimization approach
fails because when we try to prove the boundedness of the sequence in L?" (RN), the Sobolev
embedding theorem is no longer valide for N =1 and N = 2. Indeed, let’s try to study
separately the cases N =1 and N = 2.

Case 1): N = 2. In dimension 2, scale change relations become
T(ug) =T(u), V(ug) =0V (u).

Thus,
(u) = T(u).

Now, suppose that ug is a solution given by constrained minimization problem, namely
V(ug) = 1 and T(ug) = mingy sy T(u). Hence T'(ug) = 0 implies ug = 0, a contra-
diction to V(ug) = 1.

inf T inf
{V(u)=1} {V(u)>0}

Case 2): N = 1. The scaling relations in this case become
T(ug) = o "T(u), V(uy)=aV(u).

Let w € HY(R) such that V(w) = 1. Recalling that lim sup @ =-—m <0 and G(u) =

s—0t

Jo g(s)ds, by continuity of G we see that there exists 0 < 0y < 1 such that V(6yw) = 0
and V(0w) > 0 for 6y < 6 < 1.

Clearly, V(0w) — 0T as 0 — 0. For 6y < 0 < 1, let o(f) = V(0w)™!, such that
V(0wyg)) = 1. Now, T(0w,@g) = o(0) T (0w) = 0>V (0w)T (w). Letting 6 — 0o, this
shows that infgy =1y T'(u) = 0 because T'(u) > 0 always. Hence, also in this case the
minimization approach seems to fail.

The case N = 2 will be considered in Section 2.5.

Now we are going to prove that the solution of (*) obtained by the constrained
minimization method has the property of minimizing the action among all solutions of
(*), namely a ground state solution. The proof is based essentially on Pohozaev’s identity;
therefore it is crucial to know that any solution of (*) satisfies the identity.
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Theorem 1.3.2. Let u denote the solution of (*) obtained in Theorem (1.3.1). Then,
for any other nontrivial solution v of (*), one has

0<S(u) <8S().
Proof. Let u be the solution obtained in Theorem 1.3.1 such that

V(a)=1 and T(@)=min{T(w):we H'RY),V(w)=1}.

Then, as we seen before, there exists 6 > 0 such that —Au = g(@) in H'- sense, so that
u = 1u, /5. By Pohozaev’s identity, we have

The scale change relations yield
T(u)=6"2 T(w), V(u) =62V(u)=0

Hence, we derive
N -2
——T(u).
o L(@)
1

By Corollary (1.2.1), the action for a general solution of (*) has the form S(u) = 7' (u).

Thus, .
su=y (%) @

Now, let v denote another solution of (*); again by PohoZaev’s identity: T'(v)

0=

w|z

2N
) N-2
Let o > 0 be such that V(v,) = 1, that is 0 = (V(v))” ¥ because V(v) # 0, or equiva-

lently s i
= (%) o,
_ 1)

Let us express S(v) in terms of T'(vy). We know that S(v) = =7*; on the other hand
T(vy) = oN 72T (v), so using the preceding expression of o we obtain

V(u).

N-2

1) = (%) it
Hence, B
s =570 = () T Tl

Since 4 solves the minimization problem and V' (v,) = 1, we have T'(v,) > T'(u). Using
the inequalities above, we deduce S(v) > S(u). O
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Remark 1.3.2. Consider now hypothesis (1.1.1); suppose that g is differentiable at 0
and ¢'(0) > 0. We claim that (*) has no radial solution.

Indeed, if u € HY(RYN) is radial, then by a result of Strauss (see Lemma (A.0.2)) there
exists a constant C > 0 such that

u 1
lu(z)| < cl Uffl V]z| > an,
x| 2

where ay s a positive constant depending on N, hence |u(x)| = O(|x\121\7> as x| —

+o00. Let m = ¢'(0) and q(r) = m — %. Then, considering the case N = 3 and

assuming g € C?, by Taylor’s expansion and the previous inequality one has q(r) =
O(r=1) as r — +o0o. Now, u satisfies the equation

—Au+q(ru=mu in RV,

But this is impossible since it violates a result of Kato (see [8]) which states that the
linear operator —A + q(r) has no positive eigenvalues associated with eigenfunctions in
L?(R3) under the condition q(r) = O(r~1).

Observe, however, that ¢'(0) > 0 is not exactly the opposite of (1.1.1). The only
remaining case is the limiting 'zero mass’ case where g'(0) = 0. In fact, in this case the
approach is always a constrained minimization, but the condition g'(0) = 0 does not give
the boundedness of the L?-norm of minimizing sequence u, as in the previous theorem
and also the integrability of |G(uy)|. Then, we will look for a solution w of (*) when
g'(0) = 0 such that u € DY?(RYN). So, the constrained minimization problem becomes

minimize {T(w):w € DV*(RY), G(w) € LYRY), V(w) = 1},

where G is an integral function of g : R* — R continuous function with new hypotheses
which generalize the case g'(0) = 0:

96) .

0)=0 d i
g(0) an imsup =7 <

s—0F

there exists &€ >0 such that G(§) > 0;

let & =inf{¢ >0;G(&) >0}; if g(s) >0 forall s>¢&), then 1imsup&'ls) =0.

s—+oo S
Thus, under these hypotheses, one can prove the following

Theorem 1.3.3. There ezists a positive, spherically simmetric and decreasing (with —|x| =
r) solution u of the equation

—Au=g(u) in RY

such that w € DY2(RN). Furthermore, u is a classical solution (i.e. u € C2(RN)).
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1.4 Critical case

In this section we will complete this study by considering a class of nonlinearities with

critical growth and under mild assumptions.
We will assume that g(s) = —s + f(s), where f : R — R is a continuous function with
critical growth, in a sense that will be specified later. We thus obtain a ground state
solution for the problem

—Au+u= f(u)

(%)  u e H'(RY)
u > 0,

following the minimization problem:

1
min{/ |Vu2dx;/ G(u)dr = 1}, it N>3 (1.4.1)
2 JrN RN
and .
min{ ]Vu\zd:n;/ G(u)dx:O}, if N =2, (1.4.2)
2 Jp2 R2

where as before G(s) = [ g(m)dr = [j(f(7) — 7)dr = F(s) — % and F(s) = [; f(r)dr.
Then, the energy funcional S : H'(R") — R associated to (*) is

S(u) = ;/RN(Wu]Q + u?)dx — o F(u)dx.

Remark 1.4.1. Observe that the original problem (*) corresponds to

—Au+mu = f(u)
() { e H'®RN)
u > 0,

where m > 0 is a parameter. On the other hand, after a proper rescalement, we can
assume m = 1.

In what follows, the function f : R — R is continuous and satisfies the following
hypotheses

lim,_,o+ £ = 0; (1.4.3)
limsup 25 =1, if N >3
s—+00
limg_; 400 gogf% =0 (4+o00) if a>4r (a<4m) when N =2; (1.4.4)
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Vs >0, f(s)s—2F(s)>0 (>0) if N>3 (N=2); (1.4.5)

2,2%y if N>3
dA>0 and g¢e€ (2,27 i o st. f(s) > XsT7h Vs > 0; (1.4.6)
(2,400) if N=2

Remark 1.4.2. Under these assumptions, the energy functional S is well-defined on
HY(RN) in view of Sobolev embedding and Moser-Trudinger inequality. Furthermore,
condition (1.4.4) is, say, in a normalized form. We have analogue results when

lim sup f;f)l e R\ {0}, i N >3,
s—+oo S
and
) | N
lim =0 (+o00) if a>ay (a<ag) if N=2, forsome ay>0.

2
s—+o00 QS

Before stating the main results, we need to fix some notations. We will denote in the
following, S, Cy > 0 as the best constants of Sobolev embedding

DY (RY) — L*(RY)
and

H'(RY) — LYR"Y),
for q as in (1.4.6), that is, respectively

2
£

. 2
S(/ |ul? dac) < / |Vul|?dz, for any u e DVARY),
RN RN
and
2
a N
Cq</ |u\qd:1:> S/ (|Vu|* + u*)dz, for any wue HY(RY).
RN RN
Now we will present the main results for the case N > 3 and N = 2.

Theorem 1.4.1. If N > 3 and f satisfies (1.4.3)-(1.4.6) with

q—

= () T ] e

"Qto\»o

)

then problem (*) has a minimizing positive solution which is a ground-state.

Theorem 1.4.2. If N =2 and f satisfies (1.4.3),(1.4.6) with

q—2

— 2\ 2 4
)\>>\27q = <(]2> 0(127

then problem (*) has a minimizing positive solution which is a ground-state.
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Before proving them, we are going to fix some notations. First of all, under Schwartz
symmetrization and Polya-Szego inequality, we can minimize problems (1.4.1) and (1.4.2)
on the space H!(RM).

In the sequel, since we seek positive solutions, we will assume f(s) = 0 for s < 0 and
argue as in subcritical case. Moreover, we will use the following notations

m = inf{S(u); w is nontrivial solution of (*)},

1
A::inf{/ \Vul?dz: we HYRY) and
2 JrN

G(u)d$:{1 if N>3 }

RN 0 if N=2

We also need to define the following minimax value

b:= inf S(~(t
Inf max (v(?))

where

I = {y € C([0,1]; H} (RY)) : 4(0) = 0,8(v(1)) < 0}.
Define the sets

1 if N>3 }

M::{uGH,}(RN)\{O}?/RNG(“)dx:{0 i N =2

P = {u € HI(RY)\ {0} : 2N /RN Glu)dz = (N —2) /RN |Vu\2da:}

and
T:={uec H'RY)\ {0} : S (u) = 0}.

From the above definitions, it follows that

2A = inf/ |Vo2dz, m = inf S(v).
veEM JrN veY

Notice that P is the PohoZaev’s identity manifold and Y C P by Proposition 1.2.1.
Moreover, if p := inf,ep S(v), then p < m. It is very important to observe that M is a
C! manifold for all N > 2. Indeed, let V(u) := [pn G(u)dz, then from (1.4.5) and for
every u € M :

V()] = /RN(f(u)u _ )y > /RN(ZF(u) )z = 2V () = 2 £0

if N >3 and V'(u)[u] >0if N =2.

In the following, we will show that A is attained and afterwards we prove that
m=A=b if N=2,

thereby proving that (*) has a ground state solution if N = 2.
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The case of dimension N > 3

First of all, by standard arguments involved growth assumptions on f, one shows that
any minimizing sequence {u, }, for (1.4.1) is bounded in H}!(R") (see Lemma 3.1 in [4]).
So we can assume, up to subsequences, u, — u in H'(RY) for some u € H!(RN).

Now, in the sequel we will prove some estimates involving the levels A and b.

Lemma 1.4.3. b> & (2=2)"77 (24) .

Proof. For each v € T one has v([0,1]) NP # 0, see [11]. Hence, there exists to € [0,1]
such that v(¢9) € P, and then p = inf,cp S(v) satisfies

p < S(v(t)) < max S(v(1))-

Consequently,

< S(~(to)) < inf S(~(t)) = b.
p < S(v(to)) < Inf max (v(t))

Now, due to an idea from Coleman-Glaser-Martin [11], one has

N-—2
. 1 /N-2\ 2
f”%%“”—A&:mr) (24)

vz

which concludes the proof. O

Now, from Ekeland’s Variational Principle (see [42]), there are {u,} C M and {\,} C
R Lagrange multipliers such that

1
/ |V, |2de — A
2 JrN
and
T'(up) — MV (uy) = 0 in H HRY),
where T'(u) = % [on |[Vul?dz. From last condition, one readily checks that {\,} is
bounded from above and limsup A, < A.

n—-+oo
Furthermore, the concentration compactness principle of Lions (see [21]) applied to

the sequence {u,} guarantees the existence of positive finite measures pu, v, sequences
{ui},{v;} € R and {z;} C R¥ such that as measure convergence,

0) Va2 = du > [Vul? 4 5, 80

(ii) |un|2* —dy = |u\2* + > 0z,
2

(iii) i > Sv7".

One can easily checks that A > 0 (see Lemma 3.3 in [4]); then the following lemma is
well-posed.
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N
2

Lemma 1.4.4. Ifv; > 0 for some indez i, then v; > (%)

Proof. Let ¢ a smooth function with compact support verifying

0<¢(x)<1 VzeRY, ¢(x)=1 in By with suppp C By

and ¢e(z) = ¢(£Z2), for € > 0.
Then,
Vu,V(peun)dr = )\n/ (f (un)un — u2)pedz + 0, (1) as n — +o0.
RN RN

The growth assumptions on f imply that, for any 1 > 1, there is a constant C' > 0 and
€ (2,2%) such that
§2

sf(s) < 54—1752* +Cs" for s>0.

Hence,

/ |V |>pedx + / U Vi Voedr <
RN RN

< 77>\n/ |un|2*¢6d$ + )\n/ |Un|2¢ed$ + )\nc/ |un|r¢)ed3j
RN 2 JrN RN

By Lions’ principle above and standard arguments involving dominate convergence the-
orem and Corollary A.0.4, first letting n — +o0o and then letting e — 0, using
limsup A, < A, it follows that u; < nAy; for all n > 1. Consequently, p; < Ay;.

n—-4o0o
Using (iii) of Lions’ lemma, we get

2

Av; > i > Sv?F,

implying

Lemma 1.4.5. If v; > 0 for some index i, then A > 2-%8S.

Lemma 1.4.6. If
A > )\N’q,

then b < (N—N)N 2

\ z

Proof. Take 1) € HY(RN), ) > 0 verifying

IWIZe = Cgt and |9l = 1.
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Now, observe that for any u € H'(R™) such that u* # 0 and ¢ > 0, by condition (1.4.6)

2, A
S(tu) < 5 llullfn @y — gtqHUH%q(RN) <0

for some ¢, > 1. So we get

b= inf max S(y(t)) < inf max S(tt,u) < inf max S(tu) <
~v€T t€[0,1] u€HL(RN),ut20t€[0,1] u€HI(RN),utz0 t>0
s N0 g
< tyY) < — — A= .
= <¢>—%135<{2 ¢ o }
Since ¢ > 2, a simple computation shows that

12 td -2 2 2 -2 _ 2 4
max{ — —A— | ldet =L T3y, = LS im0

t>0 | 2 q JrN 2q 2q

The last inequality combined with the hypothesis on A finishes the proof of the lemma. [

Lemma 1.4.7. The weak limit u is non-trivial.

Proof. Assume u = 0. In this case, since {u,} C H}(RY), there is a v; which can be
chosen to be positive at the origin. Notice that all other "atoms" are null because {u, }
is bounded in L>*{|z| > 4}, for all 6 > 0 by Lemma A.0.3. Next, we denote by 1 this
unique atom.

We claim that g = 0. Suppose on the contrary that vy > 0; by lemma 1.4.5, A > 27 8.
Combining this inequality with lemma 1.4.6, we get a contradiction with Lemma 1.4.3.
Hence vy = 0 and

u, =0 in L (RY)

by compactness’ principle of Lions. On the other hand, by Lemma A.0.3
u, -0 in L?({|z| > R}) forall R>1 fixed.

Then,
u, — 0 in L* (RY).

Now, by definition of {u,} we have
1 2
F(up)dx = = |un|“dz + 1.
RN 2 JpN
The growth assumptions on f imply that there is a constant C' > 0 such that
1 "
F(s) < 132 +Cs* for 5>0.

Consequently,

x 1
C/ | |* da > / |y |2dz +1 > 1.
RN 4 RN

The last inequality leads to a contradiction. Therefore u # 0. O
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Now, we are ready to prove Theorem 1.4.1.

Proof. Our goal is to prove that constant A is attained by u. Since u, — u in H'(RY),
it follows that

1 1
T(u) = 2/ |Vul|?dz < 1igl+inf2/ |V, |?dz = A.
RN n o0 RN

Combining Lemmas 1.4.3, 1.4.5, 1.4.6, we derive that v; = 0 for every 7. The same
argument used in Lemma 1.4.7 shows that

u, = u in LY (RY).

From this,
F(up) — F(u) in LY(Bg(0)), VR > 0.

On the other hand, Strauss’ lemma implies
F(u,) = F(u) in L'({lz > R}), VR>1 fixed.

Then,
F(up) = F(u) in LYRYM).

Recalling that

then we have

that is

Now, if u € M one should have

G(u)dz > 1.
RN
Repeating the same argument used in Step 3 of Theorem 2.5.1 (see Section 2.5 below),
one obtains a contradiction. Therefore u € M and T'(u) = A. Finally, we already know
from Theorem 1.3.2 that if w minimizes the problem (1.4.1) then it is a ground state
solution. ]
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The case of dimension N = 2

In dimension N = 2 we have already seen in Proposition 1.2.1 that PohoZzaev’s identity
implies that any solution u of (*) should verify the equality [, G(u)dz = 0.
In dimension N = 2, we consider P = M and

1 1

(x) A=inf< = |Vu|2dac;/ G(u)dz = 0,u € H}(R*)\ {0} ; = inf / |Vo|2da.
2 Jr2 R2 veP 2 JR2

In what follows, we will consider the following min-max value

(#%) c:= inf  maxI(tv).
0#AveH1(R2?) t>0

The first result of this subsection shows a sufficient condition on a sequence {v,, }, to get
a convergence like F(v,) — F(v) in L'(R?).

Lemma 1.4.8. Assume that f satisfies (1.4.3), (1.4.4) and let {v,} be a sequence in
H(R?) such that

limsup|| Vo, |32 =p <1 and limsup|v,|3s = M < +oc.
n——+o0o n——4o0o

Then,

F(vy)dx — F(v)dx
R2 R2

where vy, — v in H'(R?).
Proof. Without loss of generality, we can assume that exists v € H}!(R?) such that

v, —v in HYR?), v, —>v ae in R®* and ‘ |lim vp(x) =0 uniformly in n,
T|—+00

by Strauss’ lemma A.0.2. Using a Trudinger-Moser inequality due to Cao [10], we know
that for each m € (0,1) and M > 0, there exists C(m, M) > 0 such that

sup/ (64”2 — 1)dz < C(m, M),

ueB JR2

where

B .= {u € H(R?) : / |Vu|?dz < m,/ uldr < M}
R2 R2

Now, choose € > 0 small enough such that m = ﬁ € (0,1) and set a = (12)2 >

4.
Then,

/ (e — 1) — / (ea<1—€>2<f’2>2—1)dx= / (" — 1)da.
R2 R2 R2
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Since - € B for n large enough, we have that
/ (en — 1)dzx < C(m, M) Yn>> 1.
]RQ

Now, setting P(s) = F(s) and Q(s) = e — 1, from the hypotheses of f and classical
Moser-Trudinger inequality, it holds
P(s) ) P(s)

im = lim =0, su vp)|dx < 400
A6 ke Q) T SR 190

and
P(vn(z)) = P(v(z)) ae in R? as n — +oo.

So, Theorem A.0.3 implies that P(v,) converges to P(v) in L'(R?), that is,

/ F(vy)dz — F(v)dz,
R2 R2

finishing the proof. O

As in the preceding subsection, we derive two technical lemmas involving the levels

A and ¢, defined as in (%), (%x).
Lemma 1.4.9. A <e¢.

Proof. For each v € H'(R?)\ {0} with vT # 0, we set the continuous function h :
(0, +00) — R by
202
h(t) = G(tv)dxr = / <F(tv) - )d:z:.
R2 RQ 2
By virtue of the assumptions on f, one concludes that h(t) < 0 for ¢ small enough and

h(t) > 0 for ¢ large enough. In this way, by the intermediate value theorem, there exists
to > 0 such that h(tg) = 0, that is, tov € P. Hence,

1 2
A /2 | ( 0’U)| d.’E S( OU) I¥1>31X8(11))

On the other hand, since f(s) = 0 for all s < 0, if v € H'(R?) \ {0} with vt = 0, we
have

max S(tv) = +o0.
>0

From this, A < c. O

Lemma 1.4.10. If
A > Ag,q

with Aa.q as in Theorem 1.4.2, then ¢ < %
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Proof. By assumption (1.4.5) for f, as in the proof of Lemma 1.4.6, we have

(g—2) -2 5
3 G

c<

and then
c < —.

O

Now, it is well-known that A > 0 (see Lemma 5.3 in [4]). Hence, we are ready to
prove theorem 1.4.2.

Proof. We need to prove that A is attained, that is, there exists u € H}(R?)\ {0} such
that A = [po [Vul?da and [z G(u)dz = 0. Let {uy} be a minimizing sequence in H} (R?)
for A, that is,

1/ |Vu,|?de — A and / G(up)dz = 0. (1.4.7)
2 R2 R2

Arguing as before, we may assume that

/ |y |2de = 1.
R2

Combining equation (1.4.7) with Lemmas 1.4.10 and 1.4.11, one obtains
limsup [ |Vup|?dz =24 <2c< 1.
n—+oo JR2

From Lemma 1.4.9,

/ F(up)dx — F(u)dz,
R2 R?

where v is the weak limit of {u,} in H'(R?). From last condition,

implying that v # 0 and

1
/ |Vul|?dz < A.
2 R2

Now, our goal is to prove that fRQ G(u)dx = 0. To this end, by weak semicontinuity we
have [o. |u|?dz < 1. Consequently,

1 1 1
G(u)dx = F(u)dx — = lu|?de = = — / lul*dz > 0.
R2 R2 2 R2 2 2 R2

Finally, as in step 3 of Section 2.5, we obtain that necessarily fRQ G(u)dx = 0, from
where it follows that A is attained.
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Now, we prove that m = A = b. First, we recall
= inf{S(u) : w is nontrivial solution of (*)}

and

b= inf
Sy SO

where T' = {y € C([0,1], H}(R?)) : 4(0) = 0,S(v(1)) < 0}. We proved above that exists
u € H}(R?)\ {0} such that

1
/ |Vu|?dz = A and G(u)dz = 0.
2 Jgre R2
By Lagrange multipliers there exists § € R such that
VuVvdr =0 | g(u)vdx for every v e H'(R?).
R2 R2

The number 6 should be positive as we have seen in the proof of Theorem 1.3.1. Define
the rescaled function u s (v) = u(%), which is a nontrivial solution of (*) with

/]R? ]Vu\/@\de = /}R2 |Vu|?dz  and /RQ G(u,g)dr = 0.

Thus,

To sum up,
m < A.

Now, for each v € T" one has v([0,1]) NP # 0. Hence, there exists ¢y € [0,1] such that
v(to) € P and then

A< [ vatPar =5 [ Vil - [ Gt = St

by definition of P. Thus

A< S(y(ty)) < tgl[%S('V(t))

and so A < b follows immediately by definition of b.
To sum up, we have proved
m< A <hb.

It remains to show that m > b. For any nontrivial solution w € H*(R?) of (*), arguing
as in [14] we deduce that there exists a path 7, € I' such that w € ~,([0,1]) and
maxe(o,1] S(Yw(t)) = S(w). Consequently,

b < S(w).
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Therefore
b<m.

In conclusion, m = A = b and the function u Vs a ground state solution of problem
(*). O
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Chapter 2

Bound-states

2.1 Introduction and main result

In this chapter, we shall seek solutions of (*) which are radial, but not necessarily
positive, and which correspond to higher values of the action §. Such solutions are
called "bound-states". Our main result states that under the same conditions as in
previous chapter and plus hypothesis that g is odd, the problem (*) possesses infinitely
many distinct solutions.

We can now state the main theorem of this chapter:

Theorem 2.1.1. Let N > 3 and g : R — R be a continuous odd function which satisfies
conditions (1.1.1)-(1.1.3). Then, problem (*) possesses an infinite sequence of distinct
solutions {uy}x>1 with the following properties:

(i) uy is radial and of class C?> on RN, Vk > 1;
(ii) there exist constants Cy, 0 > 0 such that
| D%y ()| < Cre %l vz e RV,
where |a|; <2 and k > 1;
(#3) limg_y 400 S(ug) = +00.
Heuristically, consider the manifold
M = {ue HXRY);T(u) = 1},

and recall that

T(u) = /RN \Vul|?dz, V(u) = o G(u)dz,

soS=1LiT-Vv.

2
As before, by looking for critical points of the constrained functional V}ys, one can deduce
the existence of solutions of (*). Indeed, if V|§\/[ (v) = 0 for some v € H'(RY), then there
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is a Lagrange multiplier § such that $7"(v) = V' (v). One can show that 6 > 0, and so
by scale change

) = vgglo) =0 75):

one obtains a solution u of (*).

Therefore, the idea will be to prove that V|, has infinitely many distinct critical
values {cg}r>1 corresponding to infinitely many distinct critical points on M. Finally,
we have to ensure that, after the proper scale changes (different for each ), one still
gets infinitely many distinct solutions of (*). This will be guaranteed by the fact that
S(ug) / +00 as k — 400, which will be a consequence of the condition ¢; 400 as
k — +oo. (Indeed, there is a simple relation of the form S(ujy) = Cc, with constants
C, 7 > 0 depending on N).

Our first task, therefore, will be to derive some results in critical point theory. In
fact, we are concerned in general with finding critical points of constrained functionals
of the type Jjys, where J € CY(E,R) is even, E is a reflexive Banach space, M = {x €
E :||z||g = 1} and H is a Hilbert space such that E < H < E’. In the application to
Theorem (2.1.1), we will consider E = H}(RN),H = D}*(RN) and J = V.

2.2 Some results in critical point theory

In this section, we will give some general theorems about critical point theory. Let H
be a real Hilbert space whose norm and scalar product will be denoted respectively by
Il and (,-). Let E a real Banach space with norm ||-||g continuously embedding in
H. We assume throughout this section that

E<— H<E

by Riesz’s duality map. Furthermore, we will suppose (without loss of generality) that
x|z < ||z||g, Vo € E. We consider the manifold

M:={x € E:|z|g =1}

endowed with the topology inherited from E. Moreover M is a submanifold of E of
codimension 1 and its tangent space at a given point x € M can be considered as a
subspace of F of codimension 1, namely

T.M ={vekFE:(z,v)=0}

We denote by 7, the orthogonal projection onto T, M, that is m,u = v — (u, x)x for all
u € E. Let us consider a functional J : E — R which is of class C' on E. Then, Jinr is
a C! functional on M, and for any x € M,

JllM($)[w} =J'(z)[w] Yw e T, M.
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Clearly, also J|’M(ac) € (T, M)'. In the sequel, for any x € M the notation HJ{M(ac)H is
understood to refer to the dual norm induced by the norm of T, M which is inherited
from E.

We recall that J satisfies the Palais-Smale condition (in short (P-S)) if the fol-
lowing condition holds: for any sequence {x,} C M such that J(z,) is bounded and
||J|’M(mn)|| — 0 as n — 400, there exists a subsequence {x,, } which converges strongly
in M.

A weaker requirement is the following (P-S™) condition (which we will check instead of
previous one): for any o, C' > 0 and for any sequence {z,} C M such that o < J(z,) < C
and ||J|’ (@) — 0 as n — +oo, there exists a subsequence {z,, } which converges in

In order to check these conditions, it is useful to have a characterization of the conver-
gence ||J|’M(:L‘n)|| — 0 as n — 400 in terms of J'(xz,).

Lemma 2.2.1. Let {x,} be a sequence in M which is bounded in E. Then, the following
conditions are equivalent:

(1) [Ty (@n) |l = 0 as n — +o0;
(i1) J'(xn) — J'(xn)[zn]Tn — 0 in E' as n — +o0.

Proof. Let x € M; any v € E has the unique decomposition v = (v, x)z + 7,v, with
v € Ty M as before. Noticing that |(v,z)| < ||v||g < ||v||g, we have

|lmzv|le < 1+ ||z||p)lvlle, YveE, VeelM.
Let J'(z) := J'(z) — J'(z)[z]z in E'. By definition of T, M, we have
J'(z)[w] = J|/M(ac)[w], Yw € T, M.
Thus, ||J|’M(:C)H < ||J(z)||g, Vo€ M, whence (ii) implies (i).
On the other hand, suppose now (i). One has for any v € E:
T (@n) 0] = J'(2n) [z, 0]-

Thus, 3
T (@n) ]| < [ (@) 1L + [lznllB)l|vlle < Cll T (@) vl e

for some constant C' > 0, since {z,,} C M is bounded. This shows that ||.J/(z,)|z — 0
as n — 400, that is (ii). O

We recall that a critical point for J); is a point € M such that Jl'M(a:) =0, and a
critical value of Jj5; is a number ¢ € R such that there is an z € M with J(z) = ¢ and

J|’M(:1:) = 0. Let (M) denote the set of compact and symmetric, with respect to the

origin, subsets of M. We recall that the genus v(A) of a set A € (M), is defined as

Y(A) :=inf{n >1:3¢: A — SV odd continuous}.
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We set 7(A) = +oc if such integer does not exist, and recall that (S"~1) = n. For
k > 1, we define
Iy :={AeX(M):vy(A) > k}.

Since F is infinite dimensional, we have I'y, # () for all £ > 1.
We can now state the main result about existence of critical values, which will be
crucial for the main theorem 2.1.1.

Theorem 2.2.1. Let J : E — R be an even functional of class C*. We assume that J
is bounded from below on M and that J)y; satisfies the condition (P-S). Let

¢, = inf sup J(z).
AEFkxEE ( )

Then for any k > 1, ¢y is a critical value of Jypr and {cx}x s an increasing sequence.
Furthermore, if ¢, > 0 is finite for any k > 1 and J satisfies (P-ST ), then cy is a critical
value of J.

Remark 2.2.2. We note that, otherwise from previous chapter, we assume that g is odd
because J needs to be an even functional. Furthermore, we require that infy; J(z) > —o0
due to the fact that ¢y = infyr J(z) and {cg}r is an increasing sequence.

As in usual in critical point theory, the proof of Theorem 2.2.1 requires a typical
"deformation lemma", whose its technical proof is explained in [25] and [3]|. In the proof,
we consider for semplicity an equivalent relation for ¢, namely

b, = sup inf J(x).
k AepkazeA ( )

Indeed, it is easy to prove that for N > 3:

N-2

CkZbk

Lemma 2.2.3. Suppose Jjyy € C' satisfies condition (P-S) (respectively (P-5T)). Let
b€ R (respectively b > 0) be not a critical value of Jjys, and for ¢ € R we put A, == {z €
M : J(x) > c¢}. Then, there exist a constant € > 0 and a deformation n € C(M, M) such
that

(i) n(x) =z for x € M, with |J(z) —b| > €

(ii) m is a homeomorphism and it is odd if Jyy; is even;
(iii) J(n(x)) > J(x) for x € M;
(iv) N(Ap—e) C Apye V0<e<eE.

Proof. (of Theorem 2.2.1) First, by is well-defined because T'y, # () for £ > 1. Since
Iy C Ty, if k¥ > k, it follows that by, < b,. Now, suppose by, is not a critical value of Jinmr
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for some k£ > 1. Then let €,€ > 0 and 7 be given by previous lemma. From the definition
of by, there exists A € I'y, such that

—e<i < bg.
bi, 6_;2£J($)_bk

This implies that A C A, . By previous lemma, n(A) C Ap, +.. Morover, since 7 is an
odd homeomorphism, we have n(A) € £(M) and v(n(A)) = v(A) > k. Hence n(A) € I'.
But

inf J(x) > by +c.
(it J@) 2 b e

which contradicts the definition of by. O

Now, in order to get infinitely many distinct solutions of (*), we will show that
cr /N 4oo as k — 4o0.

Theorem 2.2.2. Let E be an infinite dimensional, separable, reflexive and dense sub-
space of H. In addition to the hypotheses of Theorem 2.2.1, we assume that J(0) = 0
and that J is weakly upper semicontinuous for the H-topology on the set

S = {x € B;J(x) > 0, |lall < 1},
that is

if {z,}CS, xzp,—x in H and x€E, then J(x)>limsupJ(z,).

n—-+o0o
(2.2.1)
Lastly, we suppose that ci, > 0 is finite for all k > 1. Then we have

e S +oo as k — +oo.

Since F is separable, there exists a sequence of finite dimensional subspaces of F,
namely £1 C Es C ... C E, C Eyq1q1 C ... C E such that dimFE; =+¢ Vi > 1 and the
closure of U;en F; in E is equal to E. Note that, since E is dense in H, the closure in H of
UienF; is also equal to H. In the sequel we denote by P, the orthogonal projection from
H onto E,,. Before proving Theorem 2.2.2, we give a technical lemma about orthogonal
projections.

Lemma 2.2.4. Assume the hypotheses of Theorem 2.2.2 hold. Then, for any ¢ > 0,
there exists p = pe > 0 and ke € N such that for any k > ke and any x € S, one has

|Pr(x)||le < p implies J(x)<e.

Proof. Let € > 0 be given. Now, we claim that there exists p > 0 such that for all x € S,

|z|lg < p implies ﬂm<§. (2.2.2)

Indeed, if it were not true, there would exist a sequence {x,} C S such that x,, — 0 in
H and J(zy) > € for n sufficiently bigger. This would contradict (2.2.1), since 0 € E
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and J(0) = 0. The proof now proceeds by contradiction. Suppose there is a sequence of
integers {n;} /400 as i — 400 and sequences (we can take the same {n;} up to choose
a subsequence) {z,,} C S and {pp,} \( 0 such that

| Pr,znl|lE < pn, and  J(zp,) >€, Vi (2.2.3)

for some € > 0. Then, one can extract a subsequence of {z,,}, denoted again by {x,, },
such that
Tp, =« in H, Pyx, —0 in F.

We claim that x = 0, and thus x € E. Indeed, one has
HxH%I = lim (xm - Pnzwnﬂx)
1—+00

Now
) 2 .
(Tn,, ) = ||z as @ — +oo

and
(P, ) = (2, P,x) = ||zl

since P,,x converges strongly in H to z (by definition of orthogonal projection in Hilbert
spaces). Therefore, ||z||g = 0, that is z = 0 and x € E. Since x,, — z, by (2.2.1) we
have

J(0) > limsup J(zp,) > €

i——+00

which contradicts J(0) = 0. O]

Proof. (of Theorem 2.2.2) Let ¢ > 0 be given; we shall show that for k& > ke (ke given
by previous lemma) one has 0 < by < €, where by’s are defined as above. Indeed, suppose
for contradiction that by > € for some k > k.. Then, by definition of by there exists
Aely (AeX(M),v(A) > k) such that by, > inf,ca J(z) > €. Since J(x) > € for x € A,
we have by Lemma (2.2.4)

|Pr.xl|lg>p for z€A,

where p = pe > 0 given by Lemma (2.2.4). Thus, one can define an odd continuous

mapping ¢ : A — SF1 as ¢(x) = ”PIZ’:E%. But this implies v(A) < ke by definition of

genus, which is a contradiction. Hence by \ 0 as k — +o0. O

2.3 Proof of the existence of infinitely many bound-states

We now turn to the applications of the previous section to problem (*). Let us first
make precise the functional framework which will be used.
For N > 3, let H = D}*(RN) an Hilbert space with scalar product

(0.0) = [ VoV, Voo e DINRY),
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We recall that H can be characterized by
H={¢pcL*(RY) radial:|V¢| € L*RY)}

because of the Sobolev embedding theorem, and we define E = H}!(R"). Observe that,
since F is an infinite dimensional separable and dense subspace of H, we have a suitable
functional framework to apply Theorem (2.2.2).

In order to define the functional V| we first need to modify the function g in the
same way as we did in the previous chapter. Take £ as in (1.1.3) and define g : R — R
as follows:

(i) If g(s) > 0 for s > &, then g = g;

(ii) Otherwise, set so = inf{s > £ : g(s) < 0} and

9(so) if s> s
9(s)=qg(s) if |s| <so
—g(so) if s< —sp.

Recall that g is odd and satisfies the same conditions as ¢ (in particular it is continuous
at s = so because g is odd), and that by strong maximum principle, solutions of (*) with
g are also solutions of (*) with g. We keep the notation g for the modified function g.
Then, defining

Vu) = o G(u)dzx,

we obtain an even functional V' € C'(E) with V(0) = 0. Now, we consider the subman-
ifold of E
M={ueFE:T(u)=1}

The main Theorem 2.1.1 will be easily derived from the next result.

Proposition 2.3.1. Let g : R — R be an odd continuous function satisfying conditions
(1.1.1)-(1.1.3). There exist infinitely many distinct critical values {cx}ren of Tiar given

by
¢, = inf supTjy(x), Vk>1.
k= jnf sup ()

Moreover ¢, > 0 is finite for allk > 1 and ¢, /' 400 as k — +00. For each k € N, there
exists a critical point vy, € M corresponding to ci, and there exists 0 > 0 such that

—Avg = Org(vg) in RN,

Proof. We apply Theorems 2.2.1 and 2.2.2 of the preceding section. The proof of the
proposition is based on the following steps:

(1) 1}ps is bounded from below and satisfies the upper semi-continuity condition (2.2.1);
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(ii) Tjas satisfies (P-ST);
(iii) ¢ > 0 is finite for all £ > 1;
(iv) Proof of Theorem 2.1.1.

Step 1. As above, let us consider

b = sup inf Vjp/()
A€Ty, z€EA

so that

_ N—-2
b = ¢, .

Therefore, we will prove that V}j; is bounded from below. Using the same notations of
previous chapter, we set

91(s) = (g(s) +ms)" and  ga(s) = g1(s) — g(s), Vs>0
and
gi(s) = —gi(—s) for s<0, i=1,2.
Then g = g1 — g2 and g1,g2 > 0 on R". Let

Gia) = [ " gils)ds

so that G;(z) > 0 for z € R and i = 1,2. Recall that, as in the proof of Theorem 1.3.1,
for any € > 0 there exists a constant C, > 0 such that

G1(s) < C¢|s|* + €Ga(s), seR.

Now, for u € H such that [[u[|z <1, Sobolev embedding theorem implies |[u|| 2+ gay < C
for some constant C' > 0. Hence, putting G = G; — G2 and using the last inequality with

e = 1 one has

29

1
lulg <1, V(u) <C— 5 Go(u)dx < C, wuwekE. (2.3.1)
RN
Therefore, in particular V| is bounded from above. Now, we will prove the upper
semi-continuity condition.
Let define
S:={ueE:V(u)>0,|ulg <1}

Consider a sequence {u,} C S such that w,, — v in H, with v € E. We want to show
that
V(u) > limsup V (uy,).
n—+oo

We already know, since ||u,||g < 1, that for all n € N

HVUHHLQ(RN)v ”“n”L?*(RN) <C,
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for some constant C' > 1. From V' (u,) > 0 and (2.3.1), we derive
Ga(uy)dx < C.

Since by construction we have ga(s) > ms for s > 0, it follows that

m

Ga(s) > 532, seR.

Hence, we obtain ||uy|z2 < C, and so ||u,||g < C. This shows that u, — w in E. We
now apply the technique of Step 3 of Section 1.3 to show that

/ G1(up)dz — Gi(u)dx as n— +oo.
RN RN

Now by Fatou’s lemma and continuity of Gy we have

Go(u)dxr < liminf Ga(uy)dz.

RN n—-+oo RN

Hence, V' (u) > limsup V' (uy,).
n—r—+0oo

Step 2. We will show that for any o, C' > 0 and for any sequence {u,} C M such
that o < V(up) < C and || |’M(un)H — 0, one can extract a convergent subsequence
{tn, }. We know by step 1 that if {u,} C M and V(u,) > 0, then ||u,||p < C. Thus,
applying Lemma 2.2.1, we obtain

V' (up) = V' (up)[up)un, -0 in E,

which means
0nAuy, + g(u,) — 0 in HY(RY) (2.3.2)

where

O = V' (up)[un] = /]RN g(up)updx.

Since {u,} is bounded in E, up to a subsequence, we have that u,, = v in E. As in the
Step 1 above, we know that

G1(up)dx — G1(u)dz,
RN RN

whence, using Fatou’s lemma for [x G2(uy,)dx, we obtain

V(u) > limsup V (up) > a > 0.

n—+400

Thus, in particular, u # 0. Since the injection H}(RY) < LP(RY) is compact for
2 < p < 2* (Corollary A.0.4), we have u,, — u in LP(R") for those p.
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We now show that 6,, is bounded. Indeed, by conditions (1.1.1), (1.1.2) and continuity
of g, there exists a constant C' > 0 such that

l9(s)s| < C(Is]” +1s*), s€R.
Thus,
16a] < CllunlZz + l[unll72+) <7, meN

for some constant C’ > 0. Therefore, up to a subsequence denoted always by 6,,, one
obtains 6,, — 6. Now, from (2.3.2) we have for any ¢ € C$°(RY)

/ g(up)pdr — —6/ \Vu|>pda. (2.3.3)
RN RN

Now, applying Theorem A.0.1 with Q(s) = |s|?" and P(s) = g(s), we have that g(u,) —
g(u) in L}, (RN) (recalling that |S‘|92(f)_|1 — 0 as s = +00).

Since g(un) — g(u) in L}, (RY), we also have [pn g(un)gds — [on g(u)pdr Vo €
C§°(RY), whence, comparing with condition (2.3.3), one has by density

—0Au = g(u), ue HRY)\{0}. (2.3.4)
Then by Pohozaev’s identity (see Proposition 1.2.1), one obtains
(N —2)

9/ |Vu|?*dz = NV (u) > Na > 0.
RN

Thus 6 > 0. Now, using the same argument to prove that V(u) > limsup V' (uy,), one
n—-+o0o

readily checks that

0< 6= lim g(up)updr < / g(u)udz.

n—-+oo RN RN

Multiplying (2.3.4) by u and integrating by parts, we have

0/ Vu|2d$:/ g(u)udz.
RN RN

Hence, comparing the above conditions, we deduce fRN |Vu|?dz > 1. Since u, — u in
H, we also have [y |Vu|?*dz < 1. Therefore

/ |Vul?dz =1 and / g(u)udxr = lim g(up)upde. (2.3.5)
RN RN

n—-+4oo RN

The first equality shows that u, — v in H and u € M. Now we will prove that u, — u
in F. Indeed, we know that

/ g1 (un)updr — g1(u)udz.
RN RN
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Hence, by (2.3.5) and definition of g, one has

/ g2(up)updz — go(u)udz. (2.3.6)
RN RN

Recalling that ga(s) = ms + (g(s) + ms)™ for s < 0 and g is odd on R, one obtains
ga2(s)s = ms? + q(s) with 0 < g(s) continuous for all s € R. By Fatou’s lemma

liminf/ q(un)de/ q(u)dz, liminf/ uidacZ/ u?dz.
n—+oo fpN RN n—+00 JpN RN

Comparing with (2.3.6) we obtain u, — u in L?(RY), so u,, — u in E. O

Step 3. Now we will prove that by > 0 for all £ > 1. Indeed, since V;; satisfies
(P-S™), it is crucial to know a priori that by > 0 for all k£ > 1.
For k > 1, we consider the polyhedron in R* defined by

k
T—1 1= {l = (ll,...,lk) S R” : Z |l7,| = 1}
=1

Since 7,1 is homeomorphic to S¥~1 by an odd homeomorphism, one has y(m,_1) = k.
We will prove that by > 0 using the following theorem.

Theorem 2.3.1. For any k > 1, there exists a constant R = R(k) > 1 and an odd
continuous mapping T : m_1 — H(BR) such that 7(l) is a radial function for all
l € m_1 and

0¢ 7(mp—1), (2.3.7)
Jp,C >0 suchthat Yue T(mp_y1), p< HVuH%Q(BR) <C, (2.3.8)
Gu)dr >1 Vu € 7(mp_1). (2.3.9)

Br

The proof can be seen on the Appendix (Theorem A.0.7).
Let us show that Theorem 2.3.1 implies 5 > 0. Put 7x_1 := 7(mr—1) and define a
mapping x : Tx_1 — M in the following way. First, we introduce the canonical injection
H(Br) — H'(RY) by setting, for u € H}(Bg),

- u on Bpg
u =
0 on RN\ Bp

Now define x(u) = i, = u(;) for 0 # u € 7,1, where 0 = o(u) > 0 is uniquely
determined by the condition x(u) € M, that is T(i,) = oV 2T (7)) = 1.
Since T'(a) = HVUH%Q(BR), we have by (2.3.8)

0<p <olu)<C" VYuceay_q,
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for some positive constants p’, C’. From this and (2.3.9) one has

Vix(u)) = O'N/ G(u)dz > (0N, Yu € 7.
Br

Now, define Ay := x(7x—_1). Since x is an odd continuous mapping, Ay € X(M). Fur-

thermore, as xy o7 : mp_1 — Ay is odd and continuous, we have y(Ay) > y(mr_1) = k.

Hence, A € T';, for all £ > 1. We have seen that

V(u) > ()N, Vue€ A

Therefore,

b = inf V(z) > inf V(z)> (0N >0.
o= sup fnf (2) = inf V() = (p)

N—-2

Step 4. Finally, by Theorems 2.2.1 and 2.2.2, we know that ¢ = b; is a critical
value for T}y, for all k£ > 1 and

c, /oo as k — +oo.

This last fact shows in particular that there exist infinitely many distinct critical points
of Tjps. Let vy € M be a critical point of V|, associated with the critical value cx. Now,
Lemma 2.2.1 implies

V'(vr) = V' (o) [vr] g
Thus, defining puy := V' (vg)[vg], we have
—upAvg = g(vp) in RY.
Then, as in the previous chapter, we derive

ON
N3¢k N2 0.

HEe =

Hence, letting 0 = u,;l we have

N_9 N_
—Avy, = 0pg(vy) in RY, 0, = 5 (A

Let ux = (vx) g then uy is a solution for the problem (*), for each k£ > 1. Now, we
want to prove that {uj},>1 are actually infinitely many distinct solutions of (*), showing

lim S(ug) = +o0.

k—+o00

We know that S(ug) = %71 (ux) as above. By the scale change relation, we have

N 2 % N
S(“’“):N<2N> o -

Thus, since ¢~ +00 as k — 400, we deduce that
S(ux) N +o0.

Therefore, one actually has an infinite number of distinct solutions.
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2.4 Regularity of solutions and exponential decay

In this section we will discuss the regularity of both ground-states and bound-states.
Furthermore, we show a strong decay at infinity of solutions. Indeed, these properties
are only connected with solutions u of (*), independent of their energy.

(i) Regularity. In the previous chapter, we showed that u belongs to LfOOC(RN ). Thus,
by the LP- estimates from [1], we know that u € VVlif(RN) for any p < 4+o00. Hence, by
Morrey’s theorem, u € CL%(RY) with some « € (0, 1).

Since u is radial, using the laplacian formula in polar coordinates, u satisfies the relation
N -1
Uy = Uy = g(u), 7€ (0,400). (2.4.1)

We already know that w,, is continuous on (0, 4+00) (using a bootstrap argument), but
we need to be careful at r = 0. Indeed, we will show the continuity at this point. Let us
define v(r) := g(u(r)); v is continuous on [0, +00). Rewriting (2.4.1) as

— (N ), = N lo(r),

integrating from 0 to r, we have

T
Ny, = —/ sNly(s)ds.
0

With a change of variable, one has
Ur b v
— = —/ tY " o(rt)dt.
r 0

Since, by dominated convergence theorem,

1
0
/ tN Lo (rt)dt — v(0) as r— 0",
. N

we deduce that u,, exists and u,.(0) = —Lj\?). Furthermore, from equation (2.4.1) we

note that u,, — —% as 7 — 0F. Thus, u € C?(RY).

(ii) Ezxponential decay. The exponential decay of u at infinity follows from an ar-
gument from ordinary differential equations. We know that u € C?(R") and satisfies

(2.4.1). Set v := 7“%1@ then v satisfies

U = (q(T) + Tbg)v

where ¢(r) = —% and b = W. Recalling that u(r) — 0 as r — 400 by
Lemma A.0.2, from hypothesis (1.1.1) for g, we have for r > rq large enough:
b . m
q(r) + 22y
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Let w := v?; then w satisfies

1 b
§’U}mn = 'Uz + (q('f’) + T2>u)

Thus, for » > rg one has w,, > mw. Now let z = e_\/m’“(fwr + v/mw); we have
Zr = e—Vmr (wpr — mw) > 0. Hence, z is a nondecreasing function on (rg, +00). If there
exists 1 > 1o such that z(ry) > 0, then z(r) > z(r1) > 0 for all » > 1. This implies that

wy + Vmw > z(rl)emr,

whence w, ++/muw is not integrable on (71, +0c). But v? and vv, are integrable near infin-
ity for radial u € H'(RY) using polar coordinates, so that w, and w are also integrable,
a contradiction. Hence, z(r) < 0 for all > ro. This implies that

(e\/mrw)T =V, <0 for r> 0.

Hence, integrating from ry to r we have w(r) < Ce™ V™ for some constant C' > 0 and

-1 Jm

lu(r)] < Cr—"T e 2T for 1> 1o (2.4.2)
To obtain exponential decay of u,., observe that w, satisfies
(") = =N g(u). (2.4.3)

Now, from hypotheses on g we can say that for r > ro, mi|u| < |g(u)| < meo|u| for some
mg > mq > 0. Hence, integrating (2.4.3) on (r, R) and letting r, R — +oc using the
last inequality and (2.4.2), one has that ¥ ~!u, has a limit as r — 4-oc0. This limit can
only be zero by (2.4.2). Then, integrating (2.4.3) on (r, +00), we have that also u, has
an exponentially decay at infinity. Finally, the exponential decay of w,, (and thus of
|D*u(z)| for |a|; < 2 by polar coordinates) follows immediately from (2.4.1).

(iii) Positivity of ground-state. We note that if u € H'(RY) then |u| € H*(RY), so
T(|lu|) = T(u) and V(Ju|) = V(u) by the hypotheses on g. Therefore, if u is a ground
state solution, so is |u|. Since |u| > 0, by the strong maximum principle we have |u| > 0,
that is u > 0 on RY.

2.5 Planar case

We want now to discuss the existence of a ground-state solution of (*) and infinitely
many bound-states of the same problem in the case of dimension N = 2, when some of
the previous arguments seem to fail.

We will study the problem

—Au=g(u), uecH(R?Y), uz0. (2.5.1)
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The hypotheses for g are the folllowing;:

g€ C(R7R)7 g(—S) = _9(5)7 Vs € Ra (252)
3
3¢ >0 such that G(§) = / g(s)ds > 0; (2.5.3)
0
9'(0) = —m < 0; (2.5.4)
Va >0, 3C, >0 suchthat g(s) < C’aeaSQ, Vs > 0. (2.5.5)

ge CYR,R) and VYa >0, 3IC, >0 suchthat |¢'(s) < Coe®™’, Vs R,
(2.5.6)
We note that condition (2.5.5) replaces condition (1.1.2) of previous chapter. These
conditions together with a type of Moser-Trudinger inequality from [1], imply that the
energy functional

1
S(u) = - \Vu|?dz — G(u)dz
2 Jp2 R2
is well-defined on H'(R?). We recall that
T(u) = / \Vul?dz, V(u)= G(u)dz.
R2 R2

Now, we will present two main results:

Theorem 2.5.1. Let g satisfying conditions (2.5.2)-(2.5.6); then, there exists a positive
u ground-state solution of problem (2.5.1) such that u is radial, non-increasing with
exponential decay at infinity.

Theorem 2.5.2. Let g satisfying conditions (2.5.2)-(2.5.6); then, there exist infinitely
many distinct solutions {uy}r € C*(R?) to problem (2.5.1), radial, non-increasing with
exponential decay at infinity, for all k > 1 such that S(ug) / +00 as k — +oc.

An important consequence of Pohozaev’s identity (Proposition 1.2.1) for N = 2 is
the following

Proposition 2.5.1. Let g € C(R,R) satisfying conditions (2.5.4) and (2.5.5). Let u a
solution of the problem (2.5.1); then u satisfies

G(u)dr = 0.
R2

Remark 2.5.2. The previous proposition implies that condition (2.5.3) is necessary for
non-triviality of the solution, since if we have G(s) < 0 for all s € R and G has zero-
average on R?, then G need to be identically zero.
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Smoothness of solutions and positivity of ground state can be proved as in Theorem
(1.1.1), so we will only show existence of solutions. The proof of Theorem 2.5.1 is based
on the constrained minimization problem

1
minimize { |Vuldz,u € M},
2 R2

where M = {u € H'(R?)\ {0}; [pe G(u)da = 0} by Proposition 2.5.1.
Since the proofs are similar to Theorems (1.1.1) and (2.1.1), we will be sketchy.

Sketch of the proof of Theorem 2.5.1:

Step 1: M # (). As in Theorem 1.3.1, it follows from hypothesis (2.5.3).

Step 2: Selection of minimizing sequence. Let {u,}, C M be a minimizing sequence.
By Schwartz symmetrization and Pélya-Szegd inequality, we may consider u, > 0 and
radial non-increasing for all n € N. Up to rescalement, we may also assume ||uy||z2®2) =
1 for all n € N.

Step 3. Passage to the limit. With the same techniques of Step 2 of previous chap-
ter, we prove that {u,} is bounded in H'(IR?). Then, up to a subsequence, there exists
u € H'(R?) such that u, — v in H'(R?) and u,, — u a.e. on R
Set Gi(s) := G(s) + %s?. Now, due to Moser-Trudinger inequality and Strauss’ com-
pactness lemma, it is possibly to see that

G1(up)dx — Gi(u)dr as n — 4o0.
R2 R2

Since {up}n, C M, we have

Gi(u)dx = o
R2 2

This implies that u # 0. Furthermore, by Fatou’s lemma we have

L |Vul*dz < L inf / \Vol2dx =: A, wldr < 1,
2 Jgre 2 veM Jpo R2
which implies [po G(u)dz > 0.

Now, suppose by contradiction that [z, G(u)dz > 0. Define h : [0,1] — R as
h(t) := [go G(tu)dz. Observe that h is continuous function by Lebesgue’s convergence
theorem and hypotheses on g. We note that h(0) = 0 and h(1) > 0. Furthermore, for
positive t close to 0, we have that h(t) < 0 by hypotheses (2.5.2) and (2.5.3). Then, by
intermediate value theorem, there exists ¢y € (0, 1) such that h(tg) = 0. Thus, tou € M
and [po |V (tou)|*dz > 2A. Finally,

2A < / IV (tou)|*dx = t%/ |Vul*dz < 2t2A < 24,
R2 R2
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which is absurd. So, u € M and it is a solution of the minimization problem.

Step 4: Conclusion It follows that u satisfies in H'-sense the relation

where 6 is a Lagrange multiplier. As we saw previously, # > 0, that is § > 0 because

u # 0. Then, v(z) := u(%) solves problem (2.5.1).

Sketch of the proof of Theorem 2.5.2:
The proof is based on seeking critical points of T over
N = {H;(R?): V(u) >0, [[ul 22y = 1}-

If u € N is a critical point of T', then one may have V(u) = 0 or V(u) > 0. In the first
case, there exists A € R Lagrange multiplier such that

—Au=\u in H'(R?),

which is impossible since u Z 0. On the other hand, if V(u) = 0 there exist \,u € R
Lagrange multipliers such that

—Au = Ag(u) + pu.

Proposition 2.5.1 implies © = 0 and so we get a solution of the problem as above.

In order to prove the theorem, it is sufficient to show the existence of a sequence
{cg}r of critical values of T' over N, such that ¢x ,* +o00 as k — 4o00. The existence
of {cr} is proved in the same way as in Sections 2.2 and 2.3, but requires two different
technical lemma.

Step 1: Modified (P-S) condition.

Lemma 2.5.3. If ¢ is a critical value of T\, namely T'(u) = c for some u € N, there
exist €,0,a > 0 such that for all o, B € R, it holds

T(u)—cl<e, 0<V(u)<a = |[T'(u)+ag(u)+Bullg- >0
Lemma 2.5.4. For all R > 0, there exists 6 > 0 such that Va € R,u € N, it holds
Tu)<R = |T'(u)+aulg-1 >3

These two lemmas can be proved by contradiction, using in particular Strauss’compactness
lemma. Furthermore, Lemma 2.5.4 implies the boundedness in H'(R?) of Palais-Smale
sequence {u,},. Therefore, there exists u € H'(R?) such that, up to a subsequence,
up — u in HY(R?) and u,, — u a.e. in R%. As in previous sections, we prove that

G1i(up) = G1(u), g1(up)uy, — gi(w)u in Ll(RZ),
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since g1(s) = g(s) + ms. Finally, we will prove below that u, — u in H!(R?).

Step 2: Deformation lemma. The additional hypothesis (2.5.6) on ¢ is used in this
step. Now, using the lemma in Step 1, it is possible to prove that if ¢ > 0 is not a critical
value for T}y, there exists € > 0 and a deformation n: N — N such that

n({ue N;T(u) <c+e€}) C{ue N;T(u) <c—e}.

Step 3: Emistence of {ci} and behaviour of ¢ as k — +oo. For k € N, we recall the
set
Y, = {B C N : B compact, symmetric, v(B) > k},

where v(B) denotes the genus of B. Noting that Xy # () for all £ € N, due to Step 2, we
can show that

¢x = inf maxT(u) - +oo0 as k — +oo
BES), ueB

and ¢y is a critical value for Tjy for k > 1. This concludes the proof of Theorem 2.5.2.
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2.6 New multiplicity results in critical case

Case N >3

In this section we will prove original results about the existence of many bound-state
solutions in the critical case. More precisely, we consider the problem

*) ~Au+u=f(u) in RY
u€ HYRY), u#0,

where N > 3 and f : R — R is a continuous odd function satisfying conditions (1.4.3)-
(1.4.6). In particular f satisfies

[f(s)] = Als|"™" Vs €R,
for some ¢ € (2,2*) and A > 0. We want to prove that, given any k € N, there exists
Ak > 1 such that (*) has k pairs of nontrivial solutions for all A > A.
Remark 2.6.1. As in Section 1.4, we may consider the problem

%) ~Au+mu= f(u) in RN

ue€ HYRY), u#0,

with m > 0, up to rescalement.
The aim of these multiplicity results is to extend Perera’s works for bounded do-

mains ([26] in dimension N > 3 and [27] in the planar case) on the whole RY. Let us
heuristically explain the idea of the method. Consider the C! manifold (see Section 1.4)

M= {u e HNRN):;
RN

G(u)dz = 1},

and recall that

u 2
Glu) = / (F(s) — 8)ds = F(u) — ', T(u) = 1/ VuPde, V()= [ Glu)dr,
0 2 JrN RN

so the energy functional S = T — V is well-defined on H'(R"). By Schwarz symmetriza-
tion, we are looking for critical points of the constrained functional T}, in order to get
solutions of (*) after using Lagrange multipliers and a proper rescalement as in previous
sections.

We recall that (M) denotes the set of compact and symmetric (with respect to the
origin) subsets of M. For k > 1, let

I'y={AeXM):~v(A) >k},
where v(A) denotes the Krasnosel’skii’s genus of A.

Our main result is the following:
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Theorem 2.6.1. Let f : R — R an odd continuous critical (for Sobolev embedding)
function satisfying conditions (1.4.3)-(1.4.6). Then, given any k € N, there exists A\, > 1
such that problem (*) has k pairs of nontrivial solutions tuy, ..., £uy for all A > ;. In
particular, the number of solutions of (*) goes to infinity as A — +00.

Remark 2.6.2. The solutions found in Theorem 2.6.1 are radially decreasing, classical
with exponential decay at infinity as in Theorem 1.1.1 which also works in the critical
case.

Remark 2.6.3. A particularly interesting case of Theorem 2.6.1 is given by
Flu) = A" 2u+ [u]* 2,

that is,
—Au~+u = Nu%u + |u]* 2w

In order to prove it, we want to apply the well-known result (see Theorem 2.2.1)
about critical values related to genus.

Theorem 2.6.2. Let J : H'(RY) — R be an even functional of class C' and consider
fork>1

cpa = inf sup J(u).

oA A€l ueg ( )
Furthermore, assume that J is bounded from below on M and that Jjpq satisfies (PS —
ck,n) for every k > 1. Then, for any k > 1, cy x is finite, it is a critical value of Jjpq and
—oo<ecia << oSS

Remark 2.6.4. In our case, we will consider J =T > 0. Furthermore, we proved in
Section 1.4.2 that ¢; y = infp T >0, so ¢ >0 for all k> 1.

The idea is to prove that for each fixed k > 1, if A > A, then ¢ is sufficiently small
in order to get Palais-Smale condition. Precisely, we are going to prove

Ck7>\—>0 as A\ — 400,

for each fixed k£ > 1. We will estimate them from above as in Theorem 2.3.1, in view of
constructing a special set with genus equal to k. In particular, Theorem 2.3.1 does not
require conditions on g but the only hypothesis is:

3¢ >0 such that G(§) > 0,

which is verified in our case by condition (1.4.6). Indeed, in view of A > 1, we can take

by a simple calculation
1

5 = quQ
independent of A, for every N > 2.
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With the same notations of the theorem, fix £ > 0 as above, & € N and let us consider
u € 7(mp—1) C H}(BR), where R := Ry, > k + 1. Let define

B
TR S e H'(RM).
0 on R \BR

We identify T'(u) and V (u) with T'(@) and V(@) respectively; that is, for u € Hg(Bg)
T(u) = / Vuldz, V()= [ G(u)ds.
BR BR

Now, from Theorem 2.3.1
V(u) >1 Vu e 7(mg_1).

So, let us consider o = o, > 0 such that u,(x) = u(%) € M, i.e. o > 0 such that

2|~

Viug) = O'NV(U) =1 <= o,=V(u)"
Furthermore, again from Theorem 2.3.1, there exists C} > 0 such that
IVullZe (g < Ok

Then, in view of y(7(m;—1)) = k, u, € M and invariance of genus under rescale-
ment, one has the following estimate

u u Y
u€T(mp—1) ueT(mK—1) u€T(mp—1)

can < sup T(up)= sup (oY 72T(u)<C sup ol 2

where
N—-2

1
N-2

sup o, = |- .
wET(TK_1) <1nfu€7'(7rk_1) V(u) >

Now, from growth conditions on f odd and Poincare’s inequality, for each fixed k > 1
and for all u € 7(7p_1),

Vi = [ G = /BR <F(u) _ “22>dx > /BR <2|u|q _ “22>d$ _

— A q 1 2 A q 1 2 A q Ok
= lulEas = SlulEean = J1ulam = 3o Vulae, = JHlhe, = 250

where A\ := Ai(k) > 0 is the first eigenvalue of —A in Dirichlet’s problem on Bp
depending on k.
On the other hand, by construction of 7(7;_1), one has

/ fide > €9 Bp_y| > €1B1| = 1Y u € r(mp_).
Br N
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Finally, the above estimates imply for each fixed k > 1:

_N-—2
N

—0 as A\ — +oo. (2.6.1)

c <% )\quN _ Ck
PA=T UGN 20(k)

Now, we will prove a proposition concerning conditions about Palais-Smale sequences for
Tim:

Proposition 2.6.5. Let {uy, }, C M such that T (u,) — ¢ € (0, 2_%5’) and T|’M(un) -0

in H=V(RN) where S is the best Sobolev constant defined in Section 1.4. Then, up to
subsequences, u, — u in H'(RYN) for some u € H}(RN)\ {0}.

Proof. First of all, we will prove that [|up | g1~y is bounded. Let {u,} such that

1
/ |Vu,|*de — ¢ and / F(up)dz = /
2 RN RN RN

Using the growth assumptions on f, there exists C' > 0 such that

’un|2

der+1 VneN

1 x
F(s) < 152 +Cls*", VseR.

Hence .
C up|* dz > / lup|?dz +1, Vn €N,
RN 4 RN

From definition of S,

*

2%
* * 2
/ lup|* dz < S—% (/ |Vun|2dx> , VneN.
RN RN

Therefore, ||uy| g1 gy is bounded. Then, up to subsequences, u, — u in H LRN).
Now, TI/M (un) — 0 in H71(RY) implies that exists a sequence {#,}, C R of Lagrange
multipliers such that

0,1 (un) — V'(u,) =0 in H YRY),

where
. fRN g(un)undx

0, = . VneN
Jan [Vup |2dz "e

by a simple calculation, and g(s) = f(s) — s. As in Lemma 1.4.7, it is possible to prove
that u # 0 and
F(u,) — F(u) in L'(RY). (2.6.2)

Last condition and Fatou’s lemma imply

V(u) > 1.
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By weak semi-continuity,
1. . 2
T(u) < = liminf |Vuy,|*dzx = c.
2 n—4oo JpN
Now, we want to prove that u, — u in H'(RY), i.e.
V(u)=1 and T(u)=c.
By the growth assumptions on f,

Climsup [pn (U2 + un|*")d
n—+oo < C/

limsup |0,| <
n%JroE’ n‘ o fRN ’VU|2dl‘ B

which implies, up to subsequences, 6,, — 6 in R. Then, by continuity of g,

g(up) = —0Au

in distributional sense, and so
—0Au = g(u)

in H'-sense. Integrating by parts, we obtain

0/ Vu|2dx:/ g(u)udz. (2.6.3)
RN RN

Furthermore, Pohozaev’s identity

)

9/ |Vu|?dz = NV (u) > N,
RN

implies that ¢ > 0.
Now, with the same arguments used to prove (2.6.2) in Section 1.4, one obtains

flup)upde — f(uw)udx.
RN RN

Hence, by Fatou’s lemma and previous inequality one obtains

liminf/ g(un)undxg/ g(u)udz,
RN

n—-+00 RN

which implies

d d
0 < 6 = liminf (fRN 9tn ) x) < Jex g(wude (2.6.4)
n—+00 fRN |Vu,|?dz fRN |Vu|?dzx
Finally, using (2.6.3), we obtain the equality in (2.6.4) and so u, — u in L?(R") (which
implies V(u) = 1) and T'(u) = c. O
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Remark 2.6.6. The upper bound 2-% 8 for Palais-Smale level ¢, is given by Lemma
1.4.5. Indeed, assuming that u, does not converge strongly to w in H'(RYN), repeating

the same arguments of Lemmas 1.4.4 and 1.4.5, it follows that ¢ > 2°~ 8.
In conclusion, in order to prove the theorem, it suffices to show that exists a bound ¢* > 0
under which the compactness is guaranteed.

Finally we are ready to prove Theorem 2.6.1.

Proof. (of Theorem 2.6.1) We apply Theorem 2.6.2 with J = T. In view of Proposition
2.6.6 and ¢y ) > 0 for all £ > 1, we have to check that for each k > 1 fixed,

Cpr < 27N (2.6.5)
So, from (2.6.1), if we choose
A> A
for a suitable choice of A\; > 1, one has (2.6.2), hence the thesis.

Case N =2

In the case N = 2, the previous argument does not work anymore. Indeed, the kinetic
part of the functional is invariant under rescalement, namely

T(uy) = T(u).

Furthermore, the most essential difference is that the C''- constraint M becomes

M= {u € HA(R2)\ {0} : /R Glu)dz = 0}

by Pohozaev’s identity (Proposition 1.2.1). However, the idea is to apply a constrained
approach, seeking many critical values of 7|, using again Theorem 2.3.1.

Our main result is the following:

Theorem 2.6.3. Let f : R — R an odd continuous critical (for Moser-Trudinger in-
equality) function satisfying conditions (1.4.8)-(1.4.6). Then, given any k € N, there
exists N\, > 1 such that problem (*) has k pairs of nontrivial solutions tuy, ..., £uy for
all X > . In particular, the number of solutions of (*) goes to infinity as X\ — +oo.

As already seen above, we want to apply Theorem 2.6.2. Hence, we are going to
estimate
ey = inf supT'(u
’ A€eTy, UEIIZ ( )
using appropriated dilated functions {tu};cp+ and the fact that genus does not change
under translations.
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Proposition 2.6.7. Fiz k € N. Then, for any u € 7(m_1), there exists t, x > 0 such
that V(ty u) =0, i.e. t, xu € M.

Proof. We claim that for all u € 7(mj_1), exists £, > 0 such that V (£, u) < 0.
Let t > 0. By hypotheses on f, we know that

lim F(s)

s—0 82

=0.

Then, there exists 0 > 0 such that F(tu) < % forall0 <t < & (remember that 0 ¢

Jul
T(7K—1))-
So, in view of A > 1, define
~ 1)
tuy 1=
2 Xyl

> 0, (2.6.6)

where a := % + %. Hence,
2 \u? t2 t2
V(Euau) = F(fuau) — 22— )dz < —%2  inf 2 <o
) = [ (Pl =55 Yo < =22t fulfgp,y <O

UET ()

for some positive constant C' > 0 as in case N > 3.
On the other hand, we say that for all u € 7(m;_1), there exists fu«\ > fu«\ such that
V(tuu) = 1 > 0. Indeed, since f is odd

F(s) > é|s|q, Vs e R
q

for some ¢q € (2,+00). Then, in view of Poincare’s inequality, A > 1 and assuming that
tux > ty., it holds

Atd4—2 1
Vi > (X ullgpy 3l ) >

q

o (AT q 1 2
Y ueTl(?rE_l)HuHLq(BR) - WHVUHH(BR) =z

1
_ Ck 1 1 o 1 \72
> £2 -2 _ = — = —t —— | == 2.6.
> a0 =505 ) = 3 == (5 50 ) o) (260

for some positive constant C' and C} depending on k belonged to Theorem 2.3.1, and
A1(k) as in the previous case. Actually, by the choice of « in (2.6.6), it is possible to
check that

t_%,\ > t~u7)\.

Now, by continuity of ¢ € (0,+00) — V(tu) guaranteed by hypotheses on f, the
intermediate value theorem implies that exists Ltu, A <lyn < f% » such that

V(turu) =0 <= t, u € M.
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We are ready to estimate cj ) for each fixed k¥ > 1. In view of last proposition,
¥(7(mk—1)) = k, Theorem 2.3.1 and invariance of genus under translations, one has by
(2.6.7)

ey < sup T(ty u) = sup (ti)\T(u)) <C sup ti,,\ <(C, sup 75121)\ =
UET (Th—1) uET(TK—1) UET(TE—1) weT(Mp_1)
2 2
c; ( 1 Cy >q—2 c; <A2a1§2 Ci ),,_2
= . — 4+ = + —0 (2.6.8
Az \Ainfuer(rn, )12 Ai(k) = 62 A1 (k) (2.68)

as A\ — +oo for each k > 1 fixed, by (2.6.6) and £ > 0 independent of A such that
1
G(&) > 0 (we can take £ = ¢ga—2 as in the case N > 3).

Now, as above we prove a proposition which ensures the Palais-Smale condition.

Proposition 2.6.8. Let {u,}, C M such that T(u,) — c € (0, 3) and T|’M(un) — 0 in
H~Y(R?). Then, up to subsequences, u, — u in H'(R?) for some u € H}(R?)\ {0}.

Proof. Let {u,} C H'(R?) such that

1 1
/ |V, |*dz — ¢ and / F(up)dz = / |un|?dz, Vn € N. (2.6.9)
2 R2 R2 2 R2

As already seen in dimension N = 2, up to rescalement, we can assume
/ |un|?dz =1 ¥Yn €N.
R2

Hence, {u,} is bounded in H'(R?) and so, up to subsequences, there exists u € H}(R?)
such that u, — u in H'(R?). Now, since ¢ < %, Lemma 1.4.9 implies

F(up)dx — F(u)dx
R2 R2

and so u Z 0 by (2.6.9). Fatou’s lemma and weak semi-continuity imply
T(u) <c and V(u)>0.

Now, we want to prove strong convergence of wu,, in H'(R?), namely T'(u) = ¢ and
V(u) = 0. Since T"M(un) — 0 in H~Y(R?), there exists a sequence of {f,}, C R of
Lagrange multipliers such that

0.1 (uy) — V(up) — 0 in H Y(R?),

where, for any n € N,
0. — fRz g(un)undl‘
" fee [VunlPda
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First, observe that by condition (1.4.5), one has

/R2 g(up)updr = /Rz(f(un)un —ul)dz > Q/R2 (F(un) _ ?)dw _o,

implying that
/ g(up)updxr >0 Vn eN
R2

and 6, > 0. So, by growth assumptions on f,

Climsup [po(u2 + |y | (e37un — 1))da

n—-+0oo

limsup 0, <

<
n—-4oo ng ‘VU|2dI‘ -

C’limsup [po (u3 + e1zevn — 1)dx

n—-4o00

S S C//

fRQ |Vu|2dx

by Moser-Trudinger inequality due to Cao [10] and € > 0 sufficiently small such that
2¢ < 1 —€ < 1. Then, up to subsequences, 8, — 6 > 0. As in the proof of Proposition
2.6.8, we have

—0Au=g(u) in H'(R?). (2.6.10)

Pohozaev’s identity (Proposition 1.2.1) in dimension N = 2 implies that

and consequently
U, —u in  L*(R?).

Now, condition (2.6.10) implies 6 > 0. Indeed, if # would be 0, then
g(u) =0,

so u would be 0, which leads to a contradiction. Hence, § > 0 and T'(u) = ¢ as in
Proposition 2.6.8. O

Finally we are ready to prove Theorem 2.6.3.

Proof. We apply Theorem 2.6.2 with J = T'. In view of last proposition and ¢y > 0 for
all kK > 1, we have to check that for each k > 1,

Ca < 5
From (2.6.8), if we choose
A > A
for a suitable choice of A\ > 1, we conclude the proof. O
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Chapter 3

Existence of ground-states for
Choquard equations

3.1 Subcritical case

We consider the problem

* ~Autu= (I, * F(u))f(u) in RY
ue HY(RYN), u#0,

where N > 3, a € (0,N), F € C}(R;R) with f := F" and I, : RN — R is the Riesz
potential defined for every x € RY \ {0} as

P(Y5%)

I(§)r 2% |z|N=o’

Iy(x) =

where I'(-) denotes the Euler’'s Gamma function. Solutions of (*) are formally critical
points of the functional S : H'(RY) — R defined by

1

S(u) = 3 /RN(|Vu|2 + u?)dx — ;/RN(IO{ * F(u))F(u)dx.

We prove the existence of a ground-state solution in the subcritical case, that is we
assume that nonlinearity f € C'(R;R) satisfies the growth assumptions:

N+a

(fi) there exists C>0 such that Vs € R, |[sf(s)] < C’(|s|% + |s|V=2),

(f2) lim, 0 FJ\(ri)a =0 and limg 4o % =0,
[s| v |s| N—2
(f3) there exists sp € R such that F(sg) # 0.

It is standard to check, using condition (f1) and Hardy-Littlewood-Sobolev inequality
(see Proposition A.0.6 with the choice f = g =F, p=1t = A%—fa, A = N — a), that
S € CYHY(RN)).
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Remark 3.1.1. The equation
—Au+u=g(u) in RY (3.1.1)

studied in previous chapters, can be considered as a limiting problem of (*) when o — 0%,
with g = Ff. Indeed, as o — 07, I, converges to a Dirac delta measure in the vague
sense ([20], p.46). So conditions (f1) — (f3) are in the same spirit of H. Berestycki and
P.-L. Lions ([6]).

The main result is the following theorem.

Theorem 3.1.1. Assume that N > 3 and o € (0,N). If f € C(R;R) satisfies (f1)—(f3),
then problem (*) has a nontrivial ground-state.

Furthermore, in the following we will prove that every solution u of (*) satisfies u €
VVIQO’CQ(RN ) for all ¢ > 1. This regularity information allows us to establish a Pohozaev’s

identity for all solutions of (*) valid also for N = 2.

Proposition 3.1.2. Assume that N > 2 and o € (0,N). If f € C(R;R) satisfies (f1)
and w € HY(RN) N W22(RYN) solves (*), then

loc

N -2 N N
— / \Vul?dz + / wldy = 2@ / (Io * F(u))F(u)dz. (3.1.2)
2 RN 2 RN 2 RN

In particular, (3.1.2) implies that if u # 0 solves (*), then

o a+2 9 o 9
S(u)_72(N+a) /RN|VU| d$+2(N—|—a)/RNu dzx > 0.

Finally, we obtain qualitative properties of ground-states of (*), summed up in this

Theorem 3.1.2. Assume that N > 3 and o € (0, N). If f € C(R;R) satisfies (f1) and,
in addition, f is odd and has constant sign on (0,+00), then every ground-state of (*)
has constant sign and is radially decreasing and symmetric with respect to the origin up
to translation.

Before explaining the proofs of these results, we make some remarks. With the same
notations of Remark 3.1.1, we recall the strategy of H. Berestycki and P.-L. Lions’ proof
on the existence of a ground-state. They consider the constrained minimization problem

min{/RN]Vu|2d:U:u€H1(RN) and /RN (G(u)—u;)d:czl}.

They first show that by Polya-Szego inequality, the minimum can be taken among radial
and radially decreasing functions. Then they show the existence of minimum v € H*(RY)
satisfying

—Av=0(g(v)—v) in RY,

with a Lagrange multiplier # > 0. They conclude that u(z) = U(%) solves (3.1.1).
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Unluckily, this approach fails for problem (*). First, the nonlocal term is not pre-

served or controlled under Schwarz symmetrization unless f satisfies more restrictive
assumptions of Theorem 3.1.2. Second, the final scaling argument fails because the three
terms in (*) scale differently in space.
On the other hand, in order to prove the existence of a ground-state of (*), we use a
mountain pass theorem. We will construct a Palais-Smale sequence at the mountain pass
level, that satisfies asymptotically the PohoZaev’s identity in order to ensure its bound-
edness easily. Such sequences will be denoted as Pohozaev-Palais-Smale sequences.

Finally, we will show that the absolute value of a ground-state and its polarization
are also ground-states. This leads to a contradiction with the strong maximum principle
if the solution is not invariant under these transformations.

Construction and convergence of Palais-Smale sequences

We first prove that there is a sequence of almost critical points at the mountain pass
level defined by

b:= inf sup S(v()),
Inf sue (v(1))

where the set of paths is defined as
I = {y € C([0,1]; H'(RY)) : 7(0) = 0,8(v(1)) < 0}.
We define the Pohozaev functional P : H'(RY) — R by

N -2 N N
P(u) = / \Vu|*dz + / uldr — ra / (Io * F(u))F(u)dz.
2 RN 2 Jrn 2 RN

Furthermore, let us consider
c:=inf{S(u):u € H' (RY)\ {0} is a solution of (¥)}.

Proposition 3.1.3. If f € C(R;R) satisfies (f1) and (f3), then there exists a sequence
{uptn € HY(RYN) such that, as n — +oc,

S(upn) = b € (0,400),
S'(uy) =0 in HYRYN),
P(un) — 0.
Proof. First, we have to prove that
0<b< +o00.

The case b < 400 is equivalent to show that I' # (). So it is sufficient to construct
u € HY(RY) such that S(u) < 0. Let sop # 0 as in (f3) and set w = soxp, € L2(RY) N
L¥°2(RN); then
/ (Io * F(w))F(w)dx = F(So)Q/ / Iy (z — y)dzdy > 0.
RN B /B
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By (f1) the left-hand side is continuous in L?(R™) N L%(RN), and since H'(RY) is
N
dense in L2(RY) N Lﬁ(RN), there exists v € H'(R"™) such that

/ (Io *x F(v))F(v)dx > 0.
RN

Now we define u,(z) := v(£) for every 7 > 0. Hence,

7_N72 ) 7_N 9 7_NJroz
S(ur) = 2A§wmw+24ﬁmw—2 Aﬂquwmw

and observe that for 7 large enough, S(u.) < 0.

Now we prove that
b> 0.

From Hardy-Littlewood-Sobolev inequality, it follows that if s € (1, %), then for every

v € L*(RY)
_Ns Ni\]as
/ [Ty, % v| o5 do < C(/ v]sdx> . (3.1.3)
RN RN

Respectively, by Holder’s inequality, (3.1.3) with s = # and condition (fi), for every
u € HY(RY) we have:

N+ao

/RN(IQ*F(U))F(u)dx < (/RN I *F(U)|N21—V"dx>w</ﬂw \F(u)|1\?ﬁldx>w )
< C(/RN \F(U)’I&xd:cy*ﬁ S C,(/RN<u2+ u‘]gfvz)dx>1+fé B

1+ ) 1+a+2
ga(mm 8+ Ivulor )

Hence there exists § > 0 such that if [Ju|%,, ®V) < J, then

1 2 2
/RN(IQ « F(u)F(u)ds < 2/RN(|vu| +u?)de,

and therefore 1

Su) > 4/RN(|W\2 +u?)dz.

In particular, if vy € T, then [pn([VY(0)[* + [7(0)[*)dz = 0 < 6 < [en(IVY(1)]* +

|7(1)|?)dz and by the intermediate value theorem there exists £ € (0,1) such that
Jex (IVYD? + [y ()[?)dz = 6. So

max S(y(t)) = S(v(1)) =

t€(0,1]

NS
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. . . .o . 5
Since v € I' is arbitrary, this implies that b > 7 > 0.

Finally, we are ready to construct such a Palais-Smale sequence {u,}. Let define a
map ® : R x H'(RY) — H'(RY) by

®(0,v)(x) :=v(e x).

So the functional S o ® has the form

o(N—-2) No o(N+a)
c / \Vo|2dx + ¢ / vz — & 5 / (Io % F(v))F(v)dz.
RN RN RN

S(@(,v) = ;

In view of (f1) it is possible to check that So® € C'(R x H*(RY)). Now, we define the
following family of paths

r:= {’y € C([0,1];R x HY(RY)) : 5(0) = (0,0) and (So®)(F5(1)) < 0}.

Obviously, as I' = {® o7 : 4 € T},

b= inf sup (So®)(3(t)).
7€T telo,1]

By the minimax principle [42, theorem 2.9], there exists a sequence {(op,vp)} n C R X
H'(RY) such that as n — +o0,

(So®)(op,v,) = b and (So®)(op,v,) =0 in (Rx H(RY))".
Since for every (h,w) € R x HL(RY):
(S 0 ®Y (00, vn) by ] = S/ ({0, 00)) [ (0, w)] + P(D(, ),
we get the conclusion by taking u, := ® (o, vy).

O

Now we will show how a solution of (*) can be constructed from the sequence given
by Proposition 3.1.4.

Proposition 3.1.4. Let f € C(R;R) and {uy,}, C HY(RN). If f satisfies (f1) and (f2),
{S(un)}n is bounded and, as n — +o0,

S'(up) =0 i HYRY) and P(u,) — 0,
then, up to subsequences,
(i) either u, — 0 in H'(RY),
(ii) or there exists u € HY(RN)\ {0} such that S'(u) = 0 and a sequence {x,}, C RV

such that up (- — zn) — u in HY(RYN).
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Proof. We first establish the boundedness of the sequence. Indeed, for every n € N,

a+2 9 o 9, 1
SN+ o) /RN |V, dx+2(N+a) /RNundx—S(un) Nia RNP(un).

As the right-hand side is bounded by our assumptions, the sequence {u,}, is bounded
in H'(RN).

Now we are going to prove the nonvanishing of the sequence. Assume that (i) does
not hold, that is,

liminf/ (|Vun|? +u2)dz > 0. (3.1.4)
RN

n——+00

2N )
)

We claim that for every p € (2, 55

lim inf sup / |un|Pdz > 0.
Bl(a)

n—-+o0o aeRN

For every n € N

N -2 N 2
I, F F(u,)dz = 2de + ———— 2dx —
/RN("* (un))F (un)d N+a/RN’V“”’ x+N+a/RN“””: N+ap(u">’

so by (3.1.4) it follows that

lim inf (Io * F(up)F(uy)dz > 0. (3.1.5)

n—+00 JpN

The sequence {u,} satisfies the inequality ([21, lemma I.1],[42, lemma 1.21]) for every

neN
1—-2
P
/ | |Pdz < C’</ (|Vun|> + u%)d:z) ( sup / |un|pd:n) .
RN RN a€RN J B (a)

As F is continuous and satisfies (f2), for every e > 0, there exists Cc > 0 such that for
every s € R

2N 9 2N
[F(s)[VFe < e(s” + [s[v=2) 4 Ccls|.
Since u,, is bounded in H'(RY), by Sobolev embedding

2N 1_%
lim inf/ |F(up)|Vrede < C"e + C’é(lim inf sup / \un]pdx> .
RN Bi(a)

n—-+o0o n—-+o00o a€RN

Now, if lﬁﬂ&f SUD RN fBl(a) |un|Pdz = 0, since € > 0 is arbitrary

n—-+o0o

liminf/ |F(up)| Ve dz = 0,
RN
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and the Hardy-Littlewood-Sobolev inequality implies that

lim inf (Io % F(up))F(up)dx =0,

n—+oo JpN
in contradiction with condition (3.1.5).

In conclusion, by definition of supremum, there exists {z,} C R such that
liminf [ |up|Pdz > 0. Since the problem (*) is invariant by translation, we can
n—too ¥ B1 (zn)

2N)
)

assume that z,, = 0 for all n € N. So for some p € (2, 75

n—-+o0o

liminf/ |up [Pdz > 0.
B

By Rellich’s theorem, this implies that up to a subsequence, v, — u in H 1(RN ) to some
u € HYRM)\ {0}.

Since u,, — u in H'(RY), using a standard diagonal argument and Rellich’s theorem,
it converges, up to a subsequence, to v a.e. in RY. By continuity of F, F(uy) converges
a.e. to F(u) in RY. Furthermore, since u,, is bounded in H*(R"), by Sobolev embedding
and condition (f1), F(un) is bounded in L¥+a (RN). So F(uy) — F(u) in L¥+a (RN),
As the Riesz potential defines a linear continuous map from LNZ*M(RN ) to L%(RN )
by inequality (3.1.3), In % F(up) — Lo % F(u) in L¥-a (RN).

On the other hand, in view of (f;) and by Rellich’s theorem and dominated conver-
gence theorem, f(u,) — f(u) in LF (RN) for every p € [1, 2X). Hence, using Holder’s

loc ' at2
inequality one can readily checks that, as n — +o0

/ (I * F(up)) f(up)pdx — (Io % F(u)) f(u)pdr Ve e CSO(RN).
RN RN
This implies that for every ¢ € C5°(RY),

/ (Vu - Vo +up)dr — / (Io * F(u)) f(u)pdr =

= ( /RNW“n Vet unp)dr — /R ax F(un»f(un)godx) ~0;

that is, u is a weak solution of (*).
U

Corollary 3.1.3. If f € C(R;R) satisfies conditions (f1) — (fs), then problem (*) has a
nontrivial solution uw € H*(RY).

Proof. By Proposition 3.1.3, S admits a PohoZzaev-Palais-Smale sequence {u,, },cn at the
level b. We apply Proposition 3.1.4 to {u,}nen. If the first alternative occured, then we
would have by continuity S(u,) — S(0) = 0 as n — 400, in contradiction with the fact
that b > 0. Therefore, the second alternative must occur. ]
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Regularity of solutions and PohoZaev-identity

The assumption (f1) is not sufficient to apply the standard bootstrap method as in
[38, proposition 4.1]. Instead, in order to prove regularity of solutions of (*), we extend
the nonlocal Brezis-Kato regularity estimate [8, theorem 2.3| to a class of nonlocal linear
equations.

Proposition 3.1.5. Fiz u € H'(RY) which solves

—Au+u= (I * Hu)K, (3.1.6)

— F . N N 2N
where H(u) := = and K(u) := F'(u). Then, u € LP(RY) for every p € [2, 2 +75).
Moreover, there exists a constant C), > 0 independent of u such that

: :
</ ]u|Pd:U>p < Cp</ uzdaz) .
RN RN

In order to prove the proposition, we will use a technical lemma whose proof is in the
Appendix (Lemma A.0.7).

Lemma 3.1.6. Let us consider N > 2, a € (0,2), 0 € (0,2) and H, K defined as above.
If &% <0 <2—F, then, for every e > 0, there exists Ccy € R such that for any fized
u € HY(RN) which solves (3.1.6),

/ (I * (H|u|") K |u|*~0dx < 62/ \Vul|?da + Ce,g/ u?dz.
RN RN RN

Now, we are ready to prove Proposition 3.1.5.

Proof. By Lemma 3.1.6 with # = 1, there exists A > 0 such that for every ¢ € H'(RV),
1 2 A 2
(In * |Hp|)|Kpldz < = |Vo|de + = v du. (3.1.7)
RN 2 RN 2 RN

Choose sequences {Hy,},, and {Kp,}, in L%(RN) such that |H,| < |H|, |K,| < |K| and
H, — H, K, — K ae. in RV, For each n € N, consider the form a, : H'(RY) x
H'(RYN) — R defined as

anli, ) = /R (Voo Vo + Apu)da - /R (T Hyp) K.

Note that a,, is bilinear and coercive by (3.1.7). So, by the Lax-Milgram theorem, there
exists a unique solution u,, € H'(RN) of

—Auy + Ay = (Lo * (Hpup))Kp + (A= 1, (3.1.8)

where u € H'(RY) solves (3.1.6). It can be proved that the sequence {u,}, converges
weakly to u in H'(RY) as n — +oo0.
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For > 0, we define the truncation w, , : RY - R as

— 1 if up(z) < —p
Unp(x) = Qup(x) if —p<up(z) <up
1 it wup(z) > p.

Since G(u) = |u|??u is globally Lipschitz on R for every ¢ > 2, then |uy, ,|7 %u,,, €
H'(RYN) for those ¢; therefore we can take it as a test function in (3.1.8):

4(q —1 q q
/RN <((](]2)|V‘Un,u’g‘2 + H“n,u|g|2>d$ <

< [ (0 Dl 210 20, ) =
R

= /RN ((Ia * (Hptn) (K |t 72 ) + (A = 1)u\un#’q_2un,#) dzx.

If g < %, by Lemma 3.1.6 with 6 = %, there exists C' > 0 such that

[ 1t DBl 70,00 < [ (T (B DY 1 <

IN

2(g—1 q a
( 2 )/ |V|Un,u|g|2d$+0/ ||Un,u|g|2dff-
q RN RN

Since the convolution is symmetric, we have

200 — 1
He-1) [ lunalae < ¢ [ Quapt+fumde+ [ Tor(Kallunls™) |
q RN ' RN An,p

where
Ay o= {z € RY ¢ |uy(2)] > p}.

Since ¢ < %, by the Hardy-Littlewod-Sobolev inequality (Proposition A.0.6 with f =
|Knllun|7! and g = |Hpun|xa, ., where x4, , denotes the characteristic function of

An,#)a

1 1
| s (it Dlttnlde < € [ illunrar) ([ Hapa)
Ans RN Anp

with % = 5y +1— % and % = 5y + é. By Holder’s inequality, if u, € L(RY),
then |K,||u,|7t € L"(RY) and |H,u,| € L*(RY), whence by Lebesgue’s dominated

convergence theorem for every n € N

n,p?

lim (I % (| K| [tn |9 [Hpup|dz = 0.
p—>+00 An,u
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Now, in view of Sobolev embedding, definition of w, , and u, — u a.e., we have

2
. aN_ l_ﬁ /AT
lim sup |un | N-2dx < C"limsup |t |Td.
n——4o0o RN n—+4oo JRN

. . . . N 2N
By iterating over ¢ a finite number of times we cover the range p € [2, o §5).

O]

We are finally ready to prove the following theorem which establishes additional
regularity of solutions of (*).

Theorem 3.1.4. Let N > 3 and o € (0,N). If f € C(R;R) is odd, satisfies (f1) and
does not change sign on (0,+00), then for every u € HY(RN) which solves (*), it holds
uwe WEURN) for any q > 1.

loc

Proof. Let us consider H, K defined as in Proposition 3.1.5. Observe that H is defined
on the set {x € RY : u(x) # 0}; on the other hand we will prove later that |u| > 0 on R

if f is odd and does not change sign on (0, 4+00). Since u solves (*), by Proposition 3.1.5

it follows that u € LP(RY) for every p € [2, %%) In view of (f1), F(u) € LY(RY) for
every q € []\?iva, %%) Since ¥ < %]\%\fw by Proposition A.0.7 one has I, * (F(u)) €

L>(RY), and thus

| — Autu| < C(u|¥ + |u|572).

Now by the classical bootstrap method for subcritical local problems in bounded domains,
we deduce that u € W29(RN) for any ¢ > 1. O

The further regularity of solutions allows us to prove Proposition 3.1.2.
The proof of Pohozaev’s identity is classical and consists in testing the equation against
a suitable cut-off of = - Vu(x) and integrating by parts.

Proof. (of Proposition 3.1.2) Fix ¢ € C§°(RY) such that ¢ = 1 in a neighbourhood of
0. Let define a function vy : RN — R for every A € R as

ua(z) := p(Ax)x - Vu(x).

By Theorem 3.1.4, u € T/Vlif (RM), so vy € HY(RN) and it can be used as a test function
in the equation to obtain

Vu - Vuydx + /
]RN

wopdr = /RN(Ia s« F(w))(f(u)vy)de.

RN
The left-hand side can be computed by integration by parts as

2

/RN uvydr = /]RN u(z)p(\z)x - Vu(z)dr = /RN o(\z)z -V <“2> (2)dz =
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u?(z
= _/ (Np(Az) + Az - Vo(Ax)) é )da:.
RN

Lebesgue’s dominated convergence theorem implies that

lim uondr = —— u’dz.
A—=0 JrN RN

Similarly, as u € VVfOCQ(RN ), the gradient term can be written as

2
Vu - Vuydz —/ w(Am)(]Vu\z—i—x'V(w)(x))d:r =
RN RN 2

|[Vu(z)?

=— /RN((N —2)p(Az) + Az - Vp(Ax)) dx.

Again by Lebesgue’s dominated convergence theorem

N -2
lim Vu - Vordr = —/ |Vul|?dz.
A—=0 JpN 2 RN

Finally the last term can be rewritten by

| Gas Fa(@ude = [ [ (F o))t~ pp(a)a - V(F ou)(a)dody =
RN RN JRN

=3 L, [, e ((Fous)eOra)ev(Fou) @) (Fou) @ Guy ¥ (Fous) ) dady =

= _ /]RN /]RN F(u(y)Ia(z —y)(No(Az) + 2 - Vo)) F(u(z))dzdy+

Y 2_ : /]RN /RN F(u(y)) lo(z—y) A (T;;O(_X;\)z_ vew) Flu(z))drdy.

We can thus apply Lebesgue’s dominated convergence theorem to conclude that

N+«

lim [ (o F(u)f(u)orde = —
A—=0 JrN

/ (Io * F(u))F(u)dx.
RN
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Recovery of the ground-state and its qualitative properties

An important application of the PohoZaev’s identity is the possibility to associate to
any variational solution of (*) a path. The following proposition is crucial to recover a
ground-state solution from Proposition 3.1.4.

Proposition 3.1.7. Take f € C(R;R) satisfying (f1) and u € H(RV)\ {0} solving (*).
Then, there exists a path v, € I' such that

(/2 =u and S(w(t) < S() Vie 01\ {1/2).
Proof. We define the path 7 : [0, +00) — H'(RY) as

. Ju(z) if 7>0
)= {0 if 7 =0,

The function 4 is continuous on (0, +00) by integrability of u; for every 7 > 0,

~ 2 ~ 2 szN—2
09302 + ()P /

\Vu]zdx+TN/ uldz,
RN

RN

so that 4 is continuous also at 0. As in Proposition 3.1.3, the functional can be computed
for every 7 > 0 as

N-2 T

N 7.N+o¢
/ \Vu|?dz + / u?de — / (Iy * F(u))F(u)dx
2 RN 2 RN 2 RN

N-2 N —2 N+« N N N+«
=(Z _{ s / \Vu|?dz + U / ulda.
2 2(N + O[) RN 2 2(N + Oé) RN

Now, one easily checks that S o 4 achieves strict global maximum at 7 = 1, namely

S(A(r)) < S(u) V1 €[0,+00)\ {1}. Since

S((r) =

lim S(3(7)) = —o0,

T—+00

there exists 74 > 1 such that
7(0) =0, ¥(1)=u, SH()) <S(u) Vre[0,m]\{1} and S(¥(n)) <O0.

Finally, to get the required ~, it suffices to take a suitable change of variables 7, (t) :=
Y(T'(t)) for some function T' € C([0,1];R) satisfying T'(0) = 0, T(3) = 1 and T(1) =
T1. O

We now have all the tools available to show Theorem 3.1.1, namely that the mountain-
pass level b coincides with the ground-state energy level c.
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Proof. (of Theorem 3.1.1) By Propositions 3.1.3 and 3.1.4, we get a Pohozaev-Palais-
Smale sequence {u,}, C HY(RY)\ {0} at level b > 0 which, up to subsequences and
translations, converges weakly to some u € H'(R)\ {0} that solves (*).

Since limy, s 1 o0 P(uy,) = 0, PohoZzaev’s identity, Fatou’s lemma and weak semi-continuity,
we have

P(u) o+ 2 / 9 a / 9
_ — - <
Nta 2N ta) fan VBT Ny fon WIS

o a+2 2 o 9
< liminf [ -2 o2 + dr ) =
= o <2(N—|—a) /RNW“ Fde+ oo /RN Yn ‘”)

= lim inf <S(un) - W) = b.

S(u) = S(u)

n—-—+o00 N + «

By definition of ¢ we have S(u) > ¢, and hence ¢ < b. Let v € H*(RY) \ {0} be
another solution of (*) such that S(v) < S(u). Now, Proposition 3.1.7 implies that
S(v) > b > S(u) by definition of b. We have thus proved that S(v) = S(u) = ¢ =b.

0

As a direct consequence of previous theorem, one can prove the strong convergence
of Pohozaev-Palais-Smale sequence.

Corollary 3.1.5. Under the assumptions of Propositions 3.1.83 and 3.1.3, if

o <
ot ) <
then there exists u € H'(RN

)\ {0} such that 8'(u) = 0 and up to a subsequence and a
translation, u, — u in H'(RY).
Proof. We can assume that, up to subsequences and translations, u, — u in H'(RY)\

{0}. By previous theorem

a+2 2 o 9
_ars do + ——— do =
2(N+a)/RN’V“‘ "3+2(N+a)/RN“ v

a—+2 «
=liminf ———— Vu,|?d R~ a— 2d
It g a7 o V0 3y o U
and hence, up to a subsequence, u,, — u in H'(RV)\ {0}. O

As conclusion, we now prove some additive properties of ground-states.

Positivity of ground-states. In order to get positivity of any ground-state, we
need the following lemma about optimal paths.
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Lemma 3.1.8. Let f € C(R;R) satisfying (f1) and v € T. If there exists t € (0,1) such
that for every t € [0,1] \ {t}
b=58((1) > S(H(®),

then S'(y(t)) = 0.

Proof. The proof of the lemma is standard arguing by contradiction and using a quanti-
tative deformation lemma (see [42, lemma 2.3|). O

Proposition 3.1.9. Let f € C(R;R) satisfying (f1). If f is odd and does not change
sign on (0, +00), then any ground-state uw € H'(RN)\ {0} of (*) has constant sign.

Proof. Without loss of generality, we can assume that f > 0 on (0, +00). By Proposition
3.1.7, there exists an optimal path v, € I' on which § achieves its maximum at % equal
to S(u). Since f is odd, F is even and thus for every v € H'(RN),

S(lv]) = S(v).
Hence, for every t € [0,1] \ {3},
S(h@®)]) = S(v(1) < S(v(1/2)) = S (1/2)))-
By Lemma 3.1.8, |u| = |y(1/2)] is also a ground-state and it satisfies
—Afuf + Ju| = (Lo * F(lu]) f(Jul)-
By the strong maximum principle we conclude that |u| > 0 on RY and thus u has
constant sign. O

Symmetry of ground-states.

Proposition 3.1.10. Take f € C(R;R) satisfying (f1), odd and of constant sign on
(0, +00). Then, any ground-state u € H*(RYN) of (*) is radially decreasing and symmetric
about some point xo in RY.

The argument of the proof relies on polarizations. In the following, we will recall
some necessary results of the theory of polarization.
Assume that H ¢ R is a closed half-space and that o is the reflection with respect to
OH. The polarization u : RV — R of u : RN — R is defined as

! (z) = {max(u(x)’“("ff(w))) it cen
min(u(z),u(oy(x))) if =& H.

We will use the following standard property of polarizations [13, lemma 5.3].

Lemma 3.1.11. Ifu € H'(RY), then v € HY(RY) and

/ ]VuH|2d:L‘:/ |Vu|?dz.
RN RN

76



We shall also use a polarization inequality with equality cases [38, lemma 5.3].

Lemma 3.1.12. Let a € (O,N), u € L%(RN) and H C RN be a closed half-space. If

u >0, then
)
— 7 7 dady < — 2 P dxd
/R/R \xf rNa y< /R/R |xf |Na .

with equality if and only if either v =u or v = woop.

The last tool that we need is a characterization of symmetric functions by polariza-
tions [38, lemma 5.4].

Lemma 3.1.13. let us consider u € L>(RY) a nonnegative function. Then, there exist
zg € RY and a decreasing function v : (0,+00) — R such that for a.e. x € RY,
uw(z) = v(|z — x0|) if and only if for every closed half-space H ¢ RN, v = u or
H

u’' =uooy.

Proof. (of Proposition 3.1.10). The strategy is to prove that u is also a ground-state
of (*) and deduce therefrom that u = uff or uff =uooy.

Without loss of generality, we can assume that f > 0 on (0,400). By Proposition
3.1.9, we can further assume that v > 0. We first observe that from Lemma 3.1.11 and

definition of ufl, for every u € H'(RY)

/RN(\VUH + [uf?)?)dz = /RN(|Vu]2 + |ul?)dz. (3.1.9)

Now, in view of Proposition 3.1.7, there exists an optimal path v € T such that v(1/2) = u
and () > 0 for every ¢ € [0, 1] by construction. For every half-space H C R", let define
the path v : [0,1] — HY(RN) by vH(t) := (y(t))". By (3.1.9), v € C([0, 1]; H'(RY)).

Note that since F is increasing on (0, +00), F(uf!) = (F o u)¥, and therefore, for
every t € [0, 1], by condition (3.1.9) and Lemma 3.1.12,

S(y(1) < S((1))

and so v € T'. From this,

S > b,
max (v (1))

Since for every t € [0,1] \ {1/2}
S(H™(1) <S(v(t) < b,
we have
S(u'") = S(v"(1/2)) = S(+(1/2)) = S(u) = b.
Combining last condition with (3.1.9) and Lemma 3.1.12, we get that (F o u) = F(u)
or F(uf) = F(uooy) in RY. Assume that (F ou)? = F(u). Then, for every x € H,

/ f(s)ds = F(u(z) — F(u(og(z))) > 0.
u(ow(z))
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This implies that either u(oy(z)) < u(x) or f =0 on the interval
[min(u(z),u(og(z))), max(u(x),u(og(x)))], for every € H. In particular, f(u
f(u) on H. Furthermore, it is possible to repeat the same argument and deduce f(u
f(u) on RV \ H.

Hence, by the previous inequalities and Lemma 3.1.8, we have S'(u’) = 0 and
H is a ground-state of (*) which solves

—Auf ul! = (I« Fu™) f(u') = (I * F(w) f(u).

H) —
)

therefore

Since u solves (*), we conclude that uff = u.

If F(uf') = F(uooy), we conclude similarly that u/f = u o op. Since this holds for
arbitrary H, we conclude by Lemma 3.1.13 that wu is radially decreasing and symmetric
about some point xy in RV,

O]

3.2 Existence of ground-states in subcritical case on the
plane

In the present section, we provide a general existence result for ground-state solutions
of problem (*) in the planar case N = 2, which is a two dimensional counterpart of [37].
We need the following hypotheses on F' € C'(R;R):

(F1) there exists sg € R such that F(sg) # 0,

(F,)V0>0 3C=Cy>0 such that |F'(s)| < Cymin{l,]s|2}e?* VseR,
. F(s

(Fg) hms_>0 LSP%)% =0.

The main result reads as follows.

Theorem 3.2.1. Assume N = 2 and F € CY(R;R) satisfying conditions (Fy) — (F3).
Then problem (*) has a nontrivial ground-state solution v € H(R?). Furthermore, if
F is even and increasing on (0,400), then every ground-state of (*) has constant sign,
radially decreasing and symmetric with respect to some point xo € R2.

Let us discuss the assumptions of Theorem 3.2.1. As in previous section, condition
(F1) is necessary for the existence of a nontrivial solution. On the other hand, condition
(F3) ensures that the energy functional S : H'(R?) — R defined as

S(w) = /R (VP + )z — /R (Lo F(u)) Fw)d,

is Frechet-differentiable with continuity on H!(R?) (see [22, proposition 2.3]) . The
condition has a different shape, because in dimension N = 2 the critical nonlinearity for
Sobolev embedding is not anymore a power but rather an exponential-type nonlinearity.
Furthermore, by integrating F’ from (F3), it holds

L FGIHIF s

2
|s| =400 efs

0
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for every 6 > 0. Finally, a subcriticality condition (F3) still needs to be imposed in 0.

In order to prove Theorem 3.2.1, we will use a mountain pass construction as in [37].
Let recall some definitions. We start by constructing a Palais-Smale sequence for the
mountain pass level

b= inf sup S(v(t)),
7€l ¢e(0,1] ®)

where the set of paths is
I = {y € C([0,1]; H'(R?)) : 7(0) = 0,S(7(1)) < 0}.
In addition, the sequence satisfies asymptotically the Pohozaev’s identity

o

P(u) = /R2 u?de — (1 + 2) /R?(Ia % F(u))F(u)dx = 0,

which implies the boundedness of the sequence in H!(R?).

We are left with showing that the solution u is actually a ground-state. To prove this,
we first show that u satisfies PohoZzaev’s identity (Proposition 3.1.2) up to ensure further
regularity, which turns out to be easier to prove from (F3) than in dimension N > 3.
The last tool we need is an optimal path v, € I" associated to any solution v of (*). The
construction of such paths is inspired by [37] but it is more delicate in the plane because
dilations t — v(-/t) € H'(R?) are not anymore continuous at ¢ = 0.

Before proving Theorem 3.2.1, we need a quantitative estimate of Moser-Trudinger
inequality of Adachi and Tanaka [1].

Proposition 3.2.1. For any 5 € (0,4m) there exists C = Cg > 0 such that for every
u € HY(R?) satisfying
/ \Vu|2d:v <1 and / w?dr < M < +oo0,
R2 R2

one has

min{l,uQ}e’BUQda: < Cg/ u?de.
R2 R2

First, we construct a sequence of almost critical points which asymptotically satisfies
(*) and the Pohozaev’s identity.

Proposition 3.2.2. Take F € CY(R;R) satisfying (Fy) and (Fy). Then there exists a
sequence {up}neny C HY(R?) such that as n — +oo,

S(upn) = b € (0,400),
S'(uy) =0 in HYR?),
P(un) — 0.
Proof. The proof can be adapted from Proposition 3.1.3, using appropriately the growth
condition (F%). O
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Now, we will construct a nontrivial solution of (*) from the sequence given by previous
proposition.

Proposition 3.2.3. Take F € CY(R;R) satisfying (Fy) and (F3) and let us consider a
sequence {up }neny C HY(R?) satisfying:

(a) S(up) is bounded,

(b) S'(up) — 0 in H1(R?) as n — +oo,

(¢) P(un) =0 asn — 4oo.

Then, up to subsequences, as n — +00
(i) either u, — 0 in H'(R?),

(ii) or there exist u € H'(R?)\ {0} solving (*) and a sequence {x, }nen C R? such that
Up (- — ) — u in H' (R?).

We follow the strategy of [37], proposition 2.2|. Since the gradient does not appear
in the Pohozaev’s identity, it will be more delicate to show that the nonlocal term does
not vanish.

Proof. We assume that the first alternative does not hold, namely

liminf/ (|[Vun)? + u?)dz > 0.
R2

n—-+oo
For every n € N,

1 2 o 25 P(un)
2/R2]Vun] dx+2(a+2)/RQundx—S(un) o

implies that u, is bounded in H'(R?).
Now, since &' (u,,) — 0 in H1(R?) as n — +oo, clearly & (uy)[u,] — 0 as n — +o0,
therefore

/ (I * F(up))F' (up)updz = / (IVun|* + u2)dx — S (un)[un] > % Vn > 1,
R? R?

for some constant C' > 0. Taking Cy > supneNHunH%{l(Rz), we can apply Proposition

Wy s _ .
3.2.1 to e with 8 = 27 and we obtain

2

2
272 2, 2 uzdr
/ min{l,ui}ecou"dx < CO/ min {1, Zf‘}ecoundx < COCZWIRQCn < CpCar
R2 R2 0 0

for each n € N. Moreover, we also have
Q
/ ulde = <1 + > / (Lo * F(up))F(up)dx + P(uy) =
R2 2 R2

80



:<1+a>/(h*F@mﬁﬂmwx+dU
2 ) o
as n — +o00. Hence, from conditions (3.1.3) and (F3) with § = é—g, we get

24a

1 e
e (QU%WﬁWmegc(/\H%pﬁm/ﬂﬂmmMmLm> <
R2 R2 R2
27 2 1+% 1+%
< C’"( min{l,u%}ecou"dfv) < C’”’(/ u%dm) =
R2 R2

a

:cW<<L+2>AJQ*FWMMWme+dD>H%
namely

lim inf/ (I * F(up))F(uy)dzx > 0.
R2

n—-+o0o

We now want to prove that u, does not vanish. We will use the following inequality
(see |42, lemma 1.21]): for every n € N and p > 2,

1—-2
/ |un|Pdr < C(/ (|[Vun)? + u%)dm) < sup / |un|pdx) "
RN RN a€RN J Bji(a)

By assumptions (F3) and (F3), for every € > 0 there exists C¢g > 0 such that
]F(s)]ﬂia < emin{1, 82}6982 + Ceplsl?, VseR.

Therefore, Vn > 1

1—2
r 1 Jre |un[Pdz
sup / |un|pdfc> > — >
<a€]RN Bi(a) C fR2(|Vun‘2 + u%)dx

1 2lu
cooC. ( o \F(un)\ﬁdaﬁ — E/RQ min{1, u?}e% 31ala;) >

2+
1 =* ) 1 /1
> _ S 1(1 '
el <</R2(Ia*F(Un))F(un)d$> eC - undx> > (C” eCC’0>

From the arbitrariness of € and definition of supremum, there exists a sequence {z,} C R
such that lim Jirnf I B (zn) |up [Pdz > 0. Since the problem (*) is invariant under translations,
n— 400 n

>

we can assume that x, = 0 for all n € N. Therefore, for every p > 2,

lim inf |up [Pdz > 0.
n——+0oo 1
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By Rellich’s theorem, this implies that up to a subsequence, u, — u in H'(R?) to

some u € H'(R?)\ {0}. Since u, — u in H'(R?), using a standard diagonal argument
and Rellich’s theorem, it converges up to a subsequence to u a.e. in R?. So, by the
continuity of F, we also have F(u,) — F(u) a.e. in R? as n — +oo0.
Moreover, (Fy) implies that {F(u,)}nen is bounded in LP(R?) for every p > 2%{. This
implies that F(u,) — F(u) in LP(R?) for every such p. As the Riesz potential defines
a linear continuous map from Lﬁ(RQ) to Lﬁ(RQ) by condition (3.1.3), Proposition
A.0.9 (since 2 > 2%[) implies that

Io* Fun) — In# F(u) in LTa(R2?) N L%(R).

By condition (F») and Proposition 3.2.1, the sequence {F’(uy)}nen is bounded in
LP(R?) for every p > 2 and by continuity F'(u,) — F'(u) a.e. in R? as n — +oo.
Now, dominated convergence theorem and condition (F) imply that F'(u,,) — F'(u) in
L1 (R?) for every q € [1,400). Hence, it is possible to check that

loc

/R2 (I, * F(up))F' (up)pdz — - (Io * F(u)F'(u)pdz VYo € C(R?).

Therefore, for every ¢ € C§°(R?) we have

/ (Vu - Vo +up)dr — / (I, % F(u))F'(u)pdx =
RN RN

~ lim ( /R (Vo - Vi + ung)dr ~ /R N(Ia*F(un))F'(un)cpdx> 0

n—-+00

that is, u is a weak solution of (*).
U

Corollary 3.2.2. If F € C}(R;R) satisfies conditions (Fy) — (F3), then problem (*) has
a nontrivial solution u € H'(R?).

Proof. By Proposition 3.2.2, S admits a Pohozaev-Palais-Smale sequence {uy, },en at the
level b. We apply Proposition 3.2.3 to {uy }nen. If the first alternative occured, then we
would have by continuity S(u,) — S(0) =0 as n — 400, in contradiction with the fact
that b > 0. Therefore, the second alternative must occur. O

Now we have to prove a local regularity result for solutions of (*), which is easier
than in dimension N > 3. Indeed, the growth assumption (F3) gives a good control on
I, * F(u), which permits to apply a standard bootstrap method.

Proposition 3.2.4. Take F € CY(R;R) satisfying condition (Fy) and u € H'(R?)
solving (*). Then u € W2P(R?) for any p > 1.

loc
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Proof. By (F») and Proposition 3.2.1, we deduce that if v € H!(R?), then F(v) € LP(R?)
for every p > ZJ%Q. Since 2 > QJ%Q, by Proposition A.0.9 we get I, * F(v) € L=(R?).

«

Therefore, any solution u of (*) satisfies
| — Au+u| < C|F'(u)]
with F'(u) € L

loc

theory on bounded domains, we deduce that u € VVIZOf(RQ) for any p > 1. O

(R2) for every p > 1 because of (F,). By standard (interior) regularity

The extra regularity is crucial to say that all the solutions of (*) satisfy the Pohozaev’s
identity (Proposition 3.1.2), which in dimension N = 2 is the following

Proposition 3.2.5. Take F € C1(R;R) satisfying (Fy) and v € H'(R?) N VVif(RQ)
solving (*). Then,

Plu) = /R wldz — (1 + ;‘) /RQ(Ia « F(u))F(u)dz = 0.

As in dimension N > 3, the Pohozaev’s identity allows us to associate to any solution
v a path 7, € T passing through v. The main difficult here is that the integral of |Vu|?
is invariant by dilation. To overcome this difficulty, we will combine properly dilatations
and multiplication by constants.

Proposition 3.2.6. Take F € C'(R;R) satisfying (F2) and u € H*(RN)\ {0} solving
(*). Then, there exists a path v, € T such that

(1/2) = and S(w(t) < S(w) Vee 0,1\ {1/2}.
Proof. We consider the path 7 : [0, +00) — H'(R?) given for each 7 € [0, +00) by

~u(z/m) if T <10
u(x/T) if 7>,

(Y()(z) = {

with 79 < 1 to be chosen later. The function 7 is clearly continuous on [0, +00).
For 7 > 19, Proposition 3.2.5 implies

- 1 72 r2ta
SG() = 5 /R Vul?d + 2/Rz wdr T

1 2 24«
= / |Vul?dz + (T . >/ uldz.
2 R2 2 2+O[ R2

It is possible to check that S(5(7)) attains its strict maximum equal to S(u) in 7 = 1
and is negative for 7 > 7, for some 71 > 1.

For 7 < 79, we use (F3) and Proposition 3.2.1 (choosing appropriately # > 0) to the
function 7(7)/( [g2 [VA(7)[2dz)/? to obtain

/ (Io * F(u))F(u)dx =
R2

[F(3(r))| 7 dar < C/ min{1, |5(7)[2 ez 1P gz <
R2 R2
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o fRQ W(T)|2d:r _ o2 fRZU dx .
= Jae IVA(T)[2da 70 Jee [Vul2dz

Therefore, because of inequality (3.1.3) and 7 < 79, we have

(3.2.1)

SG(r / Vuftds + L / o= [ (Lo FG)FG(r)de <

270

< / |Vu|*dx + 0/ u dx—i—C( ]F(&(T))]Hadac) .
2 R2 2 R2 R2

Hence, in view of (3.2.1) and Pohozaev’s identity

1 ; 2dp \ 15
SA(r) <5 [ [VuPde+ / iy + Craa e de N
2 R2 2 R2 2

2 2 1+35
_ "« 2 st Jpouldx ?
=S+ < 2 2(2+a)> /]Rz du + €1 <fR2 \vu|2dx> ’

which is strictly less than S(u) for some 79 < 1.
Therefore, the function 4 satisfies:

70) =0, (1) =u, SH(7)) <S() vrel0,n]\{1} and S(H(n)) <0

Hence, to get the required -, it suffices to take a suitable change of variables ~,(t) :=
F(T'(t)) for some function T' € C([0,1];R) satisfying T'(0) = 0, T(3) = 1 and T(1) =
1. L]

Proof. (of Theorem 3.2.1) Take u € H'(R?) given by Proposition 3.2.3. As in previous
section, we may prove that u is a nontrivial ground-state solution to (*). It can be seen
easily that positivity and radial symmetry of ground-states hold also in dimension N = 2.
This concludes the proof of Theorem 3.2.1.

O

3.3 Ciritical case

In this section we are concerned with the existence of a ground state solution of (*)
when N > 3 in the critical case, namely when the nonlinearity has a critical growth
in the sense of Hardy-Littlewood-Sobolev inequality. In order to overcome the lack of
compactness of the nonlinear term we require, in the spirit of [4], the following hypotheses
on f € C(RT;R):

(Fl) limg o+ fgS) =0,
(FQ) limg 1 o0 fa(j»)2 =1,
sN-3
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(F3) thereexists p>0 and g€ (2,3%%) such that
at2 1
f(s) > sv=2 4 ps?™", Vs> 0.
Our first main result is the following:

Theorem 3.3.1. Assume N >3, a € (N—4)1,N), ¢ > max{1+ %5, %} and let
f € C(RT;R) satisfying (Fy) — (F3). Then, problem (*) has a positive nontrivial ground
state solution.

Since we seek a positive solution to (*), we may assume that
f(s)=0 Vs<O.
Furthermore, it is possible to prove qualitative properties of ground state solutions,
namely positivity and radial symmetry, as in Propositions 3.1.12 and 3.1.13.
Brezis-Lieb lemma and splitting lemma

In this subsection, we prove two technical lemmas which involve the nonlocal term of the
energy.

Lemma 3.3.1. (Brezis-Lieb lemma). Assume there exists a constant C > 0 such that
o a+2
Fs)] < C(sl% +1s/¥5), Vs e R

Let {un}nen be such that u, — u in HY(RY) and consider F(s) := [; f(t)dt for every
s € R. Then, as n — 400,

/RN (T F (1) F () dae = /

(Ia*F(un—u))F(un—u)daﬂ—i—/ (Io*F(u))F(u)dx+o(1).
RN

RN

Proof. Using Fubini’s theorem, by Hardy-Littlewood-Sobolev inequality, it holds

[ (U ) P) = (T # Pl = 0) Pl =) = (T + P() Pa))ds =

= /RN((Ia # [F(un) + F(un — u)])(F(un) = Fun —u)) — (Io * F(u))F(u))dz.
Furthermore, there exists C' > 0 such that
[F(s)| < O 3= +1s|¥%), VseR,

which implies F'(u) € L%(RN ). For any e > 0 sufficiently small, by the Hardy-
Littlewood-Sobolev inequality, there exists K1 > 0 such that

/Q (T # F)F(w)ds| < S, 91:= {r € BY - u(a)] > Ky},



Again by the Hardy-Littlewood-Sobolev inequality,

\ /Q (Lo # [F (1) + F (= w)]) (F (1) = Flu, — u))da| <

2N 2N
< c’( / F(tn) — Flun — u)|¥5 da:) ,
951

where we have used the fact that {u,} is bounded in H'(RY). It is easy to check there
exists C' > 0 such that for n € N,

N 2 N N N
F(wn) — Flun — )| < 0(|un|fffa|u|f3+a Tl RS ] B 42 4 |u|f32)-

Then, by Holder’s inequality

N

20 2N NLM N+o
/ [t | M+a |u| Mo da < </ u%dx) (/ qux)
Ql Q1 Ql
24a N—2
240 2N 2N N Nta 2N N+a
/ |t | V=2 o |u| Nra da < (/ |un|N2d$> </ |u|N2dm> .
M 931 M

So up to redefine € sufficiently small and K7 large enough, we get for any n

and

<-.

‘ /Q (I * [F(up) + F(up — w)])(F(uy) — F(u, — u))dz

(o1 e

Similarly, let Qo := {x € RN : |z| > R} \ Q; with R > 0 large enough such that

<

‘ /Q (o F(u) F(u)da

and for any n,

‘ /Q (Lo % [F(up) + F(up — u)])(F(up) — F(up — u))dz

Now, for Ko > K7, let Q3(n) := {z € RN : |u,(2)| > K2} \ (21 U Qg). If Q3(n) # 0,
then |u(x)] < K and |z] < R for any = € Q3(n). By a standard diagonal argument,
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un — u a.e. in RN, So by Egorov’s theorem, u,, converges to u in measure in B, which
implies that |Q3(n)| — 0 as n — +o0. Similarly, for n large enough we have

<

/ (Io * F(u))F(u)dz
Q3(n)

and
‘ / (Lo % [F(up) + F(up — w)])(F(up) — F(up — u))dz
Qs (n)

Finally, let us estimate
/Q ( )((Ia # [F(un) + Fup — w)]) (F(un) = Fup —u)) = (Io * F(u))F(u))dz,

where Q4(n) := RY \ (21 U Qs U Q3(n)). Obviously, Q4(n) C Bgr. By Lebesgue’s
convergence theorem and Rellich’s theorem we have

lim |F(up —u))|¥+adz =0 and  lim |F(up) — F(u)|¥adz = 0,

n—=+00 Jq, (n) n—=+00 J0,(n)

which implies by the Hardy-Littlewood-Sobolev inequality

N+ao

2N 2N
§C’</ |F(un—u))|N+ad1:> —0
Qa(n)

/RN (o [F(un) + F(up — w)) F(un — u)da

as n — 400, and

<

/RN(IQ * [F(un) + F(un — u)])(F(un) _ F(u))d:c

N+«
2N

< c(/ P () —F(u)\ﬁfada:> S0
Qa(n)

as n — +oo. Hence, let H,, := F(u,) + F(u, —u) — F(u) and we have

nsup [ (T ) Flua) = (Lo * Flun = 0) Fun 1) = (T F(u) F(w)ds =
Qa(n)

n—-+o00

= lim sup/ (Iq * Hyp) F(u)dx.
n—+00 JQu(n)
Noting that H,, is bounded in L¥+a (RN) and H, — 0 a.e. in RY, then H, — 0 in
N N
L¥+a (RN). In view of inequality (3.1.3), Ip * H, — 0 in L¥~a (RY), yielding

lim (Io * Hyp)F(u)dz = 0.
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Thus,

lim sup
n—-+o0o

/ (Lo % F(un))F ) — (I # F (i — 1)) F (i — ) — (I + F(u))F(w))dz| < ¢
RN
and the arbitrary choice of € concludes the proof.
O
Next we prove a splitting property for the nonlocal energy.

Lemma 3.3.2. (Splitting lemma). Assume a € (N —4)1,N), (F1) — (F») and let
{untnen € HYRY) such that u, — u in H'(RYN). Then, up to subsequences,
as n — 400

/RN((Ia*F(un))f(un)—(Ia*F(un—U))f(un—U)—(Ia*F(U))f(U))¢>diU = o(1)[|¢l oo ®ny,

for any ¢ € CC(RY).
In order to prove Lemma 3.3.2, we need first to prove Lemmas 3.3.3 and 3.3.4 below.

Lemma 3.3.3. Let {u, pen € HY(RY) be such that u, — u in H'(RN). Then the
following hold:

(i) Foranyl<q§r§%andr>2,

lim |7 Mty — |ty — 1] (g — 1) — ]u\qfluﬁdx = 0.
n—+00 JpN

(i) Assume h € C(R;R) such that h(t) = o(t) ast — 0 and |h(t)] < C(1+ |t]|9) for

any t € R, where q € (1, %] The following hold:

(1) For any r € [q-l—l,%];

li H —H —u) — H(u)|e+ldz =
Jim [ V) = = o) = (@) ds
where H(t) = fg h(s)ds,

(2) If we further assume that a € (N —4)4,N) and limp 4 hc(fzz =0, then as

o2

n — +0oo
2N 2N
/RN |h(un) — h(up —u) — h(u)[ V¥ @[ Nradr = o(1)][¢]| poo Ay,

for any ¢ € C°(RY).
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Proof. The proofs of (i) and (1) are similar to [45, lemma 2.5]. We only give the proof
of (2).

For any fixed € € (0,1), there exists sop = so(€) € (0, 1) such that |h(t)| < €|t| for |t| < 2s0.
Choose s1 = s1(€) > 2 such that

Ih(t)] < €lt| ¥

for |t| > s; — 1. From the continuity of h, there exists § = d(¢) € (0,sg) such that
|h(t1) — h(t2)| < soe for [t1 — to| < 0, |t1], |t2] < s1 + 1. Moreover, there exists ¢(e¢) > 0
such that io

[h()] < c(e)[t] + elt|¥=2

for every t € R. In the following let C' denote a positive constant independent of n and
€.

Noting that o € ((N —4)4, N) (it will be used many times), we have 2 < N+a < %=
Then, there exists R = R(e) > 0 large enough such that, by Holder’s inequality,

/ ()| s de < c(e) / (a5 4 o] ¥5 755 ) g F5 o <
RN\Bg RN\Bg

1 1

AN 2 AN 2
gc(e)</ \u]N+ad:1:> </ ]¢\N+adx> +
RN\Bp RN
24a N—2
2N N+ta Nta o
+C’e</ |u\zvzdx> (/ PEe: m) < Cel| || T (3.3.1)
RN\Bpr

Setting A, := {x € RN\ By : |un(z)| < s}, then by Holder’s inequality

/ (1) — bt —u)| ¥55 | | ¥oa dz < Cee / (| 55 + | —u| 50 ) || e day <
Apn{|u|<8} RN

N
< Cellgllsc™.

Let By, := {z € RV \ Br} : |un(z)| > s1}. Then,

/ (h(uun) — Bt — )| w6 o de <
Bnﬂ{|u|<5}

24a 2N
<C€/ (|u |N 2 Nta +|un_u|N 2N+a)‘¢|N+adw<
RN

2N
< Cellgllsc™.
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Setting Cy, := {x € R" \ Bg : 50 < |un(2)| < 81}, then [Cy| < 400 for any n and

/ (tin) — hltn — )] F25 6| ¥25 d < (s96) Fie / 6|5 de <
Cu{jul<6) Cun{jul<6)
1 1 1
2N 1 AN 2 2N AN 2 AN 2
g(soe)w+aycn\z</ ]¢]N+ad:1:> SGN+&</ \un\mad:p) (/ \¢\N+adx) <
RN Chn RN
2N
< Cellpllss™.

Thus, (RY \ Bg) N {|u| <6} = A, U B, UC, and

2N

() — h(un — w)| V55 |g| ¥radr < Cel¢l| 57, Vn e N.

/(RN\BR)W{IUISN

Now for € given above, there exists ¢(e€) > 0 such that
() = Bt =) ¥ < elfun| V2 553 + | =l ¥ ) + e(e) (| ¥45 -+ —u| ¥5)

and

ey ) = =5 P <
R u|l=Z

24+a 2N 24+a 2N 2N
S/ <6(|un|N—2N+a +‘un_u|N—2N+a)‘¢|N+a+
(RN\Bpg)N{|u|>6}

2N 2N 2N
+c(€)(|un| V¥ + Jup — ulw)\cblm)df” <

2N

= 2N 2N 2N
< Cel|pllac™ + c(e) (lun|¥Fe + up — u| Ve )[g] Ve da.

/(RN\BR)0{|UZ5}

Noting that [(RY \ Bgr) N {|u| > 6} — 0 as R — 400, there exists R = R(e) > 0 large
enough, such that, by the generalized Holder’s inequality,

] 355+ [ — | ¥4 ¢ Hada <

(e) /
(RN\Bgr)N{|u|>8}

N—-2 N—-2

2N %74_—2 2N N+ao 2N N+«
< c(e) [(/ |un|N2d:E> + </ |ty — u|N2d$> } </ |<;5\N2dx> >><
RN RN RN

2N

a+4—N
x|(RY\ Br) N {lu| > 6} 7+ < eflp)| X
Thus, by (3.3.1), for any n € N,

2N

/ |(tn) — Bun — u) — h(u)|¥5e |§|¥3a dx < Cel|o|I 3. (3.3.2)
RN\Bg
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Finally, for e > 0 given above, there exists C(€) > 0 such that
2N 2N 2N 24a
|h(t)|Vre < C(e)|t| Nt + e|t|NraN=2 Vit e R.
Recalling that u, — u in H'(RY), up to subsequences, by Rellich’s theorem wu,, — u in

LP(Bg) forall 1 <p< % Then, for n large enough

[ b =) oo < [ (€Ot — al T+ el ) D) <
Br Br

2N

< Cello|| 5. (3.3.3)

Moreover, setting Dy, := {z € Bpg : |up(x) — u(x)| > 1}, we have |D,| = 0 for n large
enough in view of u,, — u a.e. x € Bg. Hence, noting that |[{|u| > L}| — 0 as L — o0,
there exists L = L(e) > 1 large enough such that

2N 2N 2N 2N
/ (o) — ) [ F55 | 55 i = / (o) — ()| 55 [ 5 i <
BrM{|u|>L} (BrR\Dn)N{|u|>L}
N 2N 2N a+2 2N a+2 2N
= / (C(e)(!uww NG WU co 3 = SWRE - N”) 6|5 de <
(BrR\Dn)N{|u|>L}
2N
< Cellgll .

On the other hand, by Lebesgue’s convergence theorem, as n — +oo
/ )~ h(w)] ¥ ol 5o = [ ()~ (a0 ¥/ 55 iz =
BrM{lul<L} (BrR\Dn)M[ul<L}

2N

= o(1)[lpll &7
Thus, by (3.3.3) for n large enough

2N

/ B(tn) — h(tn — u) — h(u)| ¥+ |g| Ve da < Ce|lp|| 2.
Br

Finally, combining the previous estimate with (3.3.2), we conclude the proof. O

Lemma 3.3.4. Let o € (0,N), s € (LLY) and let {gn}nen € LYRY) N L¥(RY) be
bounded and such that, up to subsequences, g, — 0 in Lfoc(]RN) as n — +oo. Then, up

to a subsequence, (I * gn)(x) = 0 a.e. in RN asn — 4o0.
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Proof. Let us prove that for any fixed k£ € N, up to subsequences, (I, * g,)(x) — 0 a.e.
in By. Let k € N be fixed; due to {g,} bounded in L'(R"), for any ¢ > 0 there exists
R = R(e) > k such that

o 9(s)

vody <€ forany = eRV neN
RN\ Bg(z) [T — Yl

D(%52)

where A, = eI Obviously, Br(xz) C Bapr for any x € Br. Noting that g,xB,, €
2
L*(RYN), by inequality (3.1.3),

Mo * (1gnlxmap)ll | e )

Ns
It follows that, up to a subsequence, Iy * (|gn|XB,r) — 0 in L¥-os (RY) and a.e. in By.
Then, for a.e. x € By,

limsup | (Lo * gn)(2)| < Ag limsup </ Lij)tady —i—/ |gn(y]\),|ady> <
n—+00 n—+oo \ JBg(z) [T — Yl RN\Bg(z) [T — Yl
< e—i—Aalimsup/ Lng,’_dyg e—i—Aalimsup/ L‘y]\v_dy:
n—+oo JBg(z) [T — YN * n—+oo J By |2 — Y|V T

= e+ limsup(Zy * (|gn|XB,r))(T) = €.
n—-+00o
Since € > 0 is arbitrary, the proof is completed. O
Now we are set to prove Lemma 3.3.2.

Proof. Set for every t € R:

A = £ — ¥ and (1) ::/0 £(5)ds.

Note that for any ¢ € CS°(RY),

44+a—N

(TP )+ | (TP )| 55w

/RNU‘“*F(UTL))f(un)qﬁdm _ /

RN
Step 1. We claim as n — +oc:

a4

/ (Lo % F ()| 7w = / (o 5 Pt — )t — 1
RN RN

—N

2 (upy, — u)pdr+

44«
N—

+ / (Lo F(w)|u] N2 ugda + o(1)[|6 oo
RN
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for any ¢ € C5°(RY). Noting that o > (N—4),, by Lemma 3.3.3 (ii) (1) with h(t) = f(2),

2+« 2N
q= 5% and r = 375,

lim |F(un) — F(un — u) — F(u)|¥+ada = 0. (3.3.4)
n—-+4o0o RN

4+oc 4+a N
= Up, as well as v, = |u, — u| N

Then for Up = |up| ¥ 2 (up —u) and also v, =

|u| Nz u, there exists C' > 0 such that by Holder’s inequality

/ fond| 5 d < / o] 795 / PECTH R
RN RN RN

from which it follows, using Hardy-Littlewood-Sobolev inequality and inequality (3.1.3),

‘ /RN (I % [F(up) — Fuy — u) — F(u)])vppdz| <

N+a N+o
2N 2N 2N 2N
<o [ 1Pt = Flun -0 - F@F2ae) 7 ([ poPear) T -
RN RN
=o(D)||¢|loo, as n— 400 (3.3.5)
for any ¢ € CS°(RY).
24« 2N

On the other hand, by Lemma 3.3.3 with ¢ = =5 and r = =5

—N 44a—N —N
lim Hun\ 2 Uy, — |y —u| N2 (uy, —u) — ]u\ -2 y|2te tra dz = 0.
n—+00 JpN

For w, = F(uy,), as well as w, = F(u, — u) and also w, = F(u), one easily checks
2N

that {wy,}, is bounded in L ¥+« (RY). By the Hardy-Littlewood-Sobolev inequality and

inequality (3.1.3), we get

—N 4+a—N

/RN(I *wn)(]un] = Uy — |ty — u| N2

44+a—N
(U, —u) — |u| ¥2 u)pdr| <

44+a—N 44+a—N 4+a N N 2
I e e e e R R e e e S
RN
2N 24a N-2
-N _N 44a-N |2+« 2N 2N
SC(/ |un\ —2 un—|un—u\ N (Up—u)—|u| 2" u dm) (/ |¢]N 2dx>
]RN
=o(1)||¢||cc, as n — +oo (3.3.6)
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for any ¢ € C$°(RY). Then, combining (3.3.5) with (3.3.6) we get

44+a—N

/ (Lo * F(un))|un|%un¢)d:v = / (o * Fup —u))|un — ul N2 (up — u)dpda+
RN RN

4+a—N 4+a—N
+/ (I * F(u))|u| 2" updz + / (I * F(up —w))|u| 2 updr+
RN RN

+/ (I * F(u))|u, — u]ﬁ\’a:?N (U, —u)pdz + o(1)]|4]|cw, as n — 4oo
RN

for any ¢ € C§°(RY). Noting that F(u) € L%(RN), by inequality (3.1.3), |1, *
2N N+2 _2N(24a) N+2
F(u)|~7+z € Lv==(RY). Furthermore, |u, — u| -2+ — () in L¥+a (RY). This yields

2N 2N (2+a)
lim [T * F(u)|N+2 uy, — u| V202 dx = 0, (3.3.7)
n—+00 JpN

which implies, by Holder’s inequality,

<

/ (Lo % () — ) F5" (1 — )
RN

on CaNere O\ W o\ v
< (/ [To % F(u)| V42 [uy, — u| N2+ dfﬂ> </ || Nde) = 0(1)||#]0o
RN RN

as n — +oo, for any ¢ € C°(RV).
At the same time, since o € ((N —4)4,N), for s € (1, ]\?—fa) C (1, %), by Rellich’s
theorem, up to subsequences, F'(u,, —u) — 0 in LfOC(RN). By Lemma 3.2.5, I, * F'(uy, —

u) — 0 a.e. in RY. So, inequality (3.1.3) implies

2N
sup[|Lo+ F(un = w) V2| psz < CsupllF(un —wl g < oo,

which yields ]IQ*F(un—u)W\%? — Oin L%(RN). Noting that |u|%1\2’7]j2 € L%(RN),

. 2N 24a AN
lim |1o * F(up —u)| V42 |u| N2 N+2dz = 0
n—+00 JpN

and, by Holder’s inequality,

<

/ (Lo 5 F(tn — u))|u T ugda
]RN

N+42

2N 2N (24a) 2N 2N ]\é]_VQ
< ( [ e P — ) 51 o5 d:c) ( / \¢|N2dx> — o(1) |l
RN RN
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as n — +oo, for any ¢ € C5°(RY). The claim is thus proved.

Step 2. We claim

[ o s ) fatumode = [ (Lox Flun =) fi(un — w)ordot
RN R

N

+/ (L * F(w) f1(w)ddz + 0(1)|dllee, as n— +o0  (3.3.8)
RN

for any ¢ € CS°(RY). The following hold:
(1) Jan Lo * [F(un) = F(un — u) = F(u)]) fi(un)pdz = 0(1)]|¢] .
i) fpn Lo * [F(un) = Fup — u) = F(u)]) fi(up — w)¢dz = o(1)]| @] oo,
(iif) S (L * [F(un) = F(up — u) — F(u)]) fi(w)¢dz = o(1)]|¢|o,

as n — +oo, for any ¢ € C°(RY). Let us only prove the first identity (i), the remaining
ones being similar. Observe that there exists 6 € (0,1) and C' > 0 such that | fi(¢)] < |¢|

for |t| < 0 and |f1(t)] < C|t|% for |t| > 6. Noting that o € (N —4)4+,N), we have
2 < A < 28 Then, for any ¢ € C°(RY) and n € N,

/ Ifl(un)cblfvzfad:cz/ |f1(un)¢|f\?]+vad:v—|—/ |1 ()| o5 dar <
RN {|un‘§5} {‘Un|25}

2N (2+a)

2N 2N _2N(2+a)
§/ |un¢|N+ad$+CN+a/ [ty | N2 N +) |¢|N+adx <
{lun|<6} {Jun|>6}

4N % 4N %
(ot ([ ) s
RN RN

2N 2N e Nra o
rota ([ ) (] et ) T < cpona

Then by Hardy-Littlewood-Sobolev inequality, inequality (3.1.3) and (3.3.4),

/RN(IO‘ * [F(up) — F(up —u) — F(u)]) f1(un)ddz| <

N+ao

<(/, |F<un>—F<un—u>—F<u>rf?fadaz)NJVQ ([ nteeean) ™ ool

as n — +o0, for any ¢ € C°(RY). So (i) holds.
Similarly we prove
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(1) Jon (o = F(un))[f1(un) = f1(un — u) = fi(u)]ddz = o(1)]|¢]|s,
(2) fon o * Fun — ) f1(un) = fi(un — u) = fi(w)]édz = o(1)||¢] o,
(3) Jon (o * F(w)[fi(un) — fi(un — u) — f1(u)]gdz = 0(1)][¢||o,

as n — +oo, for any ¢ € C§° (RM). By the Hardy-Littlewood-Sobolev inequality,
inequality (3.1.3), (ii) (2) of Lemma 3.3.3 with A(t) = fi(¢) and the fact that F(u,) is

bounded in L%(RN),

[ o Flanin) = fi = ) = (w]oda

<

N+ao
2N

< O(/]RN |f1(Un)_f1(Un—u)—fl(u)yl\%‘d)“mdx) :O(l)“¢‘|oo, as n — 400

for any ¢ € Cg°(RY). So the first identity (1) holds and the remaining can be proved in
a similar way.
Combining (i)-(iii) with (1)-(3), we get

/ (La*xF (un)) f1(up)pdx = / (Ia*F(un—u))fl(un—u)qbdar—i-/ (IoxF(u)) f1(u)pdz+
RN RN RN

+ [ U Plun =) @de+ [ (o F(u)) s = w)ods + o)
as n — +o0, for any ¢ € C§°(RY). To conclude the proof of (3.2.8), it remains to prove

| U Pl = ) flwide = o(1) ol

and

/R (o F(0))frtn — ) = o(1)[0]c (3.3.9)

asn — +oo, for any ¢ € C§°(RY). Notice that for any € € (0, 1), there exists §(¢) € (0,1)
24a

and C(€) > 0 such that | fi(t)| < e|t| for |t| < d(e) and |f1(t)| < C(e)]t]Nt2 for |t| > d(e).

Then, by Holder’s inequality and inequality (3.1.3)

/ (I * Fun — w)) fo(u) b
RN

< e/ o+ P, — u)||uo|dz+
{ul<5(6))
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N+ao
2N 2N
X (/ |ug| N+a dx) +
{lul<d(e)}

N+42 N—2
2N 24+a 2N 2 2N 2
+C(e)</ |Io % F(uy — w)|N+2 |u| N2 N+2dx> </ |¢|N—2da:> .
RN RN

There exists C' > 0 independent of ¢ and ¢ such that

N 2N
| el < oo
{lul<é(e)}
Then by (3.3.7), there exists C' > 0 independent for ¢ and e such that

lim sup
n——+00

[ U Pl = ) (o < Gl
It follows that
/RN(Ia ¥ Py — u) fr(w)ddz = o(1)|[¢lle,  as n — 400

for any ¢ € C°(RY). Similarly, (3.3.9) can be proved and the proof of Lemma 3.3.2 is
complete.
O

Proof of Theorem 3.3.1

First of all, let us consider the following family of functionals, for A € [%, 1]:

Sy(u) = ;/RN(\qu +u?)dz — ;/RN(IQ ¢ F(u)F(u)dz, ue H'(RY).

Obviously, if f satisfies the growth assuptions of Theorem 3.3.1, for A € [%, 1], S\ €
CY(H'(RM);R) and every critical point of Sy is a weak solution of

—Au+u=ANIy* F(u))f(u). (3.3.10)

The existence of critical points of Sy is a consequence of the following result on critical
point theory.

Theorem 3.3.2. (see [16]) Let (X, ||||x) be a Banach space, let J C RT be an interval
and let a family of C*(X;R)-functionals {Sx}rcs of the form

Sx(u) = A(u) — AB(u).
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Assume that B(u) > 0 for any u € X, at least one between A and B is coercive on X
and there exist two points v1,ve € X such that for any A € J,

:= inf S S S
9) ;felrtgl[% A(7(t)) > max{Sx(v1), Sx(v2)},

where T' := { € C([0,1]; X) : v(0) = v1,v(1) = vo}. Then, for a.e. X € J, S\ admits a
bounded Palais-Smale sequence at level cy. Moreover, cy is left-continuous with respect
to X € [3,1].
In the following, set X = H'(RY) and
1 1
A(u) = / (|Vul? + u?)dz, B(u)= / (Iq * F(u))F(u)dx.
2 RN 2 RN

Obviously, A(u) — +oo as |lul|g1@yy — +o0o. Thanks to (F3), B(u) > 0 for any
u € HY(RY). Moreover, by (F})—(F), there exists C > 0 such that |F(s)| < C(]5]1+%+
N+to
|s] Nt2) for any s € R. Then, as in Proposition 3.1.3, there exists § > 0 such that
1 .
[ U P F e < SlulBgery il <9

and therefore for any A € J,

1
5@)24/ (Va2 + u?)dz >0 i 0 < ullZam) <O (3.3.11)

By (F3), it follows that F(s) > {+2]s ]N >4 £ls|? for any s € R and for some p > 0,
q € (2, %‘tg‘) On the other hand, for fixed 0 # ug € H'(R"™) and for any A € J, ¢t > 0,

2(N+a)

12 t N-2 N -2 2 N+ta N+a
Si(tug) < — Vug|*+ud)dz— / I N3 ) o V22 do — —
o) < 5 [ (9wl idar T (F2) [ aslul ¥ ol ¥ o0

as t — +oo. Then there exists tg = to(ug) > 0 such that Sy(toug) < 0, A € J and
”tOUOH%(l(RN) > § by (3.2.11). Furthermore, by (3.3.11) as in Proposition 3.1.3, ¢y > ¢ >
0 for any A € J. So in order to satisfy the hypotheses of Theorem 3.2.2, we choose

[ = {y e C([0.1]; H'(RY)) : 4(0) = 0,7(1) = touo}.
Remark 3.3.5. Observe that ¢y, is independent of ug. Indeed, let

dy ;= inf S t
»i= inf max A(v(1)),

where Ty := {r € C([0,1]; HY(RY)) : v(0) = 0,Sx(7(1)) < 0}. Clearly, dy < cx. On the
other hand, for any v € T, it follows from (8.5.11) that ||v(1)||%: ®Ny > 0. Due to the

path connectedness of H*(RY), there exists 7 € C([0,1]; HX(RY)) such that 5(t) = v(2t)
ift €[04, |5t M3 ®RN) > § ift € [3,1] and 5(1) = toup. Then 5 € I' and

tgg}f}S A(F(t)) = tlél[éa}f]s A(v(1)),

which implies that ¢y < dy and so ¢y = dy for any A € J.
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Then, as a consequence of Theorem 3.3.2, we have the following

Lemma 3.3.6. Take a € (0,N) and f € C(R;R) satisfying (F1) — (F3). Then, for a.e.
A €[5, 1], problem (3.8.10) admits a bounded Palais-Smale sequence {uy, }nen at the level
Cx.

Next, in the spirit of [21], we establish a decomposition of such a Palais-Smale se-
quence {uy}, which will play a crucial role in proving Theorem 3.3.1. However, some
difficulties with respect to the local case are carried over by the presence of the nonlocal
critical (respect to Hardy-Littlewood-Sobolev inequality) term.

Proposition 3.3.7. With the same assumptions of Theorem 3.3.1, let {u,} be given
by previous lemma. Assume u, — uy in HI(RN). Then, up to subsequences, for any
A € [3,1] there exist k € N, {x%};“:l C RY and {vi}?zl C HY(RYN) such that

(i) S\(un) =0 in H'(RY),
(ii) v 0 and Sy(v})=0 in HYRN), V1<j<k,
(iii) ex = S(ux) + 15—y Sx(v]),

. . . .
(1) flup —ux =325, 3 (- = 2n)|[gr@yy = 0 as n — 4o,
Before proving the proposition, we need a few preliminary lemmas.

Lemma 3.3.8. Take a € (0,N), f € C(R;R) satisfying (F1) and let uy € HY(RY) N
VV;?(RN) solving problem (3.3.10). Then,

N -2 N N
/ \Vu|?dz + / uldr = (—i—a))\/ (Iq * F(u))F(u)dz. (3.3.12)
2 RN 2 Jr~ 2 RN

Moreover, there exist 3,~v > 0 independent of A € [%, 1], such that ||ux||gr @~y > B and
Sx(uy) > v for any nontrivial solution uy and X € [3,1].

Proof. The proof of identity (3.3.12) is the same as Pohozaev’s identity.
Now, let A € [3,1] and let uy € H'(RY) be any nontrivial solution of (3.3.10). Then

/ ([Vu|? +u3)de < (I * F(uy) f(uy)urde. (3.3.13)
RN RN

Thanks to (F1) — (F2), there exists C' > 0 such that F(s),[sf(s)| < C(!s\% + |S|%)
for any s € R.
Moreover, as in Proposition (3.1.3), there exists 8 > 0 such that

1 .
[ o x Fa) s < Glulfy i Tl < 6.

which yields by (3.3.13), [[uxllg1myy > B. By Pohozaev’s identity (3.3.12), it holds

2+« 2 « 2
S = — d —_— d
M) = SN a) /RN IVualde + 55 /RN A
and this concludes the proof. O
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Now, for any u € DV2(RY), combining the Hardy-Littlewood-Sobolev inequality with
Sobolev inequality, we have

N+ao

e e N
/ (I * |ul%)\u|%daz < AaCa(/ ]u\ﬁ]—\]?dx>
RN RN

N+ao

N+« N-—-2
< A,ClS N-2 </ \Vu]zdm> ,
RN

N—a
where A, = %, C,, is defined in Proposition A.0.6 and

2

Vu|?d
S = inf Jo |2Nu| foz .
0ZueD2(RN) (Jpn |u|¥=2dz)=n
Then,
2
d
Sy = inf fRN [Vu|dz > S

0ZueDL2(RN) (f]RN 1, * |u|%”u|%dx)% - (Aaca)% '

Minimizers for S, are explicitly known from [12, theorem 4.3]. Actually,

S
Sa = _ N-2
(AaCa) Vo
and it is achieved by the "bubble" function
N—-2
N(N —-2)] 7
Ulz) = [V ( ) -
I+ |zP?) 5

This information is crucial to prove an upper estimate for cj.

Lemma 3.3.9. Take o € (0,N), ¢ > max{1l+ %5, %}, A€ [3,1] and f € C(R;R)
satisfying (F1) — (F3). Then,

2+« <N+Oz>]2v"'_°‘2 2-nN Nia
C,\<2

2Fa § 2t
N+a)\N—2 A2Fa ST

Proof. The quite technical proof is inspired by pioneering Brezis-Nirenberg’s work on
critical problem, and it can be seen entirely on [44, Lemma 3.3] (see Appendix). O

Now we are ready to prove Proposition 3.3.7.

Proof. Take A € [5,1] and assume u, — uy in H'(RY) satisfies Sy(u,) — ¢y and
S\ (un) = 0in H-YRN) as n — +oc.
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Step 1. We claim S§(uy) = 0 in H 1(RY). As a consequence of Lemma 3.3.2, it
sufficient to show, up to subsequences, that for any ¢ € COOO(RN ),

/ (Io * F(up, — ) f(un, —u)pde — 0 as n — 4oo.
RN
In fact, by (F1) — (Fz) we get

F(&)|¥5% < C(ls| ¥ +|s| 72 75), Vs € R.

Respectively, by inequality (3.1.3), Hardy-Littlewood-Sobolev inequality and F'(u, — u)
2N
is bounded in L¥+a (RY) and Rellich’s theorem, we have, for any ¢ € C§°(RY),

N+«

2N 2N
<of [ 1tm-ol®ea) " 20 as 0o b
RN

/ (Lo F (1 —10)) f (o —10) il
RN

Step 2. Set v} :=u, —uy € HY(RY). We claim

liminf sup / lvk |2dz > 0. (3.3.14)
Bi(z)

n—-+oo 2€RN

Indeed, arguing by contradiction, if not, by Lions’ lemma [21, lemma I.1], v} — 0 in

LYRN) for any t € (2, 225). Noting that S} (un)[v] — 0asn — +oo and S} (uy)[vl] =0
for any n, respectively by Lemma 3.3.1 and Lemma 3.3.2, we get

e = S+ 830 +o(), [kl = A [ (ar i) (od)ubda+o(), (3.3.15)
R
as n — +o0o. Next, we show that

lim [ (Io* Fy(02)F(0))de = 0,

n—-+00 RN
t, /fl ds teR.

Notice that fi(t) = o(t) as t — 0 and limj_, 4 |f1a+)2‘ = 0. So for any € > 0, there exists
[t ¥
Ce > 0 such that |Fy(t)| < e(t? + \t\ﬁ) + Cc|t|" for some r € (2, %"'g) Using the fact

that v) — 0 in LY(RY) for any t € (2, ﬁNz) nd 4N € (2, ]\?Nz) it holds

where

fit) = f(t) -

1\ 2N 1 AN 1, 2N , 1, 2Ng.
[F1(vp)[MFede <€ | (|op| Ve + o |[¥=2)dz + Cc | vy [VFede < Ce 4 o(1)
RN RN RN
as n — +oo. From the arbitrariness of € > 0, it follows that

. 1y 2N
lim |Fy1(vy,)| NFedx = 0,

n—-+4oo RN
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which yields, by inequality (3.1.3) and Hardy-Littlewood-Sobolev inequality,

N+a

N
‘/ (In * Fi(v}))Fy(v))dz| < C’</ \Fl(vi)llvgfadm> —0 as n— +4oo.
RN RN

Similarly,

lim [ (Io* Fii)ol|¥2de =0 and  lim | (Lo * Fy(0}))fi(vl)vlde = 0.

n—-+oo RN n—-+oo RN

Then, by (3.3.15), we get

2

N+a Nia
ey 4 3 = 5300 F 3lon ey = 3 N7a | S (o fonl ¥ o [¥2 o £-0(1)
anHHl (RN) = )\]]\\;+i flRN (o * ‘vn’N )|Ul|N 2dI—|—0(1)

as n — +o0o. Now, let us consider

N-—-2_ . Nta N+a
N+a%§}r§c€/ﬂw([a* [l | V=2 |vh | N=2 dx := b > 0.

.. 112 .
Lim inf[vp |7 gy = A

From
N-—-2

ey o N+a
[ vetkaszsa( [ s rvm%)\vm%dx)
RN RN

for any n, we have

—2

24+a [N+« 2Fa 2y Nio
)

AQ"'O‘ 8a2+a
N -2

)

which is a contradiction with Lemma 3.3.9. Thus (3.3.14) holds true.

Step 3. By (3.3.14), Rellich’s theorem and the fact that v) — 0 in H'(R"), there
exists {z1},, € RY such that |z}| = 400 as n — 400 and

lim inf/ lug |*dz > 0.
Bi(zp)

n——4o00

Let ul := vi(- + 21). Then, up to subsequences, ul — v} in H*(RY) for some vi # 0.
By Lemmas 3.3.1 and 3.3.2, we have

Sa(ug) = ex = Sa(ur),  S(uy) =0 in H'RY).
Similarly as above, S (vi) = 0. Let v2 := ul — v}. Then,

un = ux + V3 ( = 25) + V(- = 2).
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If v — 0 in HY(RY), i.e. u} — vi, then
o = Sa(un) + S\ (v}),  un —ux = v3(- = 2p) Iy = 0 as 1 — Foo,

and we are done. Otherwise, if v2 - 0 in H*(RY), similarly as above

liminf sup / |02 |2dx > 0.
Bi(2)

n——+oo 2ERN

Then there exists {22}, C RY such that by Rellich’s theorem |22| — +c0 and

lim inf [v2[2dx > 0.
n—-+o0o Bl(zz)

Let u2 := v2(- 4+ z2). Then, up to subsequences, u? — v3 in H'(R") for some 0 # v3.
We have S} (v3) = 0 and
Sx(u2) = ¢y — Sa(uy) — Sa(vy), Si(u?) =0 in HYRY).
Let v3 := u? — v3. Then
tn = ux + V3 (- = 25) +UX( = 20 — 20) U (- — 2 — 7).
If v3 — 0in HY(RY), i.e. u2 — 03, then
1

cx = Sa(un) + Sa(v}) + Sa(v3),  un —ux — v (- — z) = v} (- — 2, — 20) | i @y = 0,

and we are done. Otherwise, we can iterate the above procedure and by Lemma 3.3.8,

we will end up in a finite number k of steps. Namely, let 2l = I 2 for 1 <j <k
Then,
cx :S)\(u,\)—l—ZS)\(vg\), un—uA—Zv%(—x%) —0 as n — +oo.
HY(RN)

j=1 j=1

Proof. (of Theorem 3.3.1) As a consequence of Lemma 3.3.6, Proposition 3.3.7 and
Lemma 3.3.8, one has that for a.e. A € [3,1], problem (3.3.10) admits a nontrivial
solution uy (by condition (3.3.14)) satisfying [luxl| g1 @~y > B, v < Sx(un) < ¢y, where
B, > 0 are independent of . Then there exist {\,}, C [3,1] and {u,}, C H(RY)

such that, as n — 400,

A =17, v <8, (un) <en,s Sh(un)=0 in H HRY). (3.3.16)
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By Pohozaev’s identity (3.3.12) we have

__2+o 2 . 2
Sy, (up) = 2N ta) /RN|Vun| dw_l_Q(N—i—a) /RNundac,

and so {u,} is bounded in H*(RY). Notice that for any A € [,1] and u € HY(RV),

S(u) = Sx(u) + %()\ - 1)/ (Io * F(u))F(u)dx.

RN

Then by (3.3.16) and boundedness of {uy}, up to subsequences, there exists ¢y € [y, ¢1]
such that

co:= lim S(u,)= lim S, (u,) < lim ¢\, =c
0 n—-+oo ( n) n—-+oo An( n) ~ n—+oo An 1

where we used the fact that c) is continuous from the left at A\. Moreover, by (3.3.16),
for any ¢ € C5°(RY),

S'(w)le] = (=) [ (T Plu)f ()
Similarly as above, there exists C' > 0 independent for ¢ such that

N+ao

([ two=as) ™ < Clol

By Hardy-Littlewood-Sobolev inequality and inequality (3.1.3),

S (un)[g]] = (1 = An)

/ (I * F(un)) f (tn) b
RN

N+ao

<ca-x( [ \F(unw”fadx)w ([, el #edr) ™ = ol

as n — +oo, for any ¢ € C§°(RY). Namely, by density S’(up,) — 0 in H~}(RY). Finally,
we obtain

[unllgi@yy = B8, S(un) = co < e, S'(up) =0 in HYRN) as n— 4oo.

If up, — up in HY(RY), then [uoll mery > B, S(uo) = co < c1 and S'(up) = 0 in
H~YRN). Let define

E:=inf{S(u):ue H'R")\ {0} st. S'(u)=0 in H YR}

So we obtained F < ¢;. As in the subcritical case, Proposition 3.1.7 implies ¢; < E and
so S(ug) = E = c1, namely uy is a ground state solution of (*).
Otherwise, as a consequence of Proposition 3.3.7 with A = 1, ¢\ = ¢y, ux = ug, there
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exists k£ € N and {vj}é?:l C HY(RY) such that v/ # 0, §'(v/) = 0 in H~(RY) for all
1<j<kandcy=S(up) + Zle S(v7). We know that E € [y, c1].

We conclude the proof of Theorem 3.3.1 by showing that E is achieved. Clearly by
definition of infimum, there exists {v,}, € H'(RN) \ {0} such that S(v,) — E and
S'(vy,) = 0 in HY(RY). By Pohozaev’s identity, {v,} is bounded in H'(R") and so
vp — vo Z 0 in H'(RY). As in Proposition 3.1.4, S'(vg) = 0 in H~Y(RN). If v, — vg in
HY'(RY), then S(vg) = F and so v is a ground state of (*).

Otherwise, by Proposition 3.3.7 there exists k € N and {vj}f:1 C HY(RY) such that
v #£0, 8'(v7) =0in HY(RY) forall 1 < j < k and E = S(vo) + Y5, S(v7). By
definition of E, Lemma 3.3.8 and v/ # 0, it holds vg = 0, we can assume k = 1 and so
E = S(v!), which yields v! as a ground state solution of (*). O

3.4 Existence of ground-states in critical case on the plane

The aim of this section is to prove an existence result for ground-states solutions to (*)
in dimension N = 2, assuming that the nonlinearity has an exponential critical growth
at infinity.

Therefore, let us consider f € C'(R*;R) satisfying

(fl) lirns%O‘*‘ 1) =0,

a
s 2

(f2) limgoyeo £ =0 (+00) if B>4r (B <4n),

(f3) (Ambrosetti-Rabinowitz condition): 36 >2 st 0<6F(s) <2f(s)s
Vs > 0, where F(s) = [ f(t)dt,

40(p—1)\ =1L
(a6 2 5

(f1) 3Jp> Q*'TO‘, st. F(s)>CpsP Vs >0, where Cp,> % and
P

||u||H1(R2>
.
(Jr2 Lax|ulP)|ulPdz) 2P

Sp = infueHl(Rz)\{o}

The main result is the following:

Theorem 3.4.1. Assume N = 2, a € (0,2) and f € C(RT;R) satisfying (f1) — (fa1)-
Then, problem (*) admits a nontrivial ground state solution.

First of all, let us introduce the following Moser-Trudinger inequality due to Cao [10],
which will be crucial for our variational methods.

Lemma 3.4.1. If 3> 0 and u € H'(R?), then

/ (66“2 —1)dz < +o0.
R2
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Moreover, if [|[Vullp2rzy < 1, [lullp2mey < M < +oo and B € (0,4r), then there exists
C > 0, which depends only on M and (3, such that

/ (7" —1)dx < C(M, B).
RQ
Since we are going to study the existence of positive solutions, we will assume that

f(s)=0 Vs<O.

Now let us consider the well-defined energy functional (thanks to Lemma 3.4.1)
S : HY(R?) — R, given by

S(u) = ;/RQ(WUF +u?)da — ;/RQ(IQ ¥ F(u))F(u)dz.

Next, we will show that S verifies the mountain pass geometry.
Lemma 3.4.2. Let f € C(R™;R) satisfying (f1) — (f3). Then,

(i) There exists p,dp > 0 such that S5, > do, Yu € S, := {u € H(R?) : 1wl 12y =
p}-
(ii) There is e € H'(R?) with e[l 12y > p such that S(e) < 0.

Proof. (i). Conditions (f1) — (f3) imply that for any p > 1, there exists C = C(p) > 0
such that o ,
[F(s)| < Clp)(Is| =" +[slP[e"™ ~1]) Vs eR,

from which it follows by Minkowski’s inequality

24a 2
|wwwpamas00wh%w+mmwﬁ _”Mﬁqw)'

Since p > 1, Sobolev embedding and Holder’s inequality, there exists a constant C; > 0
such that

1
2

1
3
]u\;-lTpa[eZl’”‘2 - 1]2-%&(133 < ( |u|fﬁwdx> <[e4””2 — 1]2fadx> <
R2

RQ

1
4p 2

2%a 8 4ru?
< il [ 77" i)

8 2 u?
8 2 m||u||H147" i
/ [eZratmu —1]d:c:/ [6 il — 1| de,
R2 R2
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fixing ¢ € (0,1) such that Q%\\unzlm = ¢ < 1, Lemma 3.4.1 implies

2 1

E4m —4 2

/ {e Il — 1] de < Cy for |ullgme) = ({(28—1—a)> g
R2

Then,

1
E2+a)\?
1PN, 11, gy < Clulley + Coll ey for Nl = (£552)"

Thereby, by Hardy-Littlewood-Sobolev inequality and inequality (3.1.3),

/IRQ(IQ * F( )) ( )dm < CHUH%QRQ) +C4HUHH1 (R2) for Hu||H1(R2) = <

and so ]
S(u)ZiHuH?{l(Rz — Cllullz ey C4HuHH1(Rz

1
2
Since @ > 0 and p > 1, (i) follows choosing p = <£(28—m)) with £ sufficiently small.

(ii). Fixing up € H'(R?) with uf # 0, we set

A(t):v,b< fuig >>0 vt >0,

[l a1

where

—_

Y(u) == /R2(Ia « F(u))F(u)dz.

[\)

Now, (f3) implies

'(t) _ 6
A®) >—, Vt>0.
Alt) — t
Then, integrating over [1, s||ugl| 1] with s > Taolor ” , we find

Up
(o) > ¢<> o °.
Toll
Therefore
1
Tolls

and (ii) holds for e = suy with s large enough. O

S(sup) < C18% — Cys? for s>

By the mountain pass theorem without (PS) condition from [42], there is a (PS)-c
sequence {u,} C H!(R?), where the mountain pass level c is defined by

0o < c:= inf S
0= e= el gy S0 W)
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with
I := {y e C([0,1]; H'(R?)) : 7(0) = 0,S(7(1)) = e < 0}.

The next lemma is crucial because it establishes an important estimate involving the
level c.
Lemma 3.4.3. The mountain pass level ¢ satisfies ¢ € [do, %). Moreover, the (PS)-c
sequence is bounded in H*(R?) and its weak limit u satisfies S'(u) = 0 in H—1(R?).

Proof. First, note that in the proof of (i) we can choose p > 0 sufficiently small such that

a?(0—
do < ﬁ. From (f3),

1 1 1
¢ = limsup (smn) - 98'<un>[un]) > (2 - 9) i supl [z

n—-+o0o

which means o0
lim sup ||| 71 g2y < 73" (3.4.1)

n——+oo
Let u € H'(R?) such that u™ # 0 and ¢ > 0. By (f4),

2 2

" c
Sttu) < S a2 gy — 247 / (Lo % PP da < 0 (3.4.2)
2 2" Ja

for some t,, > 1. Now, it is well-known that exists a positive radial function u, € H'(R?)
such that S, is achieved by u,. By (f1), it easy to see that

¢ = inf max S(v(t)) < inf max S(tt,u) < inf max S(tu) <
~v€T" t€[0,1] u€H1(R2),ut#0te(0,1] u€H1(R2),utz0 t>0
2 2
< max S(tup) < max t—”u I - &t% (Io x ub)ubdr | =
= >0 N AN R G D) Rz PP B

_2p
_ (=S _a%(0-2)
B 80(2+ )

b 2
2pr-T1 C]f*l
Consequently, from (3.4.1),

2

lim supl|uy, ||% <2
norros | MHHNE) S 40 a)

So without loss of generality, we may assume that

HunH%{l(RQ) <m Vnel,

for some m € (0, 4(5“7_;)) Furthermore, we claim that

[ o * F'(up) || peem2y < C ¥n € N. (3.4.3)
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In fact, observe that for any ﬁ <p<
inequality,

in view of Sobolev embedding and Holder’s

/ |un|p[e4’”‘gz — 1}pdx> <
RQ
plot2) p(a+2) p(2+a) Tra
< ol + 1 [ fuol ) (L) <
<

a?

|F(up)|Pdz < cl</ g |27
R2 R2

p(2ta)m 4

§6’3+C’4</ [e a Hun||2
RQ

by Lemma 3.4.1 and definition of m. Since 2+7a
above estimate imply (3.4.3).

Now, since {u,} is bounded in H'(R?), let us consider its weak limit u € H'(R?).
We are going to prove that S’'(u) = 0 in H~!(R?). Indeed, we will prove that for any
¢ € C3°(R?), as n — 400

) <(C; VneN

% ~» Proposition A.0.9 and the

[ o Pl fun)de = [ (o P((0) fuod

R2

First, observe that as in previous inequality, it is easy to show that { f(u,)}, is bounded

in Lé(Rz). So, for any ¢ € C§°(R?),

/Rz <”a # B (un)) f (un) = (Lo * F<u>>f<u>> bdx| <

(3.4.4)

/RQ(IQ * F(up))(f(upn) — f(u))édz| +

/RQ(I“ * [F(un) — F(u)]) f(u)¢dz|.

For the above first term, we recall that I, * F(u,) is bounded in L°(R?). Then,

<C

[ (e P () = (o s P ) oo

/ (f(un) — F(u))d].
R2

Since u,, — u a.e. in R?, the continuity of f 1mphes f(un) — f(u) a.e. in R2. This fact,
combined with the boundedness of f(uy,) in L« (R2) leads to

flug) = f(u) in La(R?),

from where it follows that

/ (f(un) — f(u))pdz — 0
R2
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as n — +oo.
For the second term of (3.4.4), notice that by Fubini-Tonelli’s theorem

/RQ(IO‘ # [F(un) — F(u)]) f(u)pdx

/RZ(F(un) — F(u)(Ia * (f(u)p))dz|.

Since u, — u a.e. in R? the continuity of F implies F(u,) — F(u) a.e. in R%. Using
4
the boundedness of F(uy,) in L7+ (R?) leads to

F(up) — F(u) in L7 (R?).

As, by Holder’s inequality,
4
Lo % (f(u)g) € L7= (R?),

we get

/]1%2 (Io % [F(up) — F(u)]) f(u)pdx| — 0

for any ¢ € C§°(R?). So the lemma is proved.
O

Proof. (of Theorem 8.4.1) Let {uy}n, C HY(R?) be the (PS)-c sequence and u its weak
limit. We are left to prove that u # 0 and it is actually a ground state solution to (*).
Since {u,} is bounded in H'(R?), we have either {u,} is vanishing, i.e.,

lim inf sup / uldr =0,
Bi(y)

n—-+oo yER?2

or non-vanishing, i.e., there exists a sequence {y,} C R? such that

lim inf/ uldr > 0.
Bi(yn)

n—-+00
If {uy,} is vanishing, then, by Lions’ result [21, lemma I.1], we have that
u, —» 0 in L*(R?), 2<s< 4o0. (3.4.5)

Using inequality (3.1.3), Hardy-Littlewood-Sobolev inequality and (f3), we get

/R?(Ia * F(un)) f(un)undz| < CHF(un)HLQ_%(RQ)||f(un)unHL2J%a(R2) <

! 2
<cC Hf(un)UNHL%%(R%-
For any € > 0, there exists C' = C(¢) > 0 such that

[F(5) < els|? + Cle)(e'™ —1) Vs€eR,
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from which we derive, using Minkowski’s inequality,

24«
4

He s dmu2 e
15 ol 1 oy < el ey + €16 /R ] P [T 1]75

Now, from Holder’s inequality and for some p > 1 to be chosen later, we have

(24+a)p—2

2 4p
_4 2 _4 (2+a)p 2 (2+a)p—2 (2+a)p
/ |up| ZFa [T —1)2Fa dx < </ |un|2pd:c> </ [64”“" - 1} da:)
R2 R2 R2

(24+a)p—2

2 4pm u2 2
(24a)p 2ta) —4m wn 2 (24+a)p (2+a)p
< |y, |*Pdx e lenln 1| dae < | |*Pda
R2 R2 R2

2
by Lemma 3.4.1 if we choose p > lig > 1. Then,

1
P
< w2555 + 02<e>< [ Iun|2pdx> <

1
< 036+C2(6)</ |un|2pd$)p.
R2

Since p > 1, (3.4.5) and arbitrariness of € > 0 imply

‘/m (Lo F(un)) f (un ) unda

/ (L, % F(un)) f ()t — 0,
RQ

from which we derive
u, =0 in H'(R?),

since &' (uy)[un] — 0 as n — +o00. Recalling that S is a continuous functional, we have
S(upn) — 0,

from where it follows that ¢ = 0, which is a contradiction. Thereby, vanishing does not
hold.

From now on, we set v, := un (- — yn). Therefore, ||v,|| g1 = ||un|| g for all n and
liminf/ v, |2d2 > 0. (3.4.6)
n—-+oo B

Since S and S’ are both invariant by translations,
S(v,) = ¢ and S'(v,) =0 in H YR?).

Since {v,} is also bounded in H!(R?), we may assume v, — v in H'(R?) and v,, — v in
L? (R?) by Rellich’s theorem. From (3.4.6) we get v # 0 and by the same arguments in

loc

Lemma 3.4.3 we can assume that S'(v) = 0 in H~1(R?).
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Finally, let N be the Nehari manifold by
N = {ue H'R*\ {0} : §'(u)[u] = 0}.
From |30, Proposition 3.11|, the mountain pass level can be characterized by

‘- ueHll(%g)\{o} max S(tu) = inf Su) < S(v). (3.4.7)

On the other hand, by weak lower-semicontinuity of H'-norm, Fatou’s lemma and (f3),
we get

1

= timint (G g onleey— [ o@D F ety [ (TP f(enude) >

n RQ

> 5(0) ~ 78wl = S(v),

since §’(v) = 0. So, last inequality combined with (3.4.7) give S(v) = ¢, showing that v
is a ground state solution to (*).
O

3.5 Existence of infinitely many pairs of radial solutions

Case N >3

In this section we will discuss the existence of infinitely many radial solutions to problem
(*), assuming the nonlinearity belongs to a particular class of subcritical functions.
In Section 2, we proved that the equation

~Au+u=flu), uecHRY)

has a sequence of radial solutions {ug}; with the energies going to infinity as k — +o0
when N > 2. On this way, we are interested on the existence of radial solutions to
Choquard equation (*) for N > 3 assuming the following conditions:

(f1) f € C(R;R) and there exist C' > 0 and NZQ,"O‘ <@ << % such that
[f(s)] < C(|s|n~" + [s]271), Vs eR.

(f2) Ty T = o0, where F(s) = [y f()dt Vs € R,

(f3) fis odd.

Now we state the main result.

Theorem 3.5.1. Let (f1)—(f3) hold and N > 3. Then, problem (*) admits an unbounded
sequence in HY(RN) of radial solutions {+uy, ren such that S(uy) = S(—uy) — +oo as
k — +oo.
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First, let explain why it is possible to seek solutions on the space H}(R™).
Let us consider the orthonormal group of dimension N > 2

G := O(N),
and its action on H'(RY) defined as
gu(x) == u(g tz), forevery g€ G and zeRY.

So
Fiz(G) := {u € H*(RY) : gu = u,Vg € G}

consists actually of the space H}(RY).

To prove our result, we need the principle of symmetric criticality theorem.

Lemma 3.5.1. ([42], theorem 1.28). Assume that the action of a topological group G on
a Hilbert space X is isometric. If S € CY(X,R) is invariant and if u is a critical point
of S restricted to Fix(G), then u is a critical point of S.

From the above lemma, it suffices to look for critical points of S on H!(RY).
To prove Theorem 3.5.1, we need the following fountain theorem [42, theorem 3.6].

Theorem 3.5.2. Let (E,||||) be a Hilbert space with {e;};en an orthonormal space, and
set By, := span(ey, ..., ex) for any fived k € N. Consider an even C*-functional ¢ : E — R
which satisfies (PS) condition. If, for every k € N, there exists Ry > ri > 0 such that

(i) maxyep, |ju|=r, P(u) < 0;

(i1) nfepl  juj=ry d(u) = 400 as k — +oo.

Then ¢ possesses an unbounded sequence of critical values ci characterized as

¢, = inf sup ¢(h(u>)7

hely ue By,
where By :={u € E} : ||u|| < Ry} with Ry large enough so that (i) holds, and
I'y:={h:By— E: hisodd, hopy, = id}.
Now, we will give some important lemmas.
Lemma 3.5.2. There exist p,§ > 0 such that Sjpp, > €.

Proof. By (f1), Hardy-Littlewood-Sobolev inequality and Sobolev embedding, we have
for any u € HY(RY)

1 2 2 1 2 2
S(u) > QHUHE1 = Ci(llullzroa + lJullfioe,) > 5||UH§11 = Co([Jull3fr + [lull )
Since g2 > q1 > 1 we can choose constants p, a > 0 such that SIBBP > a. O
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Lemma 3.5.3. For each finite dimensional space E C HY(RYN), there exists R = R(F) >
0 such that SIE\BR <0.

Proof We argue by contradiction. Supppose that, for some finite dimensional subspace
E c HYRN), there exists {v,}, C E satisfying an”Hl @~y — 00 and S(vy,) > 0 for

any n € N. Set W, , we may assume wy, — w in H'(RY), w, — w in L*(RY)

= Ton || 1’
for 2 < s < §=5 and w, — w a.e. in RN If w # 0, there exists a Lebesgue-measurable
set A C RY Wlth |A| > 0, such that |v,(x)] = 400 a.e. x € A. Then, by (f2) and Fatou’s
lemma

0< Ston) 1 C/ (/A L Fal) oy >|(v($))]wn(a:)]dx—>—oo

lonll3n — 2 2 z —yN= o (y)] n(2)]

as n — +oo. This is a contradiction. So w = 0 and w,, — 0 in L® for 2 < s <
22 Since all norms are equivalent on finite dimensional spaces, we have |Jw, || HI®N) <
Cllwn || s @~y — 0 which is an absurd since |[w||g1 = 1 for any n. O

Lemma 3.5.4. S satisfies the (PS)-c for every k € N.

Proof. Set rg := ]\?—fa First, observe that by Lemma 3.5.2, ¢ > 0 for any k. Assume
that {u,}, C H}(RY) satisfies S(u,) — cx and S’(uy,) — 0 in H~H(RY) as n — +oo0.
Arguing as in Propositions 3.1.3 and 3.1.4 using [42, theorem 2.9] (involving Lemma
3.5.3), it follows that {uy,}, is bounded in H!'(RY). So we may suppose u, — u in
HYRN), up, — w in L70%(RY) and L7092 (RY) by Corollary A.0.4, and u, — v a.e. in
RY. By Hardy-Littlewood-Sobolev inequality, inequality (3.1.3), Holder’s inequality and
(f1) we deduce

\ /RNUa s F () f (1) (e — )| <

1 -1
(HunHLqul + Hun||LTof12)(||uanLlroq1 |tn — | Lroa + ||un||quT042 |tn — ul|prosz) = o(1)

as n — 4o00. Similarly,

[ o P ) )] = o)

as n — 4o00. Then,

o(1) = (8" (un) = S'(w))un — u] = [[un — ull7p ey +o(1)
as n — +00. So u, — u in HY(RY). O
Lemma 3.5.5. Let E = H}(RY). Then there exists rj, > 0 such that

inf S(u) = 400 as k— +oo.
w€Elull g =rs
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Proof. Set rog = ]\?—ﬁ[a We previously proved that for any v € H'(RY),

1 2 2
S(u) > 5HUH§;1 — C(Jlullzioa + llullzie)
for some constant C' > 0. Let define us, for any k € N,

ap = sup HUHLTOqla B = sup HUHLTO‘I?-
weBE | ull g1 =1 u€B ) lully1=1

So, for u € Ekl_17 we have, by homogeneity of the norm, for any k£ € N,

1 2 2 2 2
S(u) = §I|Ul|§{1 — Cop lull i — CBE lull
Using the fact that g2 > ¢1 > 1, it holds

2 2
lull gt < llullfp + llull,

so that 1
S(u) 2 llully (5 — Ca}®) = Cllul 3 (a2 + 52%2). (35.1)

Now, by Lemma 3.5.6, ay, B — 0 as k — +o00o. So, for k > 1, relation (3.5.1) becomes

1 22 (2 2
S() = llullfp = Cllullg (k™ + ™).
: . 2q1 2gz | 2792 . - 1L
Choosing ry, := ( 4q2C(a," + B8,"7) — 400 as k — 400, we obtain for u € Ej-,

1 1
S(u) > 4(1 — >7’,% — 400 as k — +oo.
q2

]
Lemma 3.5.6. Let B = H}(RY) with 2 < p < 2* (p=2if N =2). Then we have that

dy = sup |lullp =0 as k— 4oc.
u€B;||ull 1 =1

Proof. Let N > 3. It is clear that 0 < di4+1 < dj, for every k € N, so that d, - d >0
as k — 4o00. By definition of sup, for any k € N, there exists u, € E,i‘_l such that
lug|lgr = 1 and ||ug|/ze > %’“. By definition of Fj- ; and weak-convergence, uy — 0 in
HY(RY). By Corollary A.0.4, up — 0 in LP(RY) for those p. Thus we have proved that
d=0.

The case N = 2 is equivalent to the case N > 3, in view of Corollary A.0.4 on the
plane. O

Proof. (of Theorem 8.5.1) Using Theorem 3.5.2 and (f3) with {e; }nen orthonormal basis
of E = H}Y(RY), $ = S and choosing Rj, > 7} large enough characterized by Lemma
3.5.3, we deduce that S possesses a sequence of radial critical points {4ug}r C H'(RY)
such that ¢, = S(uy) — +00, and so unbounded in H!(RY).

O
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Case N =2

We now want to extend Theorem 3.5.1 giving a new result on the plane. As in previous
subsection, we seek infinitely many radial solutions to problem (*) assuming the nonlin-
earity has subcritical growth conditions in the same spirit of Section 3.2, but a little bit
different. Consider f € C(R;R) satisfying

(fi) ¥8>0,3C = Cp > 0 such that |f(s)| < Comin{1, |s|}e?" Vs € R, for some
>

[SJis}

(f2)  limygopoo T = o0, where F(s) = [y f(t)dt Vs € R.

(f3) fis odd.

Our main result is the following

Theorem 3.5.3. Take f € C(R;R) and let (f1)— (fs) hold on the plane. Then, problem
(*) admits an unbounded sequence in H'(R?) of radial solutions {Fug}ren such that
S(ug) = S(—ux) = +00 as k — +o00.

With the same notations above, thanks to Lemma 3.5.1, we use the fountain theorem
to get infinitely many radial solution. So we need to verify the conditions of Theorem
3.5.2.

Lemma 3.5.7. There exist p,§ > 0 such that Sjpp, > €.

Proof. Condition (f1) implies that for any # > 0 and p > 1, there exists C = Cpp > 0
such that . ,
IF(s)| < Cpo(ls| 2 +|slPle” —1]) VseR.

Now, arguing as in (i) of Lemma 3.4.2, we get for any fixed u € H'(R?)

[, U P Pu)de < Cllulis, + CillulFh e
and so )
S(u) > 5”“”%{1(]1@2 C||UH§IJEO{R2 01HU||12§1(R2)~
Since @ > 0 and p > 1, there exist constants £, p > 0 such that Sy, > . O
Lemma 3.5.8. S satisfies the (PS)-cy for any k € N.

Proof. Assume that {u,}, C H!(R?) satisfies S(u,) — cx and S'(u,) — 0 in H~(R?)
as n — +0o. As in Lemma 3.5.4, we get that {u,}, is bounded in H'(R?) and we may
suppose u, — u in H'(R?), u, — u in L*(R?) for any s > 2 by Corollary A.0.4, and
Up — u a.e. in R2.

By Hardy-Littlewood-Sobolev inequality and inequality (3.1.3), we have

[ F ) ) = ] < CIP )] L) = 012
R2

73 (R2)
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It is easy to check (as in Section 3.2) that

IF(u)|| o . <C', ¥YneN.

Iyt gy <

Now, by (f1), Holder’s inequality and Proposition 3.2.1 we get
_4 _4 . A9 0 g2 _4
Up )| 2Fe Uy — u|Zradr < Cy min{1, |u,|zre }e”"n |u,, — u|2Fedr <
| (un) |25 [#rade < C {1, |up |25 b0 | |Frede <
R2 R2

_2q 24+a—2q
. 9 0(2+a) ug 2+« 4 4
< Cy min{l,u; e 20 ""dz |up, — u|2Fo—2adx <
R2 R2

2+a—2q

4 T4
< C’é(/R2 |ty — u|2Fa=2a dl‘) —0

as n — 400, since § < ¢ < 1+ § and Corollary A.0.4 (it is not restrictive to assume
q <1+ ). Arguing as in Lemma 3.5.2, we conclude the proof. O

Lemma 3.5.9. Let E = H!(R?). Then there exists rj, > 0 such that

inf S(u) = 400 as k— +oo.
'U‘GE;ZF”U”Hl:Tk

Proof. Condition (fi) implies that for any # > 0 and p > 1, there exists C = Cpy > 0
such that ,
|F(5)] < Cpa(ls]? +[sP(e” —1)) Vs €R,

for some ¢ > 1+ §. So for any u € H'(R?),
2 2
IF@? o < Clul™ s + [l ™, ).
L2+a L2Fa L2+a

Then, by Hardy-Littlewood-Sobolev inequality and inequality (3.1.3), we have

L2 2 2
S(u) = llullzn = Cllull™ s = Cllul™s, -
L2+« L2+«
Choosing p > ¢ > 1, arguing as in Lemma 3.5.5, we conclude the proof. O

Proof. (of Theorem 3.5.3) We use Theorem 3.5.2 since Lemmas 3.5.6, 3.5.7, 3.5.9 and
Lemma 3.5.3 (valid also for N = 2) hold. So we obtain a sequence of radial solutions

{£ug }r with their energy unbounded as in the proof of Theorem 3.5.1, and so unbounded
in H!'(R?). O
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Appendix A

Technical results and useful tools

In this chapter we will prove some technical results used in the thesis.
Theorem A.0.1. Let Q be an open bounded set with Lipschitz boundary in RN with
N > 3. Let g € C(R) satisfying g(0) =0 and

lim sup l9(s)l

5—0 |3’ |s| =400

< 400, limsup ||j§f)|1 < +o0. (A.0.1)

Let denote G(u) = [ g(s)ds. Then, the functional V(u) = [, G(u(x))dz is well-defined
and of class C* on HY()). Moreover:

V'(u)[v] = /Qg(u(x))vdx, Yu,v € HY(Q).

Proof. The fact that G(u) € L'(£2) follows from (A.0.1) and Sobolev embedding theorem
if u€ H'(Q). Now, it suffices to show:

(i) H <V(u o) = V() —t [, g(u)vd:z:) ‘ S 0ast— 0, Vu,v e H(Q);

— 0asn — +oo.

(ii) If u, — win H'(£2), then: SUD o]l 1 g <1 Jo(g(un) — g(u))vdz

To prove the first statement, we have that

<),

(Gt-10) = Gty | < ((sup ot v+ o] )l <

(G(u+tv) — G(u) — tg(u)v)% dx.

'1<V(u+tv) — V(u) t/

Q

g(u)vdm)

Now, by the Mean Value Theorem:

< (C+ Cluf 4 Cl* Yol =: h,
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using that |g(s)] < C + C|s|> ~! for s € R, for some constant C' > 0. By Holder’s
inequality and Sobolev embedding theorem, one has h € L'(Q). Next, by continuity of
g, we have

(G(u+tv) — G(u) — tg(u)v)% —0 ae z€Q, as t—0.

The conclusion now follows applying Lebesgue’s dominated convergence theorem.

On the other hand, to prove the second statement, we also know that u,, — u in
L? () by the Sobolev embedding theorem. Hence, by a standard result in integration
theory, there exists 0 < @ € L? () such that (up to a subsequence)

lul, |up] <@ ae. in Q, VneN.

Therefore we have -
l9(un) — g(u)|¥+2 < C(1+u*).

Due to the boundedness of €2, by continuity of ¢ and dominated convergence theorem,
2N
we have g(u,) — g(u) in LN¥+2(Q) . Finally, by Holder’s inequality:

N+2 1
2N y 2%
sup (g(un)—g(u))vdx| < </ lg(un)— |N+2d:z> </ |v|? dm) .
HUHHI(Q)Sl Q ||U||H1<Q)
O
Theorem A.0.2. Let N > 3 and let g : R — R be a continuous function satisfying
g(0) =0, limsup l9(s)] < 400, limsup ‘ggfl < +00. (A.0.2)
s—0 |3| |s]—+o0 ‘S‘
Let denote G(u) = [ g( . Then, the functional V(u) = [pn G ))dx is well-defined

and of class C’1 on HI(RN) Moreover:
V'(u)v] = / g(u(z))vdz, Yu,ve HY(RY).
RN

Proof. The fact that G(u) € LY(RY) follows from (A.0.2) and Sobolev embedding
theorem if u € H'(RY). Now, we follow the proof of previous theorem. For any
u,v € HY(RY), one has

'1(v(u+tv)V(u)t/RNg(u)vdx)‘HO as t—0, Yu,ve H(RY).

Indeed, using now the inequality

l9(s)| < Cls| +Cls|* ™! Vs eR,
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for some positive constant C, we have (with the same notation above)
h = (Clul + Clo| + Clul* + Clo|*)|],

which is in L'(R?") due to Holder’s inequality and Sobolev embedding theorem.
In order to prove the second statement (as above), by previous theorem, it suffices
to show that Ve > 0, there exists Ry > 0 such that

sup
llvll 2 <1

/ (9(up) — g(u))vdz| < e.
|z|>Ro

Now, we know that u, — u in L (RY) by Sobolev embedding theorem because
un — w in H'(RM). Hence, as in the proof of Theorem A.0.1, there exists (up to a
subsequence) 4 € L? (RY), @ € L?(RY) such that for all n € N:

lul, |un| <@ ae. in RV, lul, |un| <@ ae. in RV,

Then, for any R > 0, using the inequality |g(s)| < Cls| + C|s|>* ~!, Vs € R, we have

sup
1<1

§C||ﬂ”L2({|x|>R})< sup ||v’L2({|J:>R})>+

HvHngl

/ (9(un) — g(u))ode
|z|>R

l[oll

Nl g2 (1212 ) (Sup||v||H1<1 ’“”LQ*({x|>R})>
by Holder’s inequality. Hence, again by Sobolev embedding theorem, one has

sup

R < Cllallzzgzizry) + ClEll L2 (101> ry)-
vl 1<

/ (g(un) — g(u))vde
o[> R

Since @ € L2(RY) and @ € L? (R"), we derive the existence of Ry > 0 such that

sup / (9(up) — g(u))vdz| < e.
ol 1 <11 J|z|=Ro
Now, we will give some results about radial functions in Sobolev spaces: O

Lemma A.0.1. (Radial Lemma) Let N > 2. If u € LP(RY), with 1 < p < +o0, is
a radial decreasing function (i.e. |u(x)| < |u(y)| if |z| > |y|), then u is a.e. equal to a
continuous function for x # 0 such that

_N N P
lu(z)] < |z| » ST ullpp @y, Vo # 0.
Proof. For all r > 0, setting = |z| in polar coordinates, we have

r

) = 8% [ fu(o)Ps¥ s = 8% fu(rP
0
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Theorem A.0.3. (Strauss’ Compactness Lemma) For N > 1, let P,Q : R — R be two
continuous functions satisfying

P(s)
Q(s)

Let {u,} be a sequence of measurable functions : RN — R such that

=0 as |[s| — +oo. (A.0.3)

sup/ 1Q(un(z))|dz < 400 and P(u,(z)) = v(z) ae in RY, as n— 4oo.
RN

n

Then, for any bounded Borel set B, one has
/ |P(un(x)) —v(z)|de =0 as n— +oo.
B

If one further assumes that
P(s)
Q(s)

—0 as s—=0 and up(x) =0 as |x|— +oo wuniformly with respect ton,

(A.0.4)
then P(uy) converges to v in L'(RN) as n — +oo0.

Proof. To prove the first part of the theorem, we need to show that { P(uy,)},, is uniformly
integrable on B. In fact, uniform integrability on a bounded set B and convergence a.e.
for P(u,) implies L'(B)-convergence by Vitali’s convergence theorem.

First of all, from condition (A.0.3) we have

|P(un(2))| < O+ C|Q(un(x))| Ve eRY,

for some constant C' > 0, by continuity of P and @. Thus P(u,) and v (by Fatou’s
lemma) are in L!(B) for all n, because

sup /]RN |Q(up(z))|dx < +00.

n

Applying again (A.0.3), one has

/ | P (un(2))|dz < E(K>/ |Q(un(2))|dz < Ce(K),
{IP(un(2))[=K}nB B

where €(K) — 0 as K — +o00. This shows the uniform integrability on B.
Now, take € > 0; condition (A.0.4) implies that exists Ry > 0 such that

[z[ = Ro = [P(un(2))] < €lQ(un(x))], Vn.

Therefore, by Fatou’s lemma, v € L'(RV), and

/ |v(x)|dx < Ce.
{lz[>Ro}
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Now, from the first part of the theorem, there exists ng > 1 such that for any n > ng:
/ Py () — v(w)|d < e.
{lz[<Ro}
To sum up, we have for n > ny,
/ 1P(un(2)) — v()|dz < 26C + e
RN

Since € > 0 is arbitrary, the proof is finished. ]

Corollary A.0.4. If N > 3, the embedding H}(RY) < LP(RN) is compact for 2 < p <
]\2[—11[2. If N =2, the embedding H}(R?) — LP(R?) is compact for 2 < p < .

Proof. let us consider N > 3. The embedding H'(RY) < LP(RY) is continuous from
Sobolev embedding theorem for those p. Now let {u,} C H}(RY) be a sequence of radial
functions such that ||u, |51 is bounded. From Lemma A.0.1 we deduce that |u,(z)| — 0
as |x| — 400 uniformly with respect to n. Hence, we can extract a subsequence (always
denoted by u,,) which converges a.e. in RV and weakly in H'(R") to a radial function u.
More precisely, by Rellich-Kondrachov’s theorem we find a subsequence that converges
a.e on By for each k > 1. Now, a standard diagonal argument implies the existence of a
subsequence convergent a.e. in RY to u.

Therefore, applying Theorem A.0.3 with the choice P(s) = |s|P and Q(s) = s2+|s|?",
we have that u, converges strongly in LP(R™) for 2 < p < ]\2[—]_\[2
Finally, when N = 2, it is possible to repeat the same arguments above using Theorem
A.0.3 with Q(s) = s? + e®” — 1 and an appropriate a > 0 given by classical Moser-
Trudinger inequality. O

Lemma A.0.2. For N > 2, every radial function v € H'(RY) is a.e. equal to a
continuous function for x # 0 such that

1-N
lw(@)| < Onlz[ 2 |lullgr@nyy  Viz| > an,

where Cn and an are positive constant depending only on the dimension N.

Proof. As C$°(RY) is dense in H'(RY), it suffices to consider radial u € C§°(RY). Let

m = &=L and u = u(r) with r = |z > 0; by a simple calculation we have

(r®™u?), = 2(r™u),r™u < (P ), 4 (M u)? = eV (W2 4 u?) + m(erY 2, —
_(N—1¥N—3) PN=32 < TN—I(U% +u?) + m(TN—QUZ)T‘

Now, if N > 3, integrating over (0,7) with 7 such that B, D supp(u), we obtain

T
rNlh2(r) < / (ui + u?)pN"tdp + mrN 22 ().
0
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Using polar coordinates, we have
m _
(1 - r)TN Y2 (r) < CN||uH§{1(RN).
Choosing r > m fixed, we have concluded the proof.

In the case N = 2, the differential inequality becomes

1 1
—(ru2)T < r(ug + u2) + §(u2)r + EUQ'

Integrating over (r, +00) with 7 > 0 such that the integrals below make sense, we have

LY o Foo o > u? Foa o <1
(r+5)e0 < [T e ados [T ars [Tk iidos [T o
if r > 1. Thus,

LY o I
27r(r + 2)u (r) < ZHUHHl(RN)'

The proof is completed as before. O

Lemma A.0.3. For N > 3, every radial function u in DY2(RN) is a.e. equal to a
continuous function for x # 0, such that

[u(@)| < Cwlal = [Jullpragyy Vo £0,
where C > 0 only depends on N.
Proof. As above by density, it suffices to consider u € C’(‘)’O(RN ) radial. Now, setting

r =¢Y for y € R, consider
1
o(y) = u(r)ed V2,
Using polar coordinates, by a simple change of variables, one readily checks that
B +00 too (N 9 2
Vulieer, =155 [ werare [ S ),

using the fact that also v € C$°(RY). Now, for any g € H*(R) one has

7*() < 2lgll2@llg'll2@) Yy € R.

Indeed, since g € H(R), we have that g is absolute continuous on R and vanishes to 0
at infinity. So, by fundamental theorem of calculus and Holder’s inequality:

'/ (g (0)it] =

Then, in our case we obtain

‘ / 29(1) dt\ < 2gllzo 19 2o

u(r)r¥ ‘ <Cn HVUHLQ(RN)

for some positive constant C. Finally, by definition of D%2-norm, we have the desired
inequality. O
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Some results about Schwarz symmetrization: We recall here, without proofs
(see [18]), the basic properties of Schwarz symmetrization.
Let f € L'(RY); then f*, the Schwarz symmetrized function of f, is a radial, decreasing
in |z| = r, measurable function such that for any o > 0,

{f* = o} = {IfI = a}l.

Furthermore, one easily finds that

| e = [ P

for every continuous function F' : R — R such that F(f) is integrable.
An important property of Schwarz symmetrization is the following:

Theorem A.0.5. (Riesz’s inequality) For N > 1, let f, g be in L2(RN); then

f@)g(z)de = | f*(x)g"(z)dz.
RN RN
A fundamental fact about Schwarz symmetrization is the following result:

Theorem A.0.6. (Pélya-Szegé inequality) Let u be in DV2(RY) if N > 3 (respectively,
in H'(RN) for any N > 1). Then u* belongs to DV2(RN) (respectively, to H'(RYN) for
any N), and we have

/ \Vu*(m)]deS/ |Vu(z)|*dz.
RN RN

Now, we will give the proof of Theorem 2.3.1.

Theorem A.0.7. For any k > 1, there exists a constant R = R(k) > 1 and an odd
continuous mapping T : mg_1 — HE(BR) (recalling that 71 = {l = (l1,...,l) € R¥ :
Zle |li| = 1}) such that 7(1) is a radial function for alll € mp_1 and

0¢7(mr—1), (A.0.5)

dp,C >0 depending on k such that p < HVUH%Q(BR) <C Vuert(mp-1), (A.0.6)

G(u)dr >1 Vu € 1(mp_1). (A.0.7)
Br

Proof. The proof is divided into three steps:
(i) Choice of R = R(k) > 0;
(ii) Construction of ;

(iii) Properties of 7.
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Step 1. In the following, we consider u = u(r) for r € [0,R], r = |z|. Recall that
there exist £ > 0, given by hypothesis (1.1.3), such that G(£) > 0. We now define a
subset in H'(Bgr) which will be useful later.

For k > 1 and R > 1, we say that u € N(R) if u € H}(Bg) is radial, continuous and
satisfies the following three properties:

—£<u<¢ on [0,R]. (A.0.8)
u==£ on [0,R] exceptinatmost k subintervals Ji,..,J, (p<k) of [0,R],
each of which having length one, such that u(R) = 0. (A.0.9)

In each of the intervals J;,1 <j<p, wu isaffine with [|u/(r)| = 2¢. (A.0.9)

The choice of R = R(k) > 1 is determined by the following lemma.

Lemma A.0.4. For all k > 1, there exists R = R(k) > 1 such that V(u) > 1 for all
u e Nk(R)

Remark A.0.5. In the preceding statement, and henceforth, we identify T'(u) and V (u)
with T(@) and V (@), respectively (as in Theorem 2.3.1); that is, for u € Hi(BR) we set

T(u):/B \Vul|?dz, V(u) = g G(u)dz.

Proof. (of Lemma A.0.4) Take R > k + 1; it is easily seen, using (A.0.8) and (A.0.9),
that for u € Ni(R) one has

V(u) > G(&)|Br-k| — Ck|Br — Br-1l,
where 0 < €' = max|,|<¢ |G(z)]. Since |Bgr — Br-1| < C'RN~1 we deduce
V(u) > CLRY —C,RN™', we Ny(R), R>k+1.

Therefore, there exist an R = R(k) > 1 verifying Lemma A.0.4. O

Step 2. Let k > 1 and fix R = R(k) > 1 as in previous lemma. Now, we are going
to construct an odd continuous mapping 7 : 7,1 — Ni(r) C H}(Bg).
Let I = (Iy,...,1lx) € T_1; we set

i
o = RZ ||, orequivalently, R|l;|=0a; —o;j—1, @<p.
j=1

For [; # 0 and r € (aj_1,04), we let ¢(r) = sign(l;). Joining together all adjacent
intervals like (a—1, @;), (i, @it1), ... on which ¢/(r) has the same sign, we obtain a new
subdivision of [0, R] based on endpoints

O=ay<a1<..<a,=R, with 1<p<k,
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which is coarser than the subdivision {;};.

In this way, €(r) has a given sign for all r € (a;—1,a;). We denote this sign by ¢,
thus ¢ = ¢(r) for r € (a;—1,;). In particular, ¢, = £1 and ¢; is alternating, that
is €,41 = —¢;. Let us observe at this point that the subdivision (a;) is unambiguously
determined from [ € m_.

Let I; = (aj—1,a;), 1 <1i <p. We first define uw = 7(I) on I, then on I,_;, and so
on, inductively for all I;’s.

(i) In I,. Set u(r) = 2e,¢(R —r), for max{a,—1, R — 1} < r < R. There are now two
cases:

Ifa, 1>R~— %, then u is defined in all of I,,.

If ap_1 < R — 3, then we set u(r) = ¢ for a1 <r < R— 3.

(ii) In I,_y. Set

u(r) = u(ap-1) + 2ep—1&(ap-1 — 1),
for all r such that a,—o <7 < ap—1 and |u(r)| < &; that is for a,—1 > r > max{ap—2,7p—1},

where
§ — ep—1u(ap-1)

2€

Tp—1 = Qp—1 — .
Again there are two cases:
If rp—1 < ap—2, then w is defined on all of I,_;.
If rp—1 > ap—2, then we set u(r) = e,—1& for ap—o <7 <1rp_1 < a,_;.
(iii) Define u by induction on I, 1 < j <p — 1. Set

u(r) = u(aj) + €;2¢(a; — )
for all r € [aj_1, a;] for which |u(r)| < &; that is, for r > max(aj_1,7;), where

§ — ejulay)
-
If r; < aj_1, uis defined on all of I;. Otherwise, aj—1 < rj; < a; and we let u(r) = ;&
forrina;—1 <r <rj.

This construction defines unambiguously, for all [ € m;_1, a function u; we denote as
u = 7(1). It is immediately checked that 7(I) € Ni(R) for all I € 7,_;. Thus we have
constructed a map 7 : m,_1 — Ni(R) C H(Bg).

ri=a; —

Step 3. We now show that 7 has the properties stated in the theorem. First, one
readily checks that 7: w1 — H&(B Rr) is a continuous mapping. Furthermore 7 is odd.
Indeed, it is easily seen that 7(—l) = —7(l) at each step in the preceding construction.
The subdivisions (a;) associated with [ and —[ are the same, while the ¢;’s are of opposite
signs for [ and —I. By construction, 7(I) is a radial function. Lastly, as (A.0.5) and (A.0.6)
are consequences of the definition and continuity of 7, we get(A.0.7).

Since 7(1) € Ni(R), we have, by the choice of R in Lemma A.0.4,

V(u) >1 for uer(mp_1).
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Proposition A.0.6. (Hardy-Littlewood-Sobolev inequality) Take N > 2, f €
LP(RY), g € LHRY) with p > 1, t < oo such that % +14 % =2 and X € (0,N).
Then, there exists C' > 0 such that

//RN BN x)|z —y|~ —A gy )dwdySC7>\7N||f||LP(]RN)||g||Lt(RN).
X

In particular, if p=1t=

the best possible constant is given by

N+a7
E o
Caim " [ 2]
r(&ta) [T(N)
Proof. The proof of the inequality can be seen on [12, theorem 4.3]. O]

Lemma A.0.7. Let N > 2, o € (0,2), 8 € (0,2) and H, K defined as in Proposition
3.1.5. If & <0 <2— %, then, for every € > 0, there exists Ccy € R such that for any
fized v € H'(RN) which solves (3.1.6),

/ (I * (H|u|") K |u|?>~0dx < 62/ \Vul|?da + Ce,g/ u?dz.
RN RN RN

In order to prove the lemma, we will use several times the following inequality.
Lemma A.0.8. Let N > 2, q,r,s,t € [1,400) and X € [0,2] such that

a 1 1 X 2-=A
+ .

If 6 € (0,2) satisfies
. a 1 1
min{q, r} <N — 5) < 0 < max{q,r} <1 - s>’

min{g, 7} (; - 1) <2-6 < max{q,r} (1 - 1),

t t
then for every H € L*(RY), K € LY(RY) and u € L4(RY) N L"(RY),

L U Gl a2 < Clull oyl sy oy e

Proof. First observe that if § > 1, £ > 1 satisfy
Sobolev inequality implies

=

+

=

= 1+ %, the Hardy-Littlewood-

</RN(‘KH“‘2_9)%:E>%.

W=

/RN(IQ * (H]u‘O))K]u‘Q—de < C</RN(HHU’9)§CIOC>
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Let 1 € R. Note that if

1
+- <1, (A.0.10)

0<u<6# and

| =
=
>
=

then by Holder’s inequality

1
2—0\3
(AP ) < U oo o
Similarly, if

::A;u+(2—9);()‘—/‘)+1<17 (A.0.11)

A—(2-0)<p<X and

SNl

then )
Conig ) A
(] TP )< €y Bl Bl

It can be checked that (A.0.10) and (A.0.11) may be satisfied for some p € R if and only

if the assumptions of the lemma hold. In particular, % + % = % + % = % + 2;—)‘ =1+ %,
so that we can conclude. ]

Proof. (of Lemma A.0.7) Fix u € HY(RY). Let R > 0 and ¢r € C°(R) be such that
0<¢r <1, ¢r(s)=1for |s| < R and ¢gr(s) =0 for |s| > 2R. Set

H*(u) := ¢p(u)H(u), Hi(u):=H(u)— H"(u)

and the same thing for K := K*+ K,. By growth conditions on F, we get that H*, K* €
2N
L= (RN and H,, K, € La+z(RV). Applying previous lemma with ¢ = r = 2~

N-2>
s:t—mand)\—()wehavesmcew
I % (Ho|u|?)) (K. |u|*~%)dx < C||H. K, 2
[ U L)) < O g, o T, o TP,
. N—
Taklngnows:t—7andq—r—)\:2,wehaves1nce|(9—1]<TO‘,

[ G G DU ) < O g 12 gy v

Similarly, with s = 0?52, t= TN, qg=2,r= ]\2,—1_\72 and A =1,

0 ®(, (2—60 *
/RN(Ia*(H*\UI NE ") de < ClH 2y oo I 2 g 1l 2, o Tl 2y
and with s = 2N ,t= jivg,q:zr—ﬁ and A =1,

/RN(Ia*(H*IUIG))(K*IuIQ_G)dfCSCIIH*IILQN Al 220 o 1l 00 ey el 220)-

La+Z (R Z(RN)
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By Sobolev inequality, we have thus proved that for every u € H'(RY),

/]RN(Ia s« (H*|u|”)) (Ku|u|*~%)dx <

gc@ﬂmﬁ%mmwamﬂawm/ wmd%wngNwwKWQNw”ANﬁm>

The conclusion follows by choosing R = R(e) > 0 sufficiently small such that

C”H H 2N HK*H 2N SGQ.
at2 N) La+2(RN)

O

Proposition A.0.9. Take N > 2, p€ [1,%Y), g € (£,+00) and f € LP(RY) N LI(RY).
Then, there exists C > 0 such that

o * fllpoo@ny < CUFllzo@ny + 11 £l Lamvy)-

Proof. By choosing p, ¢ in that range we have (N — a)q 1 <N < (N- a)ﬁ; therefore,
after splitting the integral, Holder’s inequality and a change of variables, we get, for every
r € RN

1
dy =2
Lesaiso [ HEay <o [ ) Wl
By

Ly

dy -
+C’</R M,) 1l e @i\ By () < CUflo@yy + [1f ]| Lageny)-

TRy
O

Finally, we give the proof of Lemma 3.3.9.

Proof. (of Lemma 3.8.9) Let ¢ € C$°(RY) be a cut-off function with support By such
that ¢ =1 on By and 0 < ¢ <1 on By. Given € > 0, we set ¢¢(z) := ¢(z)Uc(x), where

(NN —2)e )
UE(x) = N
(2 +|z[*) 2

By [42, lemma 1.46], we have the following estimates:

N=2 if N>4
/ Vyelrar = 5% 4 {0 N2
RN Kie+0(e) if N=
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/ | ¥2de = % + O(N) if N >3,
RN

Kae? + O(eV72) if N>5

Y2dr = { Kye?|loge| + O(e?) if N =4

N
® Kae + O(€?) if N =3,
where K7, Ko > 0 and S being the Sobolev constant. Then we get

/ (IVe]? + ¢2)dz = ST + K262\loge\+0( ) if N=4 (A.0.12)
(K1 + Kye+O0(e?) if N=3.

By direct computation, we get

N+ao

</ We‘md$> . = KaeVTo=(N=2)a 4 y(NFa=(N=2)q)
RN

and then by the Hardy-Littlewood-Sobolev inequality,

N+ao N+a

N+a 2N 2N 2Nq 2N
/ (I * || N=2) |[tbe|Tdx < Cy / || N2 dx / |[1he| M¥a da: <
RN RN RN

N+a—(N—-2)q N+a—(N—-2)q

< Kye 2 +o(e 2 )s (A.0.13)

where K3, Ky > 0 and C,, defined in Proposition A.0.6. Moreover, similarly as in [40,41],
by direct computation, for some K5 > 0,

Nta N+4ao

/(uﬂmﬁWN|%”d (AaCa) ¥ S0 ?" — K™ 4 o(¢"F™),  (A0.14)
]RN

N—«a
where A, = F((Q) a) and S, is defined in Section 3.3. We also have
2
U N3 2 Ud(y
[ o sl ¥ > aa [ /__@§>M@_
RN RV JRN [T ‘

N+a N+a

N2
Sy Naddy// e
RN\B; /By |z -y By JRN\B; \1’— Yl

/ / N Uely )dxdy>,
RN\B; JRN\B; |1‘—y\ ¢
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where for some K; > 0,7 =1,2,3,4,

N+a
g 5 Nta-(N-2)q
fRN fRN dedy = Kje 2 q,
N-2
fRN\Bl Iz, Wdﬂ@ < KpeN+a=520 4 (N +a=520),

N—2

I5, f]RN\Bl W)a()dxdy < Kae'7 04 0(6 2 0),

N+a—(N-2)q N+a—(N-2)q

T eq >
L Jev s, Jevis, #dmdy < Kqeo 2 fole =)

Thus, for some Kg > 0, we have

N+a—(N-2)q N+a—(N—-2)q

[ G i N lurdtde > Ko™ o8, (A.0.15)
]RN

Here we used the fact that ¢ > (N +°‘) Then, for any t > 0,

t2 5 o PAN =2, Nio
) < — B e 1, | V=2 | |9dx—
Sutv) < 5 [ (90 + e — B2 R [ (1 ¥ 1
t2<]]\>7j2a> N _ 2 2 N+a N+a
— A I, x )N 2 de =: g.(t).
5 <N+a> /RN( w1 ) T dr = ge(t)

One has g¢(t) — —o0 as t — +o00 and g(t) > 0 for ¢ > 0 small. By a simple calculation,
ge has a unique critical point ¢, € (0,400), which is its maximum point. From ¢.(t.) = 0,

N+a\uA N -2 q+Nf“—1/ Nia
te E2 Qd_ Ll tENQ Ia ENz ddr =
v o= (g 55 ) 12022 [ o0 s

N -2
2(N+a) 1N —2 N+a N+a
=t /]R o (A.0.16)

Claim. There exist tg,t; > 0 (both independent of ¢€) such that ¢, € [to, 1] for e > 0
small.

Consider first the case t — 0 as ¢ — 0. Then by (A.0.12)-(A.0.14), there exist
c1,¢2 > 0 (independent of €) such that for e small,

Nta— (N 2)q q+N+a 1 q+N+a q+N+a 1
cite < coe te +te N <2t N

)

%‘f‘; hence a contradiction and t. > to. By (A.0.16),

one has

9 (N+06> 2o N 2 ]]\\]r+§ ]1\\TI+L2Y
/ (Ve + 2)da > ¢V NMA/RN(IQ* FE )y E gy

which implies, combining (A.0.12) and (A.0.14), that t. < ¢; for some ¢; > 0 and € small.
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By the claim just proved and (A.0.15), we have for some K7 > 0,

AN -2 N+a N+a Nta—(N-2) Nta—(N—2)
%N + atZ+N72 /N(Io‘ ™2 Vldr > Kre 2 4ole 2 ),
R

and hence
N+a—(N-2)q

t2
max Sy (t1)e) = ge(te) < 6/ (|V¢6]2 + @bz)daz — Kre 2 —
t>0 2 JrN

20N+a) /N 9\ 2 Ntao  Nia N+a—(N-2)q
R e Y A T

2(N+a)

t? 9 9 t N—2 N —2\?2 N+a  Nta
< - . _ )\ Ia EN—2 6N—2d _
<max |5 [ (vl vt - S ()0 [t en el e

N+4+a—(N—-2)q

—Kre 2 +o(e

N+a—(N—-2)q
2

) =

N— Nta
_ _2+a (N + a)AN (px IVl + 42)da) =5
- 2AN N — 9 N-l_—a N-I_—a N_2
( +Oé) (fRN(Ia*¢eN 2)¢5N de)2+a
_K7€N+a_éN_2)q _'_ O(€N+a—éN—2)q)'
On the other hand, by (A.0.12) and (A.0.14), for some Kg > 0,
Nita Kge? + o(e? if N>5
Uar (Vo + 02y g [FOO D
T <Sa™ 4§ Kse?lloge| +o(e|loge|) if N =4
(Jon (Lo * &)~ da) 2%a Kge + o(e) if N=3
Then, for some Ky, K19 > 0,
N-—2
24+a (N+a)\zfe 2N e
Sy (ty,) < A 2Fa §2te
0 A(W—2(z\f+oé)(J\/—2> o
Ko — Kigem 820 4 (™2 it N>5
+{ Kolloge| — Kypem 5 qo(em 5 if N=4 <
N+a—(N—-2)q N+a—(N—-2)q .
Kge — Kqpe 2 + o(e 2 ) if N =3.
9 N N-2 N4
2+a  2-N &
< 2(N+—i—a04) <N—i__(;> A2Fa §7T* if € > 0 is sufficiently small,

since N + a — (N — 2)g < 2. Therefore, for any A € [,1] and € > 0 sufficiently small,

M

we get
N—
2+a (N+a)\2%e 2y Nt
< max Sy (¢t AZre §2T
en < max S ¢€)<2(N+a)<N—2> o
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