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Abstract

The thesis starts from the study of scalar field equations on RN . The interesting question
is to overcome the evident lack of compactness due to the fact that we are not working
on bounded domains. We are looking for both ground-states and bound-states solutions,
considering both subcritical and critical nonlinearities. In particular, we give original
results about multiplicity of solutions in critical case. A wide-studied generalization is
the Choquard-type equation. In this case, the significative technical problem that arise
is the presence of a nonlocal term, which is the convolution with Riesz’s potential.
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Notations

We will make use of the following notations in the whole thesis:

• N denotes the set of natural numbers, not including 0; we define N0 := N ∪ {0};

• R denotes the set of real numbers, while R+ denotes the set of positive real numbers;

• for N ∈ N, RN denotes the N -dimensional euclidean space;

• given any pair of vectors x = (x1, ..., xN ) and y = (y1, ..., yN ) in RN , we denote the
scalar product x · y :=

∑N
i=1 xiyi;

• given x := (x1, ..., xN ) ∈ RN with xi ∈ R for i = 1, ..., N , we denote its norm:
|x| :=

√
x · x;

• given x := (x1, ..., xN ) ∈ RN with xi ∈ R ∀ 1 ≤ i ≤ N , we denote its 1-norm:
|x|1 :=

∑N
i=1 |xi|;

• C denotes the set of complex numbers; i ∈ C denotes the imaginary unit;

• given a V a R-vector space, we denote dim(V ) as its dimension;

• given V a R-vector space equipped with a scalar product < ·, · >, let us consider
W a subspace of V . We denote W⊥ as its orthogonal complement defined by

W⊥ = {v ∈ V : < v,w >= 0 ∀w ∈W};

• given R > 0 and x0 ∈ RN , we denote the open ball of radius R centered in x0:
BR(x0) := {x ∈ RN ; |x− x0| < R}. When x0 = 0 ∈ RN , we denote BR(0) := BR,
Furthermore, we denote SN−1 the unit sphere in RN with N ≥ 2 and its measure
as ωN . For the sake of completeness, S0 = {±1};

• given E a Lebesgue measurable set on RN , we denote |E| as its Lebesgue measure;

• given two indices i, j, we denote the Kronecker-delta as δi,j =

{
1 i = j

0 i ̸= j
;
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• given x ∈ R, we denote its sign as sign(x), where sign(x) =


1 if x > 0

−1 if x < 0

0 if x = 0

;

• given x > 0, we denote log x as its logarithm to base e, where e is the Neper’s
number;

• given a function u, we denote u+ as its positive part and u− as its negative part,
respectively u+(x) := max{u(x), 0} and u−(x) := max{−u(x), 0};

• given a continuous function u, its classical support is denoted by supp(u);

• given an open subset Ω ⊆ RN and x0 ∈ Ω. let us consider f, g : Ω \ {x0} → R such
that g(x) ̸= 0 ∀ 0 < |x− x0| < δ, for some δ > 0. Then we say:

(i) f = O(g) near to x0 ⇔ ∃M > 0 and 0 < δ′ ≤ δ such that |f(x)| ≤
M |g(x)| ∀ 0 < |x− x0| < δ′;

(ii) f = o(g) near to x0 ⇔ limx→x0

f(x)
g(x) = 0.

Equivalent definitions may be given for sequences {an}n∈N as n→ +∞;

• given an open subset Ω ⊆ RN and k ∈ N, we will denote Ck(Ω) the space of
functions which are k times differentiable with continuity in Ω. On the other hand,
C0(Ω) := C(Ω) denotes the space of continuous functions on Ω and C∞(Ω) :=
∩n∈N0C

n(Ω) denotes the space of smooth functions on Ω;

• given an open subset Ω ⊆ RN and k ∈ N0 ∪ {∞}, we will denote Ck
0 (Ω) the space

of functions lying in Ck(Ω) which have compact support in Ω;

• given an open subset Ω ⊆ RN , k ∈ N and 0 < γ ≤ 1, we denote the space Ck,γ(Ω)
as

Ck,γ(Ω) :=

{
u ∈ Ck(Ω;R) : ∥u∥Ck,γ(Ω) :=

∑
|α|≤k

∥Dαu∥∞,Ω+
∑
|α|=k

[Dαu]C0,γ(Ω) < +∞
}
,

where the γth-Holder semi-norm of u : Ω → R is

[u]C0,γ(Ω) := sup
x ̸=y∈Ω

|u(x)− u(y)|
|x− y|γ

,

and the norm ∥·∥∞,Ω is defined below;

• given an open subset Ω ⊆ RN , let us consider p ∈ [1,+∞] and u : Ω → R a
Lebesgue-measurable function. We denote Lp(Ω) the usual Lebesgue space en-
dowed with the norm ∥u∥Lp(Ω) := (

∫
Ω |u|pdx)

1
p ; on the other hand ∥u∥L∞(Ω) :=

essupΩ|u| = inf{a ∈ R : |{x ∈ Ω : |u(x)| ≥ a}| = 0}. Sometimes we will indicate
∥u∥Lp(RN ) as ∥u∥Lp for 1 ≤ p <∞, and ∥u∥L∞(RN ) as ∥u∥∞;
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• given an open subset Ω ⊆ RN , let us consider any p, q ∈ [1,+∞] and u : Ω → R
a Lebesgue-measurable function. We say that u ∈ Lp(Ω) + Lq(Ω) if u = v + w for
some v ∈ Lp(Ω) and w ∈ Lq(Ω);

• given an open subset Ω ⊆ RN , let us consider 1 ≤ p ≤ ∞. We denote Lp
loc(Ω) the

space of functions lying in Lp(Ω′) for every Ω′ ⊂ Ω compact subset;

• given an open subset Ω ⊆ RN , let us consider 1 ≤ k < ∞ and 1 ≤ p ≤ ∞.
We denote W k,p(Ω) the usual Sobolev space of functions in Lp(Ω) whose weak
derivatives up to order k are also in Lp(Ω), endowed with the norm ∥u∥Wk,p(Ω) :=∑

|α|1≤k∥Dαu∥Lp(Ω), whereDαu is defined below. In particular, we denoteH1(Ω) :=

W 1,2(Ω) with the equivalent norm ∥u∥H1(Ω) = (
∫
Ω |∇u|2dx +

∫
Ω u

2dx)1/2. Some-
times we will indicate ∥u∥H1(RN ) as ∥u∥H1 ;

• given an open subset Ω ⊆ RN , let us consider 1 ≤ k < ∞ and 1 ≤ p < ∞. We
denote W k,p

0 (Ω) the space given by the closure of C∞
0 (Ω) in W k,p(Ω). In particular

we denote H1
0 (Ω) :=W 1,2

0 (Ω);

• given an open subset Ω ⊆ RN and u : Ω → R a Lebesgue measurable func-
tion, we denote D1,2(Ω) as the closure of C∞

0 (Ω) of the semi-norm ∥u∥D1,2(Ω) :=

(
∫
Ω |∇u|2dx)

1
2 (it is well-known that ∥·∥D1,2 is a norm on H1(RN )); furthermore

we denote D1,2
r (Ω) as the subspace of D1,2(Ω) formed by the radial functions;

• if N ≥ 3 we denote 2∗ := 2N
N−2 the critical Sobolev exponent and we recall that

2∗ − 1 = N+2
N−2 ;

• given an open subset Ω ⊆ RN , we denote H1
r (Ω) as the subspace of H1(Ω) formed

by the radial functions, endowed with the H1(Ω)-topology;

• given an open subset Ω ⊆ RN and u : Ω → R differentiable at x0 ∈ Ω, we denote
its gradient:

∇u(x0) :=
(
∂u

∂x1
(x0), ...,

∂u

∂xN
(x0)

)
as the vector of the partial derivatives of u in x0, also denoted by ui(x0); while if u
is radial, we denote ur its radial derivative and urr as its second radial derivative.
The same notation will be held when u ∈W k,p(Ω) with k ≥ 1 , intended as "weak"
gradient;

• given an open subset Ω ⊆ RN and u : Ω → R twice differentiable at x0 ∈ Ω, we
denote its laplacian:

∆u(x0) :=

N∑
i=1

∂2u

∂x2i
(x0).

The same notation will be held when u ∈W k,p(Ω) with k ≥ 2 , intended as "weak"
laplacian. We denote uij(x0) as the second partial derivative of u respect to xj and
xi respectively;
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• given an open subset Ω ⊆ RN , consider α = (α1, ..., αN ) ∈ NN and u : Ω → R
differentiable |α|1 times at x0 ∈ Ω. We denote

Dαu(x0) :=
∂|α|1u(x0)

∂xα1
1 · · · ∂xαN

N

as the multi-index derivative of u;

• given E a Banach space, let {un}n∈N ⊂ E. We denote as un ⇀ u the convergence
of un in the weak-topology σ(E,E∗) as n → +∞; we denote as un → u the
convergence in E-norm as n→ +∞;

• given two Banach spaces E and F , we denote E ↪→ F as the continuous embedding
of E into F ;

• given E Banach space, we denote E′ as its dual; we identify the dual of H1 with
H−1.
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Introduction

The study of partial differential equations (PDE’s) started in the 18th century in the
work of Euler, d’Alembert, Lagrange and Laplace as the principal mode of analytical
study of models in the physical science. This duality of viewpoints has been central to
the study of PDE’s through the 19-th and 20-th century.
The aim of the present issue is to demonstrate some important results on scalar field
equation theory on RN with N ≥ 2, and its generalization known as Choquard-type
equations. In 1983, Berestycki & Lions gave important results concerning the existence
of nontrivial solutions for some semi-linear equations. Such problems are motivated by
the search for certain kinds of solitary waves in nonlinear equations of the Klein-Gordon
or Schrödinger type.

Consider the following nonlinear Klein-Gordon equation

Φtt −∆xΦ+ a2Φ = f(Φ), (0.0.1)

where Φ(t, x) is a complex-valued function defined on t ∈ R, x ∈ RN and a ∈ R. Suppose
f : R → R is a continuous odd function satisfying f(0) = 0 and

f(ρeiθ) = f(ρ)f(eiθ) ∀ρ ≥ 0,∀θ ∈ [0, 2π). (0.0.2)

Then, looking for a "standing wave" in (0.0.1), that is, Φ of the form Φ = eiωtu(x),
w ∈ R and u : RN → R, one is led to the equation

−∆u+mu = f(u) in RN , (0.0.3)

where m = a2 − ω2.
Another classical type is that of travelling waves. Consider a real Klein-Gordon

equation (0.0.1). Then, looking for a travelling wave solution of the form Φ(t, x) =
u(x− ct) where u : RN → R and c = (c1, ..., cN ) ∈ RN is a fixed vector such that |c| < 1,
one obtains the following equation

−
N∑

i,j=1

(δi,j − cicj)
∂2u

∂xi∂xj
+ a2u = f(u) in RN . (0.0.4)

It is easily checked, using the fact that |c| < 1, that the constant coefficient operator in
the left hand side of (0.0.4) is elliptic. Thus, after a change of coordinates, (0.0.4) can
be converted into an equation of type (0.0.3).
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Stationary states of nonlinear Schrödinger equations lead to similar problems. Indeed,
consider the equation

iΦt −∆xΦ = f(Φ), (0.0.5)

where Φ : R× RN → C and f satisfies the simmetry property (0.0.2). Then, looking for
standing wave solutions, that is Φ(t, x) = e−imtu(x), one is again led to problem (0.0.3).

To sum up, we consider the following semi-linear elliptic problem

(∗)

{
−∆u = g(u)

u ∈ H1(RN ), u ̸≡ 0

where N ≥ 3 and g : R → R is an odd continuous function. The fact that we seek
solutions on the Sobolev space H1(RN ), gives us the first "restrictions" on g, in view of
continuous (not compact) embeddings{

H1(RN ) ↪→ Lp(RN ) ∀ 2 ≤ p ≤ 2∗ if N ≥ 3;

H1(RN ) ↪→ Lp(RN ) ∀ 2 ≤ p <∞ if N = 2.

So it comes natural to consider two classes of functions g when N = 3:

(i) g subcritical at infinity: lims→+∞
g(s)

s2∗−1 = 0;

(ii) g critical at infinity: lims→+∞
g(s)

s2∗−1 ∈ R \ {0}.

Let us consider the energy S = 1
2T − V where

T (u) =

∫
RN

|∇u|2dx, V (u) =

∫
RN

G(u)dx, G(s) =

∫ s

0
g(t)dt.

The problem (*) on bounded domains in RN is widely studied by using standard vari-
ational methods. Evidently, a striking contrast between semi-linear elliptic boundary
value problems on a bounded domain and on RN is the apparent lack of compactness in
treating the latter. Therefore, a first natural approach to (*) would be to approximate a
solution of (*) by a solution of an analogous problem on the ball BR, that is, first solve
−∆uR = g(uR) in BR, uR|∂BR

= 0, and then let R → +∞. One of the difficulties to
overcome in such an approach is the absence of uniform (of R) a priori bounds.

We study (*) by using variational methods, working with an appropriate constraint
in order to have some compactness. This constraint can be made transparent because of
the "autonomous" character of (*) and the fact that one can use scale changes in RN . A
special feature of (*) is its invariance under the group of displacements. That is, if R is
a rotation in RN and C ∈ RN is a fixed vector, then for any solution of (*), the function
v(x) = u(Rx+C) is also a solution of (*). Such an indeterminacy will not be present in
this thesis, since we will be seeking radial solutions of (*). In this case, u, as a function
of r = |x|, satisfies the ordinary differential equation:

−urr −
N − 1

r
ur = g(u), r ∈ (0,+∞),
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used in particular to show the regularity of u.
In the first chapter we prove, under suitable conditions, the existence of a ground-

state solution in subcritical case using above variational methods. In particular we show,
following an argument of [11], that the solution u0 of (*) which we derive from our varia-
tional arguments is a ground-state, that is it has the property of having the least energy
among all possible solutions of (*). It can be shown that a ground-state is necessarily a
positive and radial solution of (*). On the other hand, the critical case is quite different.
Since the compactness is guaranteed under a certain energy level, we require a "growth-
boost" hypothesis on g. So in Section 1.4 we show the existence of a ground-state using
also a min-max characterization by [11].

Obviously, the case N = 2 in Section 2.5 is totally different because 2∗ = ∞. Then,
in view of Moser-Trudinger inequality [1], the notions of (sub)criticality of a function g
become:

(i) g subcritical at infinity: lims→+∞
g(s)

eθs2
= 0 ∀θ > 0;

(ii) g critical at infinity: lims→+∞
g(s)

eθs2
= 0 (+∞) if θ > 4π (θ < 4π).

In the second chapter, we are focused to seek solutions of (*) which are radial but not
necessarily positive, and which correspond to higher values of energy. Such solutions are
called bound-states. As said above, since the energy of these solutions is arbitrarily large,
we study only the subcritical case. We define a sequence {bk}k by involving Krasnosel’skii
genus forN ≥ 2. A standard variational theorem in [3] ensure that {bk} are critical points
of V over a particular constraint. After the proper scale changes, one gets infinitely many
distinct solutions {uk} of (*). This will be guaranteed by the fact that S(uk) → +∞ as
k → +∞.
In Section 2.6 we give original multiplicity results for N ≥ 2, in particular we extend
works [26],[27] on the whole RN . let us consider the problem{

−∆u+ u = f(u) in RN

u ∈ H1(RN ), u ̸≡ 0,

where f is a continuous critical function and |f(s)| ≥ λ|s|q−1 ∀s ∈ R, for some q ∈
(2, 2∗) and λ > 0. We prove that, given any k ∈ N, there exists λk ≫ 1 such that the
problem has k pairs of nontrivial solutions for all λ > λk.

In the last chapter of the thesis we consider the Choquard problem

(**)

{
−∆u+ u = (Iα ∗ F (u))F ′(u) in RN

u ∈ H1(RN ), u ̸≡ 0,

where F ∈ C1(R;R), α ∈ (0, N) and the Riesz potential Iα is defined on RN \ {0} by

Iα(x) :=
Γ(N−α

2 )

Γ(α2 )π
N
2 2α|x|N−α

.

The notion of criticality of a function changes completely here. Indeed, f is critical
respect to the Hardy-Littlewood-Sobolev inequality, i.e.,
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(i) f subcritical at infinity: lims→+∞
f(s)

s
α+2
N−2

= 0;

(ii) f critical at infinity: lims→+∞
f(s)

s
α+2
N−2

∈ R \ {0}.

First, we show the existence of a positive radial ground-state in dimension N ≥ 2
when F ′ is subritical at infinity. We use a minimax principle in [42] to get a Palais-
Smale sequence converging to the mountain pass level associated to S. The novelty is to
construct a Palais-Smale sequence which satisfies asymptotically the Pohožaev’s identity,
in order to get its boundedness.
On the other hand, we prove the existence of a ground-state solution also in critical case.
As in critical case for scalar field equations, for N ≥ 3 we assume the further condition

|f(s)| ≥ |s|
α+2
N−2 + µ|s|q−1 ∀s ∈ R

for some q ∈ (2, N+α
N−2 ). We consider the functional Sλ = 1

2T − λV for λ ∈ [12 , 1], and
we apply a general minimax theorem in [16] to get bounded Palais-Smale sequences at
mountain pass level cλ. The crucial thing is to estimate cλ at energy level of Sobolev
functions. Finally the case N = 2 is quite different and we require the Ambrosetti-
Rabinowitz condition

∃ θ > 2 such that 0 < θF (s) ≤ 2F ′(s)s ∀s ̸= 0

to get the boundedness of Palais-Smale sequences to the mountain pass level.
The last section of the thesis is dedicated to the existence of infinitely many bound-

states as in the scalar field case. We prove the result in a particular class of subcritical
functions. A fountain-like theorem [42, theorem 1.28] gives us an unbounded sequence of
critical values ck which may consider radial. Following the proof of [43], we remove the
Ambrosetti-Rabinowitz condition using some arguments involved in previous subcritical
case. Finally, as the last contribution, we proved the existence of infinitely many solutions
also in the planar case N = 2.
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Chapter 1

Ground-states

1.1 Main result

In this chapter, we consider the problem:

(∗)

{
−∆u = g(u)

u ∈ H1(RN ), u ̸≡ 0

where N ≥ 3 and g : R → R is a continuous function satisfying g(0) = 0 and the following
conditions:

−∞ < lim inf
s→0+

g(s)

s
≤ lim sup

s→0+

g(s)

s
=: −m < 0, (1.1.1)

−∞ ≤ lim sup
s→+∞

g(s)

s2∗−1
≤ 0, (1.1.2)

∃ ξ > 0 such that G(ξ) =
∫ ξ

0
g(s)ds > 0. (1.1.3)

We will prove the existence of a ground state solution u0, namely with the property of
having the least action among all possible solutions of (*). Also, we will show that a
ground state is necessarily a positive and radial solution.

The action

S(u) =
1

2
T (u)− V (u) where T (u) =

∫
RN

|∇u|2dx, V (u) =

∫
RN

G(u)dx,

is defined on the space H1(RN ) and after a suitable modification of g (see below), S is a
C1-functional on H1(RN ). So it seems natural to find directly critical points of S to get
a solution of (*).
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However, a first difficulty in this approach is that S is not bounded from above (due to
the presence of the gradient term) nor from below. In fact, from hypotheses (1.1.3) there
exists w ∈ H1(RN ) such that

∫
RN G(w)dx > 0 (see below). Now consider a scale change

in RN : wσ(x) = w(xσ ) for σ > 0; one readily checks that

S(wσ) =
σN−2

2
T (w)− σNV (w).

It follows from V (w) > 0 that S(wσ) → −∞ as σ → +∞. Therefore, rather than looking
for global critical points of S, we will consider the following constrained minimization
problem:

minimize {T (w);w ∈ H1(RN ), V (w) = 1}.

The following theorem concerns the existence of a ground state of (*).

Theorem 1.1.1. Suppose the dimension N ≥ 3 and that g satisfies conditions (1.1.1)-
(1.1.3). Then (*) possesses a solution u(x) = u(r) such that

(i) u > 0 on RN ;

(ii) u(x) = u(r) where r = |x|, and u decreases with respect to r;

(iii) u ∈ C2(RN );

(iv) |Dαu(x)| ≤ Ce−δ|x| ∀x ∈ RN , for some C, δ > 0 and for multi-index |α|1 ≤ 2.

1.2 Necessary conditions

In this section we will present several conditions about general features of a solution to
(*). Indeed, a solution u satisfies an identity which is due to Pohožaev. It asserts that,
under some assumptions, u necessarily satisfies:

N − 2

2

∫
RN |∇u|2dx = N

∫
RN G(u)dx.

This fact will be derived as a corollary of the following more general proposition, valid
also for N = 2 .

Proposition 1.2.1. Let g : R → R continuous function such that g(0) = 0 and consider
G(t) =

∫ t
0 g(s)ds. Let u satisfy in a distributional sense

−∆u = g(u)

and assume that

u ∈ L∞
loc(RN ), |∇u| ∈ L2(RN ), G(u) ∈ L1(RN ).

Then u satisfies:
N − 2

2

∫
RN

|∇u|2dx = N

∫
RN

G(u)dx.

15



Proof. We want to multiply the equation by xiui and integrate by parts to get the identity
on BR. Then, we will show that the boundary term on ∂BR approaches to 0 as R→ +∞.
So, integrating by parts:∑
i

∫
BR

g(u)uixidx =
∑
i

∫
BR

∂

∂xi
(G(u))xidx = −N

∫
BR

G(u)dx+
∑
i

∫
∂BR

G(u)xinidS.

Observe that all the integrals above on BR are finite because u ∈ L∞
loc(RN ) implies that

u ∈ W 2,q
loc (R

N ) for any 1 ≤ q < +∞ due to standard regularity theory. Furthermore we
have −

∑
j ujj = g(u) and then

−
∑
i,j

∫
BR

ujjuixidx =
∑
i,j

∫
BR

uj(δijui + xiuij)dx−
∑
i,j

∫
∂BR

ujnjxiuidS =

∫
BR

|∇u|2dx− N

2

∫
BR

|∇u|2dx− 1

2

∫
∂BR

∣∣∣∣∂u∂n
∣∣∣∣2RdS.

Thus we deduce:

(N − 2)

∫
BR

|∇u|2dx− 2N

∫
BR

G(u)dx = −2R

[
1

2

∫
∂BR

∣∣∣∣∂u∂n
∣∣∣∣2dS +

∫
∂BR

G(u)dS

]
.

Now it suffices to show that the right hand side of the last equation converges to 0 for
at least one suitably sequence Rn → +∞. In polar coordinates we have∫

RN

[
|G(u)|+ |∇u|2

]
dx =

∫ +∞

0

{∫
∂BR

[
|G(u)|+ |∇u|2

]
dS

}
dR < +∞. (1.2.1)

Hence by (1.2.1), there exists a sequence Rn → +∞ such that

Rn

∫
∂BRn

[
|G(u)|+ |∇u|2

]
dS → 0

as n→ +∞. In fact, by contradiction if

lim inf
R→+∞

R

∫
∂BR

[
|G(u)|+ |∇u|2

]
dS = α > 0,

then the function R 7−→
∫
∂BR

[
|G(u)|+ |∇u|2

]
dS would not be in L1(0,+∞). Finally,

by dominated convergence theorem and the fact that |∇u|2, G(u) ∈ L1(RN ), it follows
that ∫

BRn

|∇u|2dx→
∫
RN

|∇u|2dx,
∫
BRn

G(u)dx→
∫
RN

G(u)dx

as n→ +∞.
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Corollary 1.2.1. Assume g satisfies (1.1.1) and (1.1.2). Then any solution u of (*)
satisfies the Pohožaev’s identity.

Proof. We may consider u ̸≡ 0. If u satisfies the assumptions, since G(u) ∈ L1(RN ) by
Theorem A.0.1, we suffice to prove that u ∈ L∞

loc(RN ). Indeed, u satisfies the equation

−∆u = q(x)u in RN

where q(x) = g(u(x))
u(x) . If g satisfies the strong condition (1.3.1) (see below), one has∣∣∣∣g(u)u

∣∣∣∣ ≤ C|u|
4

N−2 .

Since u ∈ H1(RN ), by Sobolev embedding theorem we also have u ∈ L2∗(RN ). Noticing
that 2∗ = 4

N−2
N
2 , we see that q ∈ L

N
2 (RN ). Now, using a result of Brezis and Kato

(see [8]), we obtain u ∈ Lp
loc(R

N ) for 1 ≤ p < +∞. A classical bootstrap argument then
shows that u ∈ L∞

loc(RN ).

An important consequence of Pohožaev’s identity is a relation between a solution u
of (*) and its respective action S(u). Indeed this type of relation will be used for proving
that the solution given by Theorem (1.1.1) is a ground state solution.

Corollary 1.2.2. If u is any nontrivial solution of (*), then S(u) = 1
N T (u) > 0.

Proof. From previous proposition, it follows that

S(u) =
1

2
T (u)− V (u) =

1

2

[
1− N − 2

N

]
T (u) =

1

N
T (u) > 0.

1.3 The constrained minimization method

Before starting with the proof of main theorem, we need to modify the function g in
order to make V of class C1(H1(RN )) as we said above. Indeed, V is well-defined if g
satisfies the condition (see Theorem (A.0.2)):

lim sup
|s|→+∞

|g(s)|
|s|2∗−1

< +∞. (1.3.1)

So, taking ξ = {x : G(x) > 0} (see(1.1.3)), we define a new function g̃ : R → R as follows:

(i) if g(s) ≥ 0 for all s ≥ ξ, set g = g̃ for s ≥ 0;

(ii) otherwise, set s0 = inf{s ≥ ξ : g(s) ≤ 0} and

g̃(s) =

{
g(s) for 0 ≤ s < s0

0 for s ≥ s0.
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(iii) for s < 0, g̃ is defined as g̃(s) = −g(−s).

Note that g̃ satisfies the same conditions as g and also condition (1.3.1). Furthermore,
by the strong maximum principle, solutions of problem (*) with g̃ are also solution of the
same problem with g. Indeed, in case (ii) above, a solution u satisfies |u| < s0, whence
g̃(u) = g(u). Hence, we will always adopt the convention that g has been replaced by g̃;
we keep however the same notation g.

So, the minimization problem:

minimize {T (w);w ∈ H1(RN ), V (w) = 1}, (1.3.2)

is well-defined since T and V are of class C1(H1(RN )). Minimizers are solutions of (*).
In fact, if u solves (*), there exists a Lagrange multiplier θ such that T ′(u) = θV ′(u),
namely

−∆u = θg(u) in RN

in a distributional sense. We will show that necessarily θ > 0 and so, letting uσ(x) = u(xσ )
with σ > 0, one obtains

−∆u =
θ

σ2
g(uσ) in RN .

Therefore, choosing σ =
√
θ, one get a solution of (*).

In order to proof Theorem 1.1.1, we will give some results concerned the minimization
problem summed up in the following

Theorem 1.3.1. Under the hypotheses of Theorem 1.1.1, the minimization problem
(1.3.2) admits a nontrivial solution u ∈ H1(RN ) which is positive, spherically symmetric
and decreases with r = |x|. Furthermore, there exists a Lagrange multiplier θ > 0 such
that u satisfies −∆u = θg(u) in RN in the distributional sense.

Proof. This will be divided into four steps:

(i) Check that the set {w ∈ H1(RN ) : V (w) = 1} is not empty;

(ii) Selection of an appropriate minimizing sequence {un} and estimates for {un};

(iii) Passage to the limit;

(iv) Conclusion.

Step 1. It is merely a consequence of hypothesis (1.1.3), which it is used only in
this step. Let ξ > 0 be such that G(ξ) > 0. Now, for R > 1 define:

wR(x) =


ξ for |x| ≤ R

ξ(R+ 1− |x|) for R < |x| < R+ 1

0 for |x| ≥ R+ 1.
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In such way, wR ∈ H1(RN ) and one has:

V (wR) =

∫
RN

G(wR)dx ≥ G(ξ)|BR| − ( max
s∈[0,ξ]

|G(s)|)|BR+1 −BR| ≥ CRN − C ′RN−1

for some positive constant C,C ′. So for R > 1 large enough, we have V (wR) > 0. Then,
introducing a scale change in RN : wR,σ(x) = wR(

x
σ ) for σ > 0, we obtain V (wR,σ) =

σNV (wR). Finally, choosing σ = (V (wR))
− 1

N , we have V (wR,σ) = 1.

Step 2. Thanks to Step 1, there exists a sequence {un} ⊂ H1(RN ) such that
V (un) = 1 and limn→+∞ T (un) = inf{T (w) : w ∈ H1(RN ), V (w) = 1} =: I ≥ 0.
Consider now the Schwarz symmetrization rearrangement u∗n of |un| (see Appendix).
Due to {un} ⊂ H1(RN ), one has {u∗n} ⊂ H1(RN ), V (u∗n) = 1 and I ≤ T (u∗n) ≤ T (un).
This means that {u∗n} is also a minimizing sequence by definition of I. Hence, replacing
{un} by {u∗n}, we will consider un a nonnegative, radially symmetric and decreasing
function with r = |x|, for all n ∈ N.

Now we will prove that ∥un∥H1(RN ) is bounded. For s ≥ 0, define g1(s) := (g(s) +
ms)+ and g2(s) := g1(s) − g(s), where m > 0 refers to (1.1.1). While for s ≤ 0, extend
both of them as odd functions. Then we have g1, g2 ≥ 0 on R+. Furthermore, conditions
(1.1.1) and (1.1.2) imply that:

g1(s) = o(s) as s→ 0; lim
|s|→+∞

g1(s)

s2∗−1
= 0; g2(s) ≥ ms ∀s ≥ 0. (1.3.3)

let us consider Gi(z) =
∫ z
0 gi(s)ds for i = 1, 2. Then, from continuity of Gi(z) and (1.3.3)

we obtain that ∀ϵ > 0,∃Cϵ > 0 such that

G1(s) ≤ Cϵ|s|2
∗
+ ϵG2(s), ∀s ∈ R.

Since T (un) → I, ∥∇un∥L2 is bounded, which implies by Sobolev embedding theorem
that ∥un∥L2∗ ≤ C ′ for some constant C ′ > 0 independent of n. Now we will show the
boundedness of ∥un∥L2 . In fact, writing the condition V (un) = 1 in the form:∫

RN

G1(un)dx =

∫
RN

G2(un)dx+ 1, (1.3.4)

and using the last inequality with ϵ =
1

2
, we deduce that∫

RN

G2(un)dx+ 1 ≤ C ′ +
1

2

∫
RN

G2(un)dx.

Hence
∫
RN G2(un)dx ≤ C ′ and by (1.3.3) one has:

C ′ ≥
∫
RN

G2(un)dx ≥ m

2

∫
RN

u2n =
m

2
∥un∥2L2 .

Thus ∥un∥H1 is bounded.

19



Step 3. First, note that un(x) → 0 as |x| → +∞ uniformly with respect to n.
Indeed, since 0 ≤ un is radial and decreasing function for all n, it is easily seen that (see
Lemma (A.0.1)) |un(x)| ≤ C|x|−

N
2 ∥un∥L2 ∀x ∈ RN \ {0}, where C > 0 is independent

of n. By taking supremum over n in this relation, since ∥un∥L2(RN ) is bounded, we have

supn |un(x)| ≤ C|x|−
N
2 ∀x ∈ RN \ {0}.

Now, since ∥un∥H1(RN ) is bounded, we may extract a subsequence of un (again de-
noted by un) such that un ⇀ u in H1(RN ) and a.e. in RN . It is important to see that
u ∈ H1(RN ) remains nonnegative, spherically symmetric and decreasing function with
|x| when we pass to the limit a.e. in RN .

Now we want to deduce conditions about T (u) and V (u) in order to verify that u
is a solution of the minimizing problem. Define Q(s) = s2 + |s|2∗ ∀s ∈ R. From (1.3.3)
and 2∗ > 2, we derive:

G1(s)

Q(s)
→ 0 as |s| → +∞, s→ 0.

Previously we proved that supn
∫
RN Q(un)dx < +∞; furthermore, by continuity of G1,

we know that G1(un) → G1(u) a.e. in RN . Then, the compactness lemma due to Strauss
(see Theorem (A.0.2)) implies that∫

RN

G1(un)dx→
∫
RN

G1(u)dx

as n→ +∞. Using Fatou’s lemma, by continuity of G2 we have∫
RN

G1(u)dx ≥
∫
RN

G2(u)dx+ 1,

that is, V (u) ≥ 1. On the other hand, by weak semicontinuity of the H1 norm, one has
T (u) ≤ lim inf

n→+∞
T (un) = I. Now we want to prove that actually V (u) = 1. Suppose by

contradiction that V (u) > 1; then, by the scale change uσ(x) = u(xσ ) we have
V (uσ) = σNV (u) = 1 if we choose σ := (V (u))−

1
N < 1. Moreover, T (uσ) = σN−2T (u) ≤

σN−2I but, by definition of I, T (uσ) ≥ I. This would imply I = 0, namely T (u) = 0,
i.e. u ≡ 0, contradicting V (u) > 0. This leads to a contradiction and therefore V (u) = 1
and T (u) = I > 0. Then u is a solution of problem (*).

Step 4. Since T and V are C1(H1(RN )) functionals, there exists a Lagrange mul-

tiplier θ such that
1

2
T ′(u) = θV ′(u). Observe first that θ ̸= 0, since if θ = 0 we would

have the trivial solution u = 0. So, we will prove that θ > 0. Suppose for contradiction
that θ < 0. Note that V ′(u) ̸= 0 because V ′(u) = 0 gives g(u) = 0, which implies u ≡ 0.
Then we can take w ∈ H1(RN ) such that

V ′(u)[w] =

∫
RN

g(u)wdx > 0.
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Since T and V of class C1, by Taylor’s expansion one has: V (u+ϵw) = V (u)+ϵV ′(u)[w]+
o(ϵ) and T (u + ϵw) = T (u) + 2ϵθV ′(u)[w] + o(ϵ) as ϵ → 0. We can find ϵ > 0 small
enough such that v := u + ϵw satisfies V (v) > V (u) = 1 and T (v) < T (u) = I. Again
by a scale change, there exists 0 < σ = (V (u))−

1
N < 1 such that V (vσ) = 1 and

T (vσ) = σN−2T (v) < I, which is absurd by definition of I.
Thus u satisfies (in the weak formulation) the desired equation

−∆u = θg(u) in RN

and so u√θ is a solution of problem (*).

Remark 1.3.1. In dimension N = 1 and N = 2, the constrained minimization approach
fails because when we try to prove the boundedness of the sequence in L2∗(RN ), the Sobolev
embedding theorem is no longer valide for N = 1 and N = 2. Indeed, let’s try to study
separately the cases N = 1 and N = 2.

Case 1): N = 2. In dimension 2, scale change relations become

T (uσ) = T (u), V (uσ) = σ2V (u).

Thus,
inf

{V (u)=1}
T (u) = inf

{V (u)>0}
T (u).

Now, suppose that u0 is a solution given by constrained minimization problem, namely
V (u0) = 1 and T (u0) = min{V (u)>0} T (u). Hence T ′(u0) = 0 implies u0 = 0, a contra-
diction to V (u0) = 1.

Case 2): N = 1. The scaling relations in this case become

T (uσ) = σ−1T (u), V (uσ) = σV (u).

Let w ∈ H1(R) such that V (w) = 1. Recalling that lim sup
s→0+

g(s)
s = −m < 0 and G(u) =∫ u

0 g(s)ds, by continuity of G we see that there exists 0 < θ0 < 1 such that V (θ0w) = 0
and V (θw) > 0 for θ0 < θ ≤ 1.
Clearly, V (θw) → 0+ as θ → θ+0 . For θ0 < θ < 1, let σ(θ) = V (θw)−1, such that
V (θwσ(θ)) = 1. Now, T (θwσ(θ)) = σ(θ)−1T (θw) = θ2V (θw)T (w). Letting θ → θ+0 , this
shows that inf{V (u)=1} T (u) = 0 because T (u) ≥ 0 always. Hence, also in this case the
minimization approach seems to fail.
The case N = 2 will be considered in Section 2.5.

Now we are going to prove that the solution of (*) obtained by the constrained
minimization method has the property of minimizing the action among all solutions of
(*), namely a ground state solution. The proof is based essentially on Pohožaev’s identity;
therefore it is crucial to know that any solution of (*) satisfies the identity.
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Theorem 1.3.2. Let u denote the solution of (*) obtained in Theorem (1.3.1). Then,
for any other nontrivial solution v of (*), one has

0 < S(u) ≤ S(v).

Proof. Let ū be the solution obtained in Theorem 1.3.1 such that

V (ū) = 1 and T (ū) = min{T (w) : w ∈ H1(RN ), V (w) = 1}.

Then, as we seen before, there exists θ > 0 such that −∆ū = θg(ū) in H1- sense, so that
u = ū√θ. By Pohožaev’s identity, we have

T (u) =
2N

N − 2
V (u).

The scale change relations yield

T (u) = θ
N−2

2 T (ū), V (u) = θ
N
2 V (ū) = θ

N
2 .

Hence, we derive

θ =
N − 2

2N
T (ū).

By Corollary (1.2.1), the action for a general solution of (*) has the form S(u) = 1
N T (u).

Thus,

Su) = 1

N

(
N − 2

2N

)N−2
2

[T (ū)]
N
2 .

Now, let v denote another solution of (*); again by Pohožaev’s identity: T (v) =
2N

N − 2
V (u).

Let σ > 0 be such that V (vσ) = 1, that is σ = (V (v))−
1
N because V (v) ̸= 0, or equiva-

lently

σ =

(
N − 2

2N

)− 1
N

[T (v)]−
1
N .

Let us express S(v) in terms of T (vσ). We know that S(v) = T (v)
N ; on the other hand

T (vσ) = σN−2T (v), so using the preceding expression of σ we obtain

T (vσ) =

(
N − 2

2N

)−N−2
N

[T (v)]
2
N .

Hence,

S(v) = 1

N
T (v) =

1

N

(
N − 2

2N

)N−2
2

[T (vσ)]
N
2 .

Since ū solves the minimization problem and V (vσ) = 1, we have T (vσ) ≥ T (ū). Using
the inequalities above, we deduce S(v) ≥ S(u).
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Remark 1.3.2. Consider now hypothesis (1.1.1); suppose that g is differentiable at 0
and g′(0) > 0. We claim that (*) has no radial solution.
Indeed, if u ∈ H1(RN ) is radial, then by a result of Strauss (see Lemma (A.0.2)) there
exists a constant C > 0 such that

|u(x)| ≤ C
∥u∥H1

|x|
N−1

2

∀|x| ≥ αN ,

where αN is a positive constant depending on N , hence |u(x)| = O

(
|x|

1−N
2

)
as |x| →

+∞. Let m = g′(0) and q(r) = m − g(u(r))
u(r) . Then, considering the case N = 3 and

assuming g ∈ C2, by Taylor’s expansion and the previous inequality one has q(r) =
O(r−1) as r → +∞. Now, u satisfies the equation

−∆u+ q(r)u = mu in RN .

But this is impossible since it violates a result of Kato (see [8]) which states that the
linear operator −∆ + q(r) has no positive eigenvalues associated with eigenfunctions in
L2(R3) under the condition q(r) = O(r−1).

Observe, however, that g′(0) > 0 is not exactly the opposite of (1.1.1). The only
remaining case is the limiting ’zero mass’ case where g′(0) = 0. In fact, in this case the
approach is always a constrained minimization, but the condition g′(0) = 0 does not give
the boundedness of the L2-norm of minimizing sequence un as in the previous theorem
and also the integrability of |G(un)|. Then, we will look for a solution u of (*) when
g′(0) = 0 such that u ∈ D1,2(RN ). So, the constrained minimization problem becomes

minimize {T (w) : w ∈ D1,2
r (RN ), G(w) ∈ L1(RN ), V (w) = 1},

where G is an integral function of g : R+ → R continuous function with new hypotheses
which generalize the case g′(0) = 0:

g(0) = 0 and lim sup
s→0+

g(s)

s2∗−1
≤ 0;

there exists ξ > 0 such that G(ξ) > 0;

let ξ0 = inf{ξ > 0;G(ξ) > 0}; if g(s) > 0 for all s > ξ0, then lim sup
s→+∞

g(s)

sl
= 0.

Thus, under these hypotheses, one can prove the following

Theorem 1.3.3. There exists a positive, spherically simmetric and decreasing (with |x| =
r) solution u of the equation

−∆u = g(u) in RN

such that u ∈ D1,2(RN ). Furthermore, u is a classical solution (i.e. u ∈ C2(RN )).
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1.4 Critical case

In this section we will complete this study by considering a class of nonlinearities with
critical growth and under mild assumptions.
We will assume that g(s) = −s + f(s), where f : R → R is a continuous function with
critical growth, in a sense that will be specified later. We thus obtain a ground state
solution for the problem

(∗)


−∆u+ u = f(u)

u ∈ H1(RN )

u > 0,

following the minimization problem:

min

{
1

2

∫
RN

|∇u|2dx;
∫
RN

G(u)dx = 1

}
, if N ≥ 3 (1.4.1)

and
min

{
1

2

∫
R2

|∇u|2dx;
∫
R2

G(u)dx = 0

}
, if N = 2, (1.4.2)

where as before G(s) =
∫ s
0 g(τ)dτ =

∫ s
0 (f(τ)− τ)dτ = F (s)− s2

2 and F (s) =
∫ s
0 f(τ)dτ .

Then, the energy funcional S : H1(RN ) → R associated to (*) is

S(u) = 1

2

∫
RN

(|∇u|2 + u2)dx−
∫
RN

F (u)dx.

Remark 1.4.1. Observe that the original problem (*) corresponds to

(∗)


−∆u+mu = f(u)

u ∈ H1(RN )

u > 0,

where m > 0 is a parameter. On the other hand, after a proper rescalement, we can
assume m = 1.

In what follows, the function f : R → R is continuous and satisfies the following
hypotheses

lims→0+
f(s)
s = 0; (1.4.3)

lim sup
s→+∞

f(s)

s2∗−1 = 1, if N ≥ 3

lims→+∞
f(s)

eαs2
= 0 (+∞) if α > 4π (α < 4π) when N = 2; (1.4.4)
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∀s ≥ 0, f(s)s− 2F (s) ≥ 0 (> 0) if N ≥ 3 (N = 2); (1.4.5)

∃λ > 0 and q ∈

{
(2, 2∗) if N ≥ 3

(2,+∞) if N = 2
s.t. f(s) ≥ λsq−1 ∀s ≥ 0; (1.4.6)

Remark 1.4.2. Under these assumptions, the energy functional S is well-defined on
H1(RN ) in view of Sobolev embedding and Moser-Trudinger inequality. Furthermore,
condition (1.4.4) is, say, in a normalized form. We have analogue results when

lim sup
s→+∞

f(s)

s2∗−1
∈ R \ {0}, if N ≥ 3,

and

lim
s→+∞

f(s)

eαs2
= 0 (+∞) if α > α0 (α < α0) if N = 2, for some α0 > 0.

Before stating the main results, we need to fix some notations. We will denote in the
following, S,Cq > 0 as the best constants of Sobolev embedding

D1,2(RN ) ↪→ L2∗(RN )

and
H1(RN ) ↪→ Lq(RN ),

for q as in (1.4.6), that is, respectively

S

(∫
RN

|u|2∗dx
) 2

2∗

≤
∫
RN

|∇u|2dx, for any u ∈ D1,2(RN ),

and

Cq

(∫
RN

|u|qdx
) 2

q

≤
∫
RN

(|∇u|2 + u2)dx, for any u ∈ H1(RN ).

Now we will present the main results for the case N ≥ 3 and N = 2.

Theorem 1.4.1. If N ≥ 3 and f satisfies (1.4.3)-(1.4.6) with

λ > λN,q :=

[
2

2−N
2 S−N

2 N

(
2N

N − 2

)N−2
2

] q−2
2
[
q − 2

2q

] q−2
2

C
q
2
q ,

then problem (*) has a minimizing positive solution which is a ground-state.

Theorem 1.4.2. If N = 2 and f satisfies (1.4.3),(1.4.6) with

λ > λ2,q :=

(
q − 2

2

) q−2
2

C
q
2
q ,

then problem (*) has a minimizing positive solution which is a ground-state.
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Before proving them, we are going to fix some notations. First of all, under Schwartz
symmetrization and Pólya-Szegö inequality, we can minimize problems (1.4.1) and (1.4.2)
on the space H1

r (RN ).
In the sequel, since we seek positive solutions, we will assume f(s) = 0 for s ≤ 0 and
argue as in subcritical case. Moreover, we will use the following notations

m := inf{S(u); u is nontrivial solution of (*)},

A := inf

{
1

2

∫
RN

|∇u|2dx : u ∈ H1
r (RN ) and

∫
RN

G(u)dx =

{
1 if N ≥ 3

0 if N = 2

}
.

We also need to define the following minimax value

b := inf
γ∈Γ

max
t∈[0,1]

S(γ(t)),

where
Γ := {γ ∈ C([0, 1];H1

r (RN )) : γ(0) = 0,S(γ(1)) < 0}.

Define the sets

M :=

{
u ∈ H1

r (RN ) \ {0} :

∫
RN

G(u)dx =

{
1 if N ≥ 3

0 if N = 2

}
,

P :=

{
u ∈ H1

r (RN ) \ {0} : 2N

∫
RN

G(u)dx = (N − 2)

∫
RN

|∇u|2dx
}

and
Υ := {u ∈ H1

r (RN ) \ {0} : S ′(u) = 0}.

From the above definitions, it follows that

2A = inf
v∈M

∫
RN

|∇v|2dx, m = inf
v∈Υ

S(v).

Notice that P is the Pohožaev’s identity manifold and Υ ⊂ P by Proposition 1.2.1.
Moreover, if p := infv∈P S(v), then p ≤ m. It is very important to observe that M is a
C1 manifold for all N ≥ 2. Indeed, let V (u) :=

∫
RN G(u)dx, then from (1.4.5) and for

every u ∈ M :

V ′(u)[u] =

∫
RN

(f(u)u− u2)dx ≥
∫
RN

(2F (u)− u2)dx = 2V (u) = 2 ̸= 0

if N ≥ 3 and V ′(u)[u] > 0 if N = 2.

In the following, we will show that A is attained and afterwards we prove that

m = A = b if N = 2,

thereby proving that (*) has a ground state solution if N = 2.
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The case of dimension N ≥ 3

First of all, by standard arguments involved growth assumptions on f , one shows that
any minimizing sequence {un}n for (1.4.1) is bounded in H1

r (RN ) (see Lemma 3.1 in [4]).
So we can assume, up to subsequences, un ⇀ u in H1(RN ) for some u ∈ H1

r (RN ).
Now, in the sequel we will prove some estimates involving the levels A and b.

Lemma 1.4.3. b ≥ 1
N (N−2

2N )
N−2

2 (2A)
N
2 .

Proof. For each γ ∈ Γ one has γ([0, 1]) ∩ P ̸= ∅, see [11]. Hence, there exists t0 ∈ [0, 1]
such that γ(t0) ∈ P, and then p = infv∈P S(v) satisfies

p ≤ S(γ(t0)) ≤ max
t∈[0,1]

S(γ(t)).

Consequently,
p ≤ S(γ(t0)) ≤ inf

γ∈Γ
max
t∈[0,1]

S(γ(t)) = b.

Now, due to an idea from Coleman-Glaser-Martin [11], one has

p = inf
v∈P

S(v) = 1

N

(
N − 2

2N

)N−2
2

(2A)
N
2

which concludes the proof.

Now, from Ekeland’s Variational Principle (see [42]), there are {un} ⊂ M and {λn} ⊂
R Lagrange multipliers such that

1

2

∫
RN

|∇un|2dx→ A

and
T ′(un)− λnV

′(un) → 0 in H−1(RN ),

where T (u) = 1
2

∫
RN |∇u|2dx. From last condition, one readily checks that {λn} is

bounded from above and lim sup
n→+∞

λn ≤ A.

Furthermore, the concentration compactness principle of Lions (see [21]) applied to
the sequence {un} guarantees the existence of positive finite measures µ, ν, sequences
{µi}, {νi} ⊂ R and {xi} ⊂ RN such that as measure convergence,

(i) |∇un|2 ⇀ dµ ≥ |∇u|2 +
∑

i δxiµi,

(ii) |un|2
∗
⇀ dν = |u|2∗ +

∑
i δxiνi,

(iii) µi ≥ Sv
2
2∗
i .

One can easily checks that A > 0 (see Lemma 3.3 in [4]); then the following lemma is
well-posed.
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Lemma 1.4.4. If νi > 0 for some index i, then νi ≥ ( SA)
N
2 .

Proof. Let ϕ a smooth function with compact support verifying

0 ≤ ϕ(x) ≤ 1 ∀x ∈ RN , ϕ(x) = 1 in B1 with suppϕ ⊂ B2

and ϕϵ(x) = ϕ(x−xi
ϵ ), for ϵ > 0.

Then,∫
RN

∇un∇(ϕϵun)dx = λn

∫
RN

(f(un)un − u2n)ϕϵdx+ on(1) as n→ +∞.

The growth assumptions on f imply that, for any η > 1, there is a constant C > 0 and
r ∈ (2, 2∗) such that

sf(s) ≤ s2

2
+ ηs2

∗
+ Csr for s ≥ 0.

Hence, ∫
RN

|∇un|2ϕϵdx+

∫
RN

un∇un∇ϕϵdx ≤

≤ ηλn

∫
RN

|un|2
∗
ϕϵdx+

λn
2

∫
RN

|un|2ϕϵdx+ λnC

∫
RN

|un|rϕϵdx.

By Lions’ principle above and standard arguments involving dominate convergence the-
orem and Corollary A.0.4, first letting n → +∞ and then letting ϵ → 0+, using
lim sup
n→+∞

λn ≤ A, it follows that µi ≤ ηAνi for all η > 1. Consequently, µi ≤ Aνi.

Using (iii) of Lions’ lemma, we get

Aνi ≥ µi ≥ Sν
2
2∗
i ,

implying

νi ≥
(
S

A

)N
2

.

Lemma 1.4.5. If νi > 0 for some index i, then A ≥ 2−
2
N S.

Lemma 1.4.6. If
λ > λN,q,

then b < 1
N (N−2

2N )
N−2

2 2
N−2

2 S
N
2 .

Proof. Take ψ ∈ H1
r (RN ), ψ ≥ 0 verifying

∥ψ∥2Lq = C−1
q and ∥ψ∥H1 = 1.
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Now, observe that for any u ∈ H1(RN ) such that u+ ̸≡ 0 and t > 0, by condition (1.4.6)

S(tu) ≤ t2

2
∥u∥2H1(RN ) −

λ

q
tq∥u∥q

Lq(RN )
< 0

for some tu ≫ 1. So we get

b = inf
γ∈Γ

max
t∈[0,1]

S(γ(t)) ≤ inf
u∈H1(RN ),u+ ̸≡0

max
t∈[0,1]

S(ttuu) ≤ inf
u∈H1(RN ),u+ ̸≡0

max
t≥0

S(tu) ≤

≤ max
t≥0

S(tψ) ≤ max
t≥0

{
t2

2
− λ

tq

q

∫
RN

ψqdx

}
.

Since q > 2, a simple computation shows that

max
t≥0

{
t2

2
− λ

tq

q

∫
RN

ψqdx

}
=
q − 2

2q
λ
− 2

q−2 ∥ψ∥
− 2q

q−2
q =

q − 2

2q
λ
− 2

q−2C
q

q−2
q .

The last inequality combined with the hypothesis on λ finishes the proof of the lemma.

Lemma 1.4.7. The weak limit u is non-trivial.

Proof. Assume u = 0. In this case, since {un} ⊂ H1
r (RN ), there is a νi which can be

chosen to be positive at the origin. Notice that all other "atoms" are null because {un}
is bounded in L∞{|x| ≥ δ}, for all δ > 0 by Lemma A.0.3. Next, we denote by ν0 this
unique atom.
We claim that ν0 = 0. Suppose on the contrary that ν0 > 0; by lemma 1.4.5, A ≥ 2−

2
N S.

Combining this inequality with lemma 1.4.6, we get a contradiction with Lemma 1.4.3.
Hence ν0 = 0 and

un → 0 in L2∗
loc(RN )

by compactness’ principle of Lions. On the other hand, by Lemma A.0.3

un → 0 in L2∗({|x| ≥ R}) for all R≫ 1 fixed.

Then,
un → 0 in L2∗(RN ).

Now, by definition of {un} we have∫
RN

F (un)dx =
1

2

∫
RN

|un|2dx+ 1.

The growth assumptions on f imply that there is a constant C > 0 such that

F (s) ≤ 1

4
s2 + Cs2

∗
for s ≥ 0.

Consequently,

C

∫
RN

|un|2
∗
dx ≥ 1

4

∫
RN

|un|2dx+ 1 ≥ 1.

The last inequality leads to a contradiction. Therefore u ̸= 0.
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Now, we are ready to prove Theorem 1.4.1.

Proof. Our goal is to prove that constant A is attained by u. Since un → u in H1(RN ),
it follows that

T (u) =
1

2

∫
RN

|∇u|2dx ≤ lim inf
n→+∞

1

2

∫
RN

|∇un|2dx = A.

Combining Lemmas 1.4.3, 1.4.5, 1.4.6, we derive that νi = 0 for every i. The same
argument used in Lemma 1.4.7 shows that

un → u in L2∗
loc(RN ).

From this,
F (un) → F (u) in L1(BR(0)), ∀R > 0.

On the other hand, Strauss’ lemma implies

F (un) → F (u) in L1({|x| ≥ R}), ∀R≫ 1 fixed.

Then,
F (un) → F (u) in L1(RN ).

Recalling that ∫
RN

F (un)dx =

∫
RN

|un|2

2
dx+ 1,

then we have ∫
RN

F (u)dx ≥
∫
RN

u2

2
dx+ 1,

that is ∫
RN

G(u)dx ≥ 1.

Now, if u ̸∈ M one should have ∫
RN

G(u)dx > 1.

Repeating the same argument used in Step 3 of Theorem 2.5.1 (see Section 2.5 below),
one obtains a contradiction. Therefore u ∈ M and T (u) = A. Finally, we already know
from Theorem 1.3.2 that if u minimizes the problem (1.4.1) then it is a ground state
solution.
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The case of dimension N = 2

In dimension N = 2 we have already seen in Proposition 1.2.1 that Pohožaev’s identity
implies that any solution u of (*) should verify the equality

∫
R2 G(u)dx = 0.

In dimension N = 2, we consider P = M and

(⋆) A = inf

{
1

2

∫
R2

|∇u|2dx;
∫
R2

G(u)dx = 0, u ∈ H1
r (R2) \ {0}

}
= inf

v∈P

1

2

∫
R2

|∇v|2dx.

In what follows, we will consider the following min-max value

(⋆⋆) c := inf
0̸=v∈H1(R2)

max
t≥0

I(tv).

The first result of this subsection shows a sufficient condition on a sequence {vn}n to get
a convergence like F (vn) → F (v) in L1(R2).

Lemma 1.4.8. Assume that f satisfies (1.4.3), (1.4.4) and let {vn} be a sequence in
H1

r (R2) such that

lim sup
n→+∞

∥∇vn∥2L2 = ρ < 1 and lim sup
n→+∞

∥vn∥2L2 =M < +∞.

Then, ∫
R2

F (vn)dx→
∫
R2

F (v)dx

where vn ⇀ v in H1(R2).

Proof. Without loss of generality, we can assume that exists v ∈ H1
r (R2) such that

vn ⇀ v in H1(R2), vn → v a.e. in R2 and lim
|x|→+∞

vn(x) = 0 uniformly in n,

by Strauss’ lemma A.0.2. Using a Trudinger-Moser inequality due to Cao [10], we know
that for each m ∈ (0, 1) and M > 0, there exists C(m,M) > 0 such that

sup
u∈B

∫
R2

(e4πu
2 − 1)dx ≤ C(m,M),

where
B :=

{
u ∈ H1

r (R2) :

∫
R2

|∇u|2dx ≤ m,

∫
R2

u2dx ≤M

}
.

Now, choose ϵ > 0 small enough such that m = ρ
(1−ϵ)2

∈ (0, 1) and set α = 4π
(1−ϵ)2

>
4π.
Then, ∫

R2

(eαv
2
n − 1)dx =

∫
R2

(
eα(1−ϵ)2( vn

1−ϵ
)2 − 1

)
dx =

∫
R2

(e4π(
vn
1−ϵ

)2 − 1)dx.
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Since vn
1−ϵ ∈ B for n large enough, we have that∫

R2

(eαv
2
n − 1)dx ≤ C(m,M) ∀n≫ 1.

Now, setting P (s) = F (s) and Q(s) = eαs
2 − 1, from the hypotheses of f and classical

Moser-Trudinger inequality, it holds

lim
s→0

P (s)

Q(s)
= lim

|s|→+∞

P (s)

Q(s)
= 0, sup

n∈N

∫
R2

|Q(vn)|dx < +∞

and
P (vn(x)) → P (v(x)) a.e. in R2 as n→ +∞.

So, Theorem A.0.3 implies that P (vn) converges to P (v) in L1(R2), that is,∫
R2

F (vn)dx→
∫
R2

F (v)dx,

finishing the proof.

As in the preceding subsection, we derive two technical lemmas involving the levels
A and c, defined as in (⋆), (⋆⋆).

Lemma 1.4.9. A ≤ c.

Proof. For each v ∈ H1(R2) \ {0} with v+ ̸= 0, we set the continuous function h :
(0,+∞) → R by

h(t) =

∫
R2

G(tv)dx =

∫
R2

(
F (tv)− t2v2

2

)
dx.

By virtue of the assumptions on f , one concludes that h(t) < 0 for t small enough and
h(t) > 0 for t large enough. In this way, by the intermediate value theorem, there exists
t0 > 0 such that h(t0) = 0, that is, t0v ∈ P. Hence,

A ≤ 1

2

∫
R2

|∇(t0v)|2dx = S(t0v) ≤ max
t≥0

S(tv).

On the other hand, since f(s) = 0 for all s ≤ 0, if v ∈ H1(R2) \ {0} with v+ = 0, we
have

max
t≥0

S(tv) = +∞.

From this, A ≤ c.

Lemma 1.4.10. If
λ > λ2,q

with λ2,q as in Theorem 1.4.2, then c < 1
2 .
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Proof. By assumption (1.4.5) for f , as in the proof of Lemma 1.4.6, we have

c ≤ (q − 2)

2q
λ
− 2

q−2C
q

q−2
q

and then
c <

1

2
.

Now, it is well-known that A > 0 (see Lemma 5.3 in [4]). Hence, we are ready to
prove theorem 1.4.2.

Proof. We need to prove that A is attained, that is, there exists u ∈ H1
r (R2) \ {0} such

that A =
∫
R2 |∇u|2dx and

∫
R2 G(u)dx = 0. Let {un} be a minimizing sequence in H1

r (R2)
for A, that is,

1

2

∫
R2

|∇un|2dx→ A and
∫
R2

G(un)dx = 0. (1.4.7)

Arguing as before, we may assume that∫
R2

|un|2dx = 1.

Combining equation (1.4.7) with Lemmas 1.4.10 and 1.4.11, one obtains

lim sup
n→+∞

∫
R2

|∇un|2dx = 2A ≤ 2c < 1.

From Lemma 1.4.9, ∫
R2

F (un)dx→
∫
R2

F (u)dx,

where u is the weak limit of {un} in H1(R2). From last condition,∫
R2

F (u)dx =
1

2
,

implying that u ̸≡ 0 and
1

2

∫
R2

|∇u|2dx ≤ A.

Now, our goal is to prove that
∫
R2 G(u)dx = 0. To this end, by weak semicontinuity we

have
∫
R2 |u|2dx ≤ 1. Consequently,∫

R2

G(u)dx =

∫
R2

F (u)dx− 1

2

∫
R2

|u|2dx =
1

2
− 1

2

∫
R2

|u|2dx ≥ 0.

Finally, as in step 3 of Section 2.5, we obtain that necessarily
∫
R2 G(u)dx = 0, from

where it follows that A is attained.
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Now, we prove that m = A = b. First, we recall

m = inf{S(u) : u is nontrivial solution of (*)}

and
b = inf

γ∈Γ
max
t∈[0,1]

S(γ(t)),

where Γ = {γ ∈ C([0, 1], H1
r (R2)) : γ(0) = 0,S(γ(1)) < 0}. We proved above that exists

u ∈ H1
r (R2) \ {0} such that

1

2

∫
R2

|∇u|2dx = A and
∫
R2

G(u)dx = 0.

By Lagrange multipliers there exists θ ∈ R such that∫
R2

∇u∇vdx = θ

∫
R2

g(u)vdx for every v ∈ H1(R2).

The number θ should be positive as we have seen in the proof of Theorem 1.3.1. Define
the rescaled function u√θ(x) = u( x√

θ
), which is a nontrivial solution of (*) with∫

R2

|∇u√θ|
2dx =

∫
R2

|∇u|2dx and
∫
R2

G(u√θ)dx = 0.

Thus,

m ≤ S(u√θ) =
1

2

∫
R2

|∇u√θ|
2dx−

∫
R2

G(u√θ)dx =
1

2

∫
R2

|∇u|2dx = A.

To sum up,
m ≤ A.

Now, for each γ ∈ Γ one has γ([0, 1]) ∩ P ≠ ∅. Hence, there exists t0 ∈ [0, 1] such that
γ(t0) ∈ P and then

A ≤ 1

2

∫
R2

|∇γ(t0)|2dx =
1

2

∫
R2

|∇γ(t0)|2dx−
∫
R2

G(γ(t0))dx = S(γ(t0)),

by definition of P. Thus
A ≤ S(γ(t0)) ≤ max

t∈[0,1]
S(γ(t))

and so A ≤ b follows immediately by definition of b.
To sum up, we have proved

m ≤ A ≤ b.

It remains to show that m ≥ b. For any nontrivial solution w ∈ H1(R2) of (*), arguing
as in [14] we deduce that there exists a path γw ∈ Γ such that w ∈ γw([0, 1]) and
maxt∈[0,1] S(γw(t)) = S(w). Consequently,

b ≤ S(w).
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Therefore
b ≤ m.

In conclusion, m = A = b and the function u√θ is a ground state solution of problem
(*).
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Chapter 2

Bound-states

2.1 Introduction and main result

In this chapter, we shall seek solutions of (*) which are radial, but not necessarily
positive, and which correspond to higher values of the action S. Such solutions are
called "bound-states". Our main result states that under the same conditions as in
previous chapter and plus hypothesis that g is odd, the problem (*) possesses infinitely
many distinct solutions.
We can now state the main theorem of this chapter:

Theorem 2.1.1. Let N ≥ 3 and g : R → R be a continuous odd function which satisfies
conditions (1.1.1)-(1.1.3). Then, problem (*) possesses an infinite sequence of distinct
solutions {uk}k≥1 with the following properties:

(i) uk is radial and of class C2 on RN , ∀k ≥ 1;

(ii) there exist constants Ck, δk > 0 such that

|Dαuk(x)| ≤ Cke
−δk|x|, ∀x ∈ RN ,

where |α|1 ≤ 2 and k ≥ 1;

(iii) limk→+∞ S(uk) = +∞.

Heuristically, consider the manifold

M = {u ∈ H1
r (RN );T (u) = 1},

and recall that
T (u) =

∫
RN

|∇u|2dx, V (u) =

∫
RN

G(u)dx,

so S = 1
2T − V .

As before, by looking for critical points of the constrained functional V|M , one can deduce
the existence of solutions of (*). Indeed, if V ′

|M (v) = 0 for some v ∈ H1(RN ), then there
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is a Lagrange multiplier θ such that 1
2T

′(v) = θV ′(v). One can show that θ > 0, and so
by scale change

u(x) = v√θ(x) = v

(
x√
θ

)
,

one obtains a solution u of (*).
Therefore, the idea will be to prove that V|M has infinitely many distinct critical

values {ck}k≥1 corresponding to infinitely many distinct critical points on M . Finally,
we have to ensure that, after the proper scale changes (different for each θk), one still
gets infinitely many distinct solutions of (*). This will be guaranteed by the fact that
S(uk) ↗ +∞ as k → +∞, which will be a consequence of the condition ck ↗ +∞ as
k → +∞. (Indeed, there is a simple relation of the form S(uk) = Ccτk with constants
C, τ > 0 depending on N).

Our first task, therefore, will be to derive some results in critical point theory. In
fact, we are concerned in general with finding critical points of constrained functionals
of the type J|M , where J ∈ C1(E,R) is even, E is a reflexive Banach space, M = {x ∈
E : ∥x∥H = 1} and H is a Hilbert space such that E ↪→ H ↪→ E′. In the application to
Theorem (2.1.1), we will consider E = H1

r (RN ), H = D1,2
r (RN ) and J = V .

2.2 Some results in critical point theory

In this section, we will give some general theorems about critical point theory. Let H
be a real Hilbert space whose norm and scalar product will be denoted respectively by
∥·∥H and (·, ·). Let E a real Banach space with norm ∥·∥E continuously embedding in
H. We assume throughout this section that

E ↪→ H ↪→ E′

by Riesz’s duality map. Furthermore, we will suppose (without loss of generality) that
∥x∥H ≤ ∥x∥E , ∀x ∈ E. We consider the manifold

M := {x ∈ E : ∥x∥H = 1}

endowed with the topology inherited from E. Moreover M is a submanifold of E of
codimension 1 and its tangent space at a given point x ∈ M can be considered as a
subspace of E of codimension 1, namely

TxM = {v ∈ E : (x, v) = 0}.

We denote by πx the orthogonal projection onto TxM , that is πxu = u − (u, x)x for all
u ∈ E. Let us consider a functional J : E → R which is of class C1 on E. Then, J|M is
a C1 functional on M , and for any x ∈M ,

J ′
|M (x)[w] = J ′(x)[w] ∀w ∈ TxM.
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Clearly, also J ′
|M (x) ∈ (TxM)′. In the sequel, for any x ∈ M the notation ∥J ′

|M (x)∥ is
understood to refer to the dual norm induced by the norm of TxM which is inherited
from E.

We recall that J satisfies the Palais-Smale condition (in short (P-S)) if the fol-
lowing condition holds: for any sequence {xn} ⊂ M such that J(xn) is bounded and
∥J ′

|M (xn)∥ → 0 as n → +∞, there exists a subsequence {xnk
} which converges strongly

in M .
A weaker requirement is the following (P-S+) condition (which we will check instead of
previous one): for any α,C > 0 and for any sequence {xn} ⊂M such that α ≤ J(xn) ≤ C
and ∥J ′

|M (xn)∥ → 0 as n → +∞, there exists a subsequence {xnk
} which converges in

M .
In order to check these conditions, it is useful to have a characterization of the conver-
gence ∥J ′

|M (xn)∥ → 0 as n→ +∞ in terms of J ′(xn).

Lemma 2.2.1. Let {xn} be a sequence in M which is bounded in E. Then, the following
conditions are equivalent:

(i) ∥J ′
|M (xn)∥ → 0 as n→ +∞;

(ii) J ′(xn)− J ′(xn)[xn]xn → 0 in E′ as n→ +∞.

Proof. Let x ∈ M ; any v ∈ E has the unique decomposition v = (v, x)x + πxv, with
πxv ∈ TxM as before. Noticing that |(v, x)| ≤ ∥v∥H ≤ ∥v∥E , we have

∥πxv∥E ≤ (1 + ∥x∥E)∥v∥E , ∀v ∈ E, ∀x ∈M.

Let J̃ ′(x) := J ′(x)− J ′(x)[x]x in E′. By definition of TxM , we have

J̃ ′(x)[w] = J ′
|M (x)[w], ∀w ∈ TxM.

Thus, ∥J ′
|M (x)∥ ≤ ∥J̃ ′(x)∥E′ , ∀x ∈M , whence (ii) implies (i).

On the other hand, suppose now (i). One has for any v ∈ E:

J̃ ′(xn)[v] = J ′(xn)[πxnv].

Thus,
|J̃ ′(xn)[v]| ≤ ∥J ′

|M (xn)∥(1 + ∥xn∥E)∥v∥E ≤ C∥J ′
|M (xn)∥∥v∥E

for some constant C > 0, since {xn} ⊂ M is bounded. This shows that ∥J̃ ′(xn)∥E′ → 0
as n→ +∞, that is (ii).

We recall that a critical point for J|M is a point x ∈M such that J ′
|M (x) = 0, and a

critical value of J|M is a number c ∈ R such that there is an x ∈ M with J(x) = c and
J ′
|M (x) = 0. Let Σ(M) denote the set of compact and symmetric, with respect to the

origin, subsets of M . We recall that the genus γ(A) of a set A ∈ Σ(M), is defined as

γ(A) := inf{n ≥ 1 : ∃ϕ : A→ SN−1 odd continuous}.
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We set γ(A) = +∞ if such integer does not exist, and recall that γ(Sn−1) = n. For
k ≥ 1, we define

Γk := {A ∈ Σ(M) : γ(A) ≥ k}.

Since E is infinite dimensional, we have Γk ̸= ∅ for all k ≥ 1.
We can now state the main result about existence of critical values, which will be

crucial for the main theorem 2.1.1.

Theorem 2.2.1. Let J : E → R be an even functional of class C1. We assume that J
is bounded from below on M and that J|M satisfies the condition (P-S). Let

ck = inf
A∈Γk

sup
x∈A

J(x).

Then for any k ≥ 1, ck is a critical value of J|M and {ck}k is an increasing sequence.
Furthermore, if ck > 0 is finite for any k ≥ 1 and J satisfies (P-S+), then ck is a critical
value of J .

Remark 2.2.2. We note that, otherwise from previous chapter, we assume that g is odd
because J needs to be an even functional. Furthermore, we require that infM J(x) > −∞
due to the fact that c1 = infM J(x) and {ck}k is an increasing sequence.

As in usual in critical point theory, the proof of Theorem 2.2.1 requires a typical
"deformation lemma", whose its technical proof is explained in [25] and [3]. In the proof,
we consider for semplicity an equivalent relation for ck, namely

bk = sup
A∈Γk

inf
x∈A

J(x).

Indeed, it is easy to prove that for N ≥ 3:

ck = b
−N−2

N
k .

Lemma 2.2.3. Suppose J|M ∈ C1 satisfies condition (P-S) (respectively (P-S+)). Let
b ∈ R (respectively b > 0) be not a critical value of J|M , and for c ∈ R we put Ac := {x ∈
M : J(x) ≥ c}. Then, there exist a constant ϵ̄ > 0 and a deformation η ∈ C(M,M) such
that

(i) η(x) = x for x ∈M , with |J(x)− b| ≥ ϵ̄;

(ii) η is a homeomorphism and it is odd if J|M is even;

(iii) J(η(x)) ≥ J(x) for x ∈M ;

(iv) η(Ab−ϵ) ⊂ Ab+ϵ ∀ 0 < ϵ < ϵ̄.

Proof. (of Theorem 2.2.1) First, bk is well-defined because Γk ̸= ∅ for k ≥ 1. Since
Γk′ ⊂ Γk, if k′ ≥ k, it follows that bk′ ≤ bk. Now, suppose bk is not a critical value of J|M
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for some k ≥ 1. Then let ϵ, ϵ̄ > 0 and η be given by previous lemma. From the definition
of bk, there exists A ∈ Γk such that

bk − ϵ ≤ inf
x∈A

J(x) ≤ bk.

This implies that A ⊂ Abk−ϵ. By previous lemma, η(A) ⊂ Abk+ϵ. Morover, since η is an
odd homeomorphism, we have η(A) ∈ Σ(M) and γ(η(A)) = γ(A) ≥ k. Hence η(A) ∈ Γk.
But

inf
x∈η(A)

J(x) ≥ bk + ϵ,

which contradicts the definition of bk.

Now, in order to get infinitely many distinct solutions of (*), we will show that
ck ↗ +∞ as k → +∞.

Theorem 2.2.2. Let E be an infinite dimensional, separable, reflexive and dense sub-
space of H. In addition to the hypotheses of Theorem 2.2.1, we assume that J(0) = 0
and that J is weakly upper semicontinuous for the H-topology on the set

S = {x ∈ E; J(x) ≥ 0, ∥x∥H ≤ 1},

that is

if {xn} ⊂ S, xn ⇀ x in H and x ∈ E, then J(x) ≥ lim sup
n→+∞

J(xn).

(2.2.1)
Lastly, we suppose that ck > 0 is finite for all k ≥ 1. Then we have

ck ↗ +∞ as k → +∞.

Since E is separable, there exists a sequence of finite dimensional subspaces of E,
namely E1 ⊂ E2 ⊂ ... ⊂ En ⊂ En+1 ⊂ ... ⊂ E such that dimEi = i ∀ i ≥ 1 and the
closure of ∪i∈NEi in E is equal to E. Note that, since E is dense in H, the closure in H of
∪i∈NEi is also equal to H. In the sequel we denote by Pn the orthogonal projection from
H onto En. Before proving Theorem 2.2.2, we give a technical lemma about orthogonal
projections.

Lemma 2.2.4. Assume the hypotheses of Theorem 2.2.2 hold. Then, for any ϵ > 0,
there exists ρ = ρϵ > 0 and kϵ ∈ N such that for any k ≥ kϵ and any x ∈ S, one has

∥Pk(x)∥E ≤ ρ implies J(x) ≤ ϵ.

Proof. Let ϵ > 0 be given. Now, we claim that there exists ρ > 0 such that for all x ∈ S,

∥x∥H ≤ ρ implies J(x) <
ϵ

2
. (2.2.2)

Indeed, if it were not true, there would exist a sequence {xn} ⊂ S such that xn → 0 in
H and J(xn) ≥ ϵ for n sufficiently bigger. This would contradict (2.2.1), since 0 ∈ E
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and J(0) = 0. The proof now proceeds by contradiction. Suppose there is a sequence of
integers {ni} ↗ +∞ as i→ +∞ and sequences (we can take the same {ni} up to choose
a subsequence) {xni} ⊂ S and {ρni} ↘ 0 such that

∥Pnixni∥E ≤ ρni and J(xni) ≥ ϵ, ∀i (2.2.3)

for some ϵ > 0. Then, one can extract a subsequence of {xni}, denoted again by {xni},
such that

xni ⇀ x in H, Pnixni → 0 in E.

We claim that x = 0, and thus x ∈ E. Indeed, one has

∥x∥2H = lim
i→+∞

(xni − Pnixni , x).

Now,
(xni , x) → ∥x∥2H as i→ +∞

and
(Pnixni , x) = (xni , Pnix) → ∥x∥2H

since Pnix converges strongly in H to x (by definition of orthogonal projection in Hilbert
spaces). Therefore, ∥x∥H = 0, that is x = 0 and x ∈ E. Since xni ⇀ x, by (2.2.1) we
have

J(0) ≥ lim sup
i→+∞

J(xni) ≥ ϵ

which contradicts J(0) = 0.

Proof. (of Theorem 2.2.2) Let ϵ > 0 be given; we shall show that for k > kϵ (kϵ given
by previous lemma) one has 0 < bk ≤ ϵ, where bk’s are defined as above. Indeed, suppose
for contradiction that bk > ϵ for some k > kϵ. Then, by definition of bk there exists
A ∈ Γk (A ∈ Σ(M), γ(A) ≥ k) such that bk ≥ infx∈A J(x) > ϵ. Since J(x) > ϵ for x ∈ A,
we have by Lemma (2.2.4)

∥Pkϵx∥E > ρ for x ∈ A,

where ρ = ρϵ > 0 given by Lemma (2.2.4). Thus, one can define an odd continuous
mapping ϕ : A→ Skϵ−1 as ϕ(x) = Pkϵ (x)

∥Pkϵ (x)∥E
. But this implies γ(A) ≤ kϵ by definition of

genus, which is a contradiction. Hence bk ↘ 0 as k → +∞.

2.3 Proof of the existence of infinitely many bound-states

We now turn to the applications of the previous section to problem (*). Let us first
make precise the functional framework which will be used.
For N ≥ 3, let H = D1,2

r (RN ) an Hilbert space with scalar product

(ϕ, ψ) =

∫
RN

∇ϕ∇ψdx, ∀ϕ, ψ ∈ D1,2(RN ).
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We recall that H can be characterized by

H = {ϕ ∈ L2∗(RN ) radial : |∇ϕ| ∈ L2(RN )}

because of the Sobolev embedding theorem, and we define E = H1
r (RN ). Observe that,

since E is an infinite dimensional separable and dense subspace of H, we have a suitable
functional framework to apply Theorem (2.2.2).

In order to define the functional V , we first need to modify the function g in the
same way as we did in the previous chapter. Take ξ as in (1.1.3) and define g̃ : R → R
as follows:

(i) If g(s) ≥ 0 for s ≥ ξ, then g̃ = g;

(ii) Otherwise, set s0 = inf{s ≥ ξ : g(s) ≤ 0} and

g̃(s) =


g(s0) if s ≥ s0

g(s) if |s| ≤ s0

−g(s0) if s ≤ −s0.

Recall that g̃ is odd and satisfies the same conditions as g (in particular it is continuous
at s = s0 because g is odd), and that by strong maximum principle, solutions of (*) with
g̃ are also solutions of (*) with g. We keep the notation g for the modified function g̃.
Then, defining

V (u) =

∫
RN

G(u)dx,

we obtain an even functional V ∈ C1(E) with V (0) = 0. Now, we consider the subman-
ifold of E

M = {u ∈ E : T (u) = 1}.

The main Theorem 2.1.1 will be easily derived from the next result.

Proposition 2.3.1. Let g : R → R be an odd continuous function satisfying conditions
(1.1.1)-(1.1.3). There exist infinitely many distinct critical values {ck}k∈N of T|M given
by

ck = inf
A∈Γk

sup
x∈A

T|M (x), ∀k ≥ 1.

Moreover ck > 0 is finite for all k ≥ 1 and ck ↗ +∞ as k → +∞. For each k ∈ N, there
exists a critical point vk ∈M corresponding to ck, and there exists θk > 0 such that

−∆vk = θkg(vk) in RN .

Proof. We apply Theorems 2.2.1 and 2.2.2 of the preceding section. The proof of the
proposition is based on the following steps:

(i) T|M is bounded from below and satisfies the upper semi-continuity condition (2.2.1);
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(ii) T|M satisfies (P-S+);

(iii) ck > 0 is finite for all k ≥ 1;

(iv) Proof of Theorem 2.1.1.

Step 1. As above, let us consider

bk = sup
A∈Γk

inf
x∈A

V|M (x)

so that
bk = c

− N
N−2

k .

Therefore, we will prove that V|M is bounded from below. Using the same notations of
previous chapter, we set

g1(s) = (g(s) +ms)+ and g2(s) = g1(s)− g(s), ∀s ≥ 0

and
gi(s) = −gi(−s) for s ≤ 0, i = 1, 2.

Then g = g1 − g2 and g1, g2 ≥ 0 on R+. Let

Gi(z) =

∫ z

0
gi(s)ds

so that Gi(z) ≥ 0 for z ∈ R and i = 1, 2. Recall that, as in the proof of Theorem 1.3.1,
for any ϵ > 0 there exists a constant Cϵ > 0 such that

G1(s) ≤ Cϵ|s|2
∗
+ ϵG2(s), s ∈ R.

Now, for u ∈ H such that ∥u∥H ≤ 1, Sobolev embedding theorem implies ∥u∥L2∗ (RN ) ≤ C
for some constant C > 0. Hence, putting G = G1−G2 and using the last inequality with
ϵ = 1

2 , one has

∥u∥H ≤ 1, V (u) ≤ C − 1

2

∫
RN

G2(u)dx ≤ C, u ∈ E. (2.3.1)

Therefore, in particular V|M is bounded from above. Now, we will prove the upper
semi-continuity condition.

Let define
S := {u ∈ E : V (u) ≥ 0, ∥u∥H ≤ 1}.

Consider a sequence {un} ⊂ S such that un ⇀ u in H, with u ∈ E. We want to show
that

V (u) ≥ lim sup
n→+∞

V (un).

We already know, since ∥un∥H ≤ 1, that for all n ∈ N

∥∇un∥L2(RN ), ∥un∥L2∗ (RN ) ≤ C,
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for some constant C ≥ 1. From V (un) ≥ 0 and (2.3.1), we derive∫
RN

G2(un)dx ≤ C.

Since by construction we have g2(s) ≥ ms for s ≥ 0, it follows that

G2(s) ≥
m

2
s2, s ∈ R.

Hence, we obtain ∥un∥L2 ≤ C, and so ∥un∥E ≤ C. This shows that un ⇀ u in E. We
now apply the technique of Step 3 of Section 1.3 to show that∫

RN

G1(un)dx→
∫
RN

G1(u)dx as n→ +∞.

Now by Fatou’s lemma and continuity of G2 we have∫
RN

G2(u)dx ≤ lim inf
n→+∞

∫
RN

G2(un)dx.

Hence, V (u) ≥ lim sup
n→+∞

V (un).

Step 2. We will show that for any α,C > 0 and for any sequence {un} ⊂ M such
that α ≤ V (un) ≤ C and ∥V ′

|M (un)∥ → 0, one can extract a convergent subsequence
{unk

}. We know by step 1 that if {un} ⊂ M and V (un) ≥ 0, then ∥un∥E ≤ C. Thus,
applying Lemma 2.2.1, we obtain

V ′(un)− V ′(un)[un]un → 0 in E′,

which means
θn∆un + g(un) → 0 in H−1(RN ) (2.3.2)

where
θn := V ′(un)[un] =

∫
RN

g(un)undx.

Since {un} is bounded in E, up to a subsequence, we have that un ⇀ u in E. As in the
Step 1 above, we know that ∫

RN

G1(un)dx→
∫
RN

G1(u)dx,

whence, using Fatou’s lemma for
∫
RN G2(un)dx, we obtain

V (u) ≥ lim sup
n→+∞

V (un) ≥ α > 0.

Thus, in particular, u ̸≡ 0. Since the injection H1
r (RN ) ↪→ Lp(RN ) is compact for

2 < p < 2∗ (Corollary A.0.4), we have un → u in Lp(RN ) for those p.
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We now show that θn is bounded. Indeed, by conditions (1.1.1), (1.1.2) and continuity
of g, there exists a constant C > 0 such that

|g(s)s| ≤ C(|s|2 + |s|2∗), s ∈ R.

Thus,
|θn| ≤ C(∥un∥2L2 + ∥un∥2

∗

L2∗ ) ≤ C ′, n ∈ N

for some constant C ′ > 0. Therefore, up to a subsequence denoted always by θn, one
obtains θn → θ. Now, from (2.3.2) we have for any ϕ ∈ C∞

0 (RN )∫
RN

g(un)ϕdx→ −θ
∫
RN

|∇u|2ϕdx. (2.3.3)

Now, applying Theorem A.0.1 with Q(s) = |s|2∗ and P (s) = g(s), we have that g(un) →
g(u) in L1

loc(RN ) (recalling that |g(s)|
|s|2∗−1 → 0 as s→ +∞).

Since g(un) → g(u) in L1
loc(RN ), we also have

∫
RN g(un)ϕdx →

∫
RN g(u)ϕdx ∀ϕ ∈

C∞
0 (RN ), whence, comparing with condition (2.3.3), one has by density

−θ∆u = g(u), u ∈ H1
r (RN ) \ {0}. (2.3.4)

Then by Pohožaev’s identity (see Proposition 1.2.1), one obtains

(N − 2)

2
θ

∫
RN

|∇u|2dx = NV (u) ≥ Nα > 0.

Thus θ > 0. Now, using the same argument to prove that V (u) ≥ lim sup
n→+∞

V (un), one

readily checks that

0 < θ = lim
n→+∞

∫
RN

g(un)undx ≤
∫
RN

g(u)udx.

Multiplying (2.3.4) by u and integrating by parts, we have

θ

∫
RN

|∇u|2dx =

∫
RN

g(u)udx.

Hence, comparing the above conditions, we deduce
∫
RN |∇u|2dx ≥ 1. Since un ⇀ u in

H, we also have
∫
RN |∇u|2dx ≤ 1. Therefore∫

RN

|∇u|2dx = 1 and
∫
RN

g(u)udx = lim
n→+∞

∫
RN

g(un)undx. (2.3.5)

The first equality shows that un → u in H and u ∈ M . Now we will prove that un → u
in E. Indeed, we know that∫

RN

g1(un)undx→
∫
RN

g1(u)udx.
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Hence, by (2.3.5) and definition of g, one has∫
RN

g2(un)undx→
∫
RN

g2(u)udx. (2.3.6)

Recalling that g2(s) = ms + (g(s) + ms)− for s ≤ 0 and g is odd on R, one obtains
g2(s)s = ms2 + q(s) with 0 ≤ q(s) continuous for all s ∈ R. By Fatou’s lemma

lim inf
n→+∞

∫
RN

q(un)dx ≥
∫
RN

q(u)dx, lim inf
n→+∞

∫
RN

u2ndx ≥
∫
RN

u2dx.

Comparing with (2.3.6) we obtain un → u in L2(RN ), so un → u in E.

Step 3. Now we will prove that bk > 0 for all k ≥ 1. Indeed, since V|M satisfies
(P-S+), it is crucial to know a priori that bk > 0 for all k ≥ 1.
For k ≥ 1, we consider the polyhedron in Rk defined by

πk−1 :=

{
l = (l1, ..., lk) ∈ Rk :

k∑
i=1

|li| = 1

}
.

Since πk−1 is homeomorphic to Sk−1 by an odd homeomorphism, one has γ(πk−1) = k.
We will prove that bk > 0 using the following theorem.

Theorem 2.3.1. For any k ≥ 1, there exists a constant R = R(k) > 1 and an odd
continuous mapping τ : πk−1 → H1

0 (BR) such that τ(l) is a radial function for all
l ∈ πk−1 and

0 /∈ τ(πk−1), (2.3.7)

∃ ρ, C > 0 such that ∀u ∈ τ(πk−1), ρ ≤ ∥∇u∥2L2(BR) ≤ C, (2.3.8)∫
BR

G(u)dx ≥ 1 ∀u ∈ τ(πk−1). (2.3.9)

The proof can be seen on the Appendix (Theorem A.0.7).
Let us show that Theorem 2.3.1 implies βk > 0. Put π̂k−1 := τ(πk−1) and define a
mapping χ : π̂k−1 →M in the following way. First, we introduce the canonical injection
H1

0 (BR) ↪→ H1(RN ) by setting, for u ∈ H1
0 (BR),

ũ =

{
u on BR

0 on RN \BR

.

Now define χ(u) = ũσ = ũ( ·
σ ) for 0 ̸≡ u ∈ π̂k−1, where σ = σ(u) > 0 is uniquely

determined by the condition χ(u) ∈M , that is T (ũσ) = σN−2T (ũ) = 1.
Since T (ũ) = ∥∇u∥2L2(BR), we have by (2.3.8)

0 < ρ′ ≤ σ(u) ≤ C ′ ∀u ∈ π̂k−1,
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for some positive constants ρ′, C ′. From this and (2.3.9) one has

V (χ(u)) = σN
∫
BR

G(u)dx ≥ (ρ′)N , ∀u ∈ π̂k−1.

Now, define Ak := χ(π̂k−1). Since χ is an odd continuous mapping, Ak ∈ Σ(M). Fur-
thermore, as χ ◦ τ : πk−1 → Ak is odd and continuous, we have γ(Ak) ≥ γ(πk−1) = k.
Hence, Ak ∈ Γk for all k ≥ 1. We have seen that

V (u) ≥ (ρ′)N , ∀u ∈ Ak.

Therefore,
bk = sup

A∈Γk

inf
x∈A

V (x) ≥ inf
x∈Ak

V (x) ≥ (ρ′)N > 0.

Step 4. Finally, by Theorems 2.2.1 and 2.2.2, we know that ck = b
−N−2

N
k is a critical

value for T|M for all k ≥ 1 and

ck ↗ +∞ as k → +∞.

This last fact shows in particular that there exist infinitely many distinct critical points
of T|M . Let vk ∈M be a critical point of V|M associated with the critical value ck. Now,
Lemma 2.2.1 implies

V ′(vk) = V ′(vk)[vk]vk.

Thus, defining µk := V ′(vk)[vk], we have

−µk∆vk = g(vk) in RN .

Then, as in the previous chapter, we derive

µk =
2N

N − 2
c
− N

N−2

k > 0.

Hence, letting θk = µ−1
k we have

−∆vk = θkg(vk) in RN , θk =
N − 2

2N
c

N
N−2

k .

Let uk = (vk)√θk
; then uk is a solution for the problem (*), for each k ≥ 1. Now, we

want to prove that {uk}k≥1 are actually infinitely many distinct solutions of (*), showing

lim
k→+∞

S(uk) = +∞.

We know that S(uk) = 1
N T (uk) as above. By the scale change relation, we have

S(uk) =
1

N

(
N − 2

2N

)N−2
2

c
N
2
k .

Thus, since ck ↗ +∞ as k → +∞, we deduce that

S(uk) ↗ +∞.

Therefore, one actually has an infinite number of distinct solutions.
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2.4 Regularity of solutions and exponential decay

In this section we will discuss the regularity of both ground-states and bound-states.
Furthermore, we show a strong decay at infinity of solutions. Indeed, these properties
are only connected with solutions u of (*), independent of their energy.

(i) Regularity. In the previous chapter, we showed that u belongs to L∞
loc(RN ). Thus,

by the Lp- estimates from [1], we know that u ∈ W 2,p
loc (R

N ) for any p < +∞. Hence, by
Morrey’s theorem, u ∈ C1,α(RN ) with some α ∈ (0, 1).
Since u is radial, using the laplacian formula in polar coordinates, u satisfies the relation

−urr −
N − 1

r
ur = g(u), r ∈ (0,+∞). (2.4.1)

We already know that urr is continuous on (0,+∞) (using a bootstrap argument), but
we need to be careful at r = 0. Indeed, we will show the continuity at this point. Let us
define v(r) := g(u(r)); v is continuous on [0,+∞). Rewriting (2.4.1) as

−(rN−1ur)r = rN−1v(r),

integrating from 0 to r, we have

rN−1ur = −
∫ r

0
sN−1v(s)ds.

With a change of variable, one has

ur
r

= −
∫ 1

0
tN−1v(rt)dt.

Since, by dominated convergence theorem,∫ 1

0
tN−1v(rt)dt→ v(0)

N
as r → 0+,

we deduce that urr exists and urr(0) = −v(0)
N . Furthermore, from equation (2.4.1) we

note that urr → −v(0)
N as r → 0+. Thus, u ∈ C2(RN ).

(ii) Exponential decay. The exponential decay of u at infinity follows from an ar-
gument from ordinary differential equations. We know that u ∈ C2(RN ) and satisfies
(2.4.1). Set v := r

N−1
2 u; then v satisfies

vrr =

(
q(r) +

b

r2

)
v

where q(r) = −g(u(r))
u(r) and b = (N−1)(N−3)

4 . Recalling that u(r) → 0 as r → +∞ by
Lemma A.0.2, from hypothesis (1.1.1) for g, we have for r ≥ r0 large enough:

q(r) +
b

r2
≥ m

2
.
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Let w := v2; then w satisfies

1

2
wrr = v2r +

(
q(r) +

b

r2

)
w.

Thus, for r ≥ r0 one has wrr ≥ mw. Now let z := e−
√
mr(wr +

√
mw); we have

zr = e−
√
mr(wrr −mw) ≥ 0. Hence, z is a nondecreasing function on (r0,+∞). If there

exists r1 > r0 such that z(r1) > 0, then z(r) ≥ z(r1) > 0 for all r ≥ r1. This implies that

wr +
√
mw ≥ z(r1)e

√
mr,

whence wr+
√
mw is not integrable on (r1,+∞). But v2 and vvr are integrable near infin-

ity for radial u ∈ H1(RN ) using polar coordinates, so that wr and w are also integrable,
a contradiction. Hence, z(r) ≤ 0 for all r ≥ r0. This implies that

(e
√
mrw)r = e2

√
mrz ≤ 0 for r ≥ r0.

Hence, integrating from r0 to r we have w(r) ≤ Ce−
√
mr for some constant C > 0 and

|u(r)| ≤ Cr−
N−1

2 e−
√
m
2

r for r ≥ r0. (2.4.2)

To obtain exponential decay of ur, observe that ur satisfies

(rN−1ur)r = −rN−1g(u). (2.4.3)

Now, from hypotheses on g we can say that for r ≥ r0, m1|u| ≤ |g(u)| ≤ m2|u| for some
m2 ≥ m1 > 0. Hence, integrating (2.4.3) on (r,R) and letting r,R → +∞ using the
last inequality and (2.4.2), one has that rN−1ur has a limit as r → +∞. This limit can
only be zero by (2.4.2). Then, integrating (2.4.3) on (r,+∞), we have that also ur has
an exponentially decay at infinity. Finally, the exponential decay of urr (and thus of
|Dαu(x)| for |α|1 ≤ 2 by polar coordinates) follows immediately from (2.4.1).

(iii) Positivity of ground-state. We note that if u ∈ H1(RN ) then |u| ∈ H1(RN ), so
T (|u|) = T (u) and V (|u|) = V (u) by the hypotheses on g̃. Therefore, if u is a ground
state solution, so is |u|. Since |u| ≥ 0, by the strong maximum principle we have |u| > 0,
that is u > 0 on RN .

2.5 Planar case

We want now to discuss the existence of a ground-state solution of (*) and infinitely
many bound-states of the same problem in the case of dimension N = 2, when some of
the previous arguments seem to fail.

We will study the problem

−∆u = g(u), u ∈ H1(R2), u ̸≡ 0. (2.5.1)
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The hypotheses for g are the folllowing:

g ∈ C(R,R), g(−s) = −g(s), ∀s ∈ R; (2.5.2)

∃ξ > 0 such that G(ξ) =

∫ ξ

0
g(s)ds > 0; (2.5.3)

g′(0) = −m < 0; (2.5.4)

∀α > 0, ∃Cα > 0 such that g(s) ≤ Cαe
αs2 , ∀s ≥ 0. (2.5.5)

g ∈ C1(R,R) and ∀α > 0, ∃Cα > 0 such that |g′(s)| ≤ Cαe
αs2 , ∀s ∈ R.

(2.5.6)
We note that condition (2.5.5) replaces condition (1.1.2) of previous chapter. These
conditions together with a type of Moser-Trudinger inequality from [1], imply that the
energy functional

S(u) = 1

2

∫
R2

|∇u|2dx−
∫
R2

G(u)dx

is well-defined on H1(R2). We recall that

T (u) =

∫
R2

|∇u|2dx, V (u) =

∫
R2

G(u)dx.

Now, we will present two main results:

Theorem 2.5.1. Let g satisfying conditions (2.5.2)-(2.5.6); then, there exists a positive
u ground-state solution of problem (2.5.1) such that u is radial, non-increasing with
exponential decay at infinity.

Theorem 2.5.2. Let g satisfying conditions (2.5.2)-(2.5.6); then, there exist infinitely
many distinct solutions {uk}k ∈ C2(R2) to problem (2.5.1), radial, non-increasing with
exponential decay at infinity, for all k ≥ 1 such that S(uk) ↗ +∞ as k → +∞.

An important consequence of Pohožaev’s identity (Proposition 1.2.1) for N = 2 is
the following

Proposition 2.5.1. Let g ∈ C(R,R) satisfying conditions (2.5.4) and (2.5.5). Let u a
solution of the problem (2.5.1); then u satisfies∫

R2

G(u)dx = 0.

Remark 2.5.2. The previous proposition implies that condition (2.5.3) is necessary for
non-triviality of the solution, since if we have G(s) ≤ 0 for all s ∈ R and G has zero-
average on R2, then G need to be identically zero.
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Smoothness of solutions and positivity of ground state can be proved as in Theorem
(1.1.1), so we will only show existence of solutions. The proof of Theorem 2.5.1 is based
on the constrained minimization problem

minimize
{
1

2

∫
R2

|∇u|2dx, u ∈M

}
,

where M =

{
u ∈ H1(R2) \ {0};

∫
R2 G(u)dx = 0

}
by Proposition 2.5.1.

Since the proofs are similar to Theorems (1.1.1) and (2.1.1), we will be sketchy.

Sketch of the proof of Theorem 2.5.1 :

Step 1: M ̸= ∅. As in Theorem 1.3.1, it follows from hypothesis (2.5.3).

Step 2: Selection of minimizing sequence. Let {un}n ⊂M be a minimizing sequence.
By Schwartz symmetrization and Pólya-Szegö inequality, we may consider un ≥ 0 and
radial non-increasing for all n ∈ N. Up to rescalement, we may also assume ∥un∥L2(R2) =
1 for all n ∈ N.

Step 3: Passage to the limit. With the same techniques of Step 2 of previous chap-
ter, we prove that {un} is bounded in H1(R2). Then, up to a subsequence, there exists
u ∈ H1(R2) such that un ⇀ u in H1(R2) and un → u a.e. on R2.
Set G1(s) := G(s) + m

2 s
2. Now, due to Moser-Trudinger inequality and Strauss’ com-

pactness lemma, it is possibly to see that∫
R2

G1(un)dx→
∫
R2

G1(u)dx as n→ +∞.

Since {un}n ⊂M , we have ∫
R2

G1(u)dx =
m

2
> 0.

This implies that u ̸≡ 0. Furthermore, by Fatou’s lemma we have

1

2

∫
R2

|∇u|2dx ≤ 1

2
inf
v∈M

∫
R2

|∇v|2dx =: A,

∫
R2

u2dx ≤ 1,

which implies
∫
R2 G(u)dx ≥ 0.

Now, suppose by contradiction that
∫
R2 G(u)dx > 0. Define h : [0, 1] → R as

h(t) :=
∫
R2 G(tu)dx. Observe that h is continuous function by Lebesgue’s convergence

theorem and hypotheses on g. We note that h(0) = 0 and h(1) > 0. Furthermore, for
positive t close to 0, we have that h(t) < 0 by hypotheses (2.5.2) and (2.5.3). Then, by
intermediate value theorem, there exists t0 ∈ (0, 1) such that h(t0) = 0. Thus, t0u ∈ M
and

∫
R2 |∇(t0u)|2dx ≥ 2A. Finally,

2A ≤
∫
R2

|∇(t0u)|2dx = t20

∫
R2

|∇u|2dx ≤ 2t20A < 2A,
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which is absurd. So, u ∈M and it is a solution of the minimization problem.

Step 4: Conclusion It follows that u satisfies in H1-sense the relation

−∆u = θg(u),

where θ is a Lagrange multiplier. As we saw previously, θ ≥ 0, that is θ > 0 because
u ̸≡ 0. Then, v(x) := u( x√

θ
) solves problem (2.5.1).

Sketch of the proof of Theorem 2.5.2:

The proof is based on seeking critical points of T over

N = {H1
r (R2) : V (u) ≥ 0, ∥u∥L2(R2) = 1}.

If u ∈ N is a critical point of T , then one may have V (u) = 0 or V (u) > 0. In the first
case, there exists λ ∈ R Lagrange multiplier such that

−∆u = λu in H1(R2),

which is impossible since u ̸≡ 0. On the other hand, if V (u) = 0 there exist λ, µ ∈ R
Lagrange multipliers such that

−∆u = λg(u) + µu.

Proposition 2.5.1 implies µ = 0 and so we get a solution of the problem as above.
In order to prove the theorem, it is sufficient to show the existence of a sequence

{ck}k of critical values of T over N , such that ck ↗ +∞ as k → +∞. The existence
of {ck} is proved in the same way as in Sections 2.2 and 2.3, but requires two different
technical lemma.

Step 1: Modified (P-S) condition.

Lemma 2.5.3. If c is a critical value of T|N , namely T (u) = c for some u ∈ N , there
exist ϵ, δ, a > 0 such that for all α, β ∈ R, it holds

|T (u)− c| ≤ ϵ, 0 ≤ V (u) ≤ a ⇒ ∥T ′(u) + αg(u) + βu∥H−1 ≥ δ.

Lemma 2.5.4. For all R > 0, there exists δ > 0 such that ∀α ∈ R, u ∈ N , it holds

T (u) ≤ R ⇒ ∥T ′(u) + αu∥H−1 ≥ δ.

These two lemmas can be proved by contradiction, using in particular Strauss’compactness
lemma. Furthermore, Lemma 2.5.4 implies the boundedness in H1(R2) of Palais-Smale
sequence {un}n. Therefore, there exists u ∈ H1(R2) such that, up to a subsequence,
un ⇀ u in H1(R2) and un → u a.e. in R2. As in previous sections, we prove that

G1(un) → G1(u), g1(un)un → g1(u)u in L1(R2),
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since g1(s) = g(s) +ms. Finally, we will prove below that un → u in H1(R2).

Step 2: Deformation lemma. The additional hypothesis (2.5.6) on g is used in this
step. Now, using the lemma in Step 1, it is possible to prove that if c > 0 is not a critical
value for T|N , there exists ϵ > 0 and a deformation η : N → N such that

η({u ∈ N ;T (u) ≤ c+ ϵ}) ⊂ {u ∈ N ;T (u) ≤ c− ϵ}.

Step 3: Existence of {ck} and behaviour of ck as k → +∞. For k ∈ N, we recall the
set

Σk = {B ⊂ N : B compact, symmetric, γ(B) ≥ k},

where γ(B) denotes the genus of B. Noting that Σk ̸= ∅ for all k ∈ N, due to Step 2, we
can show that

ck := inf
B∈Σk

max
u∈B

T (u) → +∞ as k → +∞

and ck is a critical value for T|N for k ≥ 1. This concludes the proof of Theorem 2.5.2.
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2.6 New multiplicity results in critical case

Case N ≥ 3

In this section we will prove original results about the existence of many bound-state
solutions in the critical case. More precisely, we consider the problem

(*)

{
−∆u+ u = f(u) in RN

u ∈ H1(RN ), u ̸≡ 0,

where N ≥ 3 and f : R → R is a continuous odd function satisfying conditions (1.4.3)-
(1.4.6). In particular f satisfies

|f(s)| ≥ λ|s|q−1 ∀s ∈ R,

for some q ∈ (2, 2∗) and λ > 0. We want to prove that, given any k ∈ N, there exists
λk ≫ 1 such that (*) has k pairs of nontrivial solutions for all λ > λk.

Remark 2.6.1. As in Section 1.4, we may consider the problem

(*)

{
−∆u+mu = f(u) in RN

u ∈ H1(RN ), u ̸≡ 0,

with m > 0, up to rescalement.

The aim of these multiplicity results is to extend Perera’s works for bounded do-
mains ([26] in dimension N ≥ 3 and [27] in the planar case) on the whole RN . Let us
heuristically explain the idea of the method. Consider the C1 manifold (see Section 1.4)

M =

{
u ∈ H1

r (RN );

∫
RN

G(u)dx = 1

}
,

and recall that

G(u) =

∫ u

0
(f(s)− s)ds = F (u)− u2

2
, T (u) =

1

2

∫
RN

|∇u|2dx, V (u) =

∫
RN

G(u)dx,

so the energy functional S = T −V is well-defined on H1(RN ). By Schwarz symmetriza-
tion, we are looking for critical points of the constrained functional T|M in order to get
solutions of (*) after using Lagrange multipliers and a proper rescalement as in previous
sections.
We recall that Σ(M) denotes the set of compact and symmetric (with respect to the
origin) subsets of M. For k ≥ 1, let

Γk = {A ∈ Σ(M) : γ(A) ≥ k},

where γ(A) denotes the Krasnosel’skii’s genus of A.

Our main result is the following:
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Theorem 2.6.1. Let f : R → R an odd continuous critical (for Sobolev embedding)
function satisfying conditions (1.4.3)-(1.4.6). Then, given any k ∈ N, there exists λk ≫ 1
such that problem (*) has k pairs of nontrivial solutions ±u1, ...,±uk for all λ > λk. In
particular, the number of solutions of (*) goes to infinity as λ→ +∞.

Remark 2.6.2. The solutions found in Theorem 2.6.1 are radially decreasing, classical
with exponential decay at infinity as in Theorem 1.1.1 which also works in the critical
case.

Remark 2.6.3. A particularly interesting case of Theorem 2.6.1 is given by

f(u) = λ|u|q−2u+ |u|2∗−2u,

that is,
−∆u+ u = λ|u|q−2u+ |u|2∗−2u.

In order to prove it, we want to apply the well-known result (see Theorem 2.2.1)
about critical values related to genus.

Theorem 2.6.2. Let J : H1(RN ) → R be an even functional of class C1 and consider
for k ≥ 1

ck,λ := inf
A∈Γk

sup
u∈A

J(u).

Furthermore, assume that J is bounded from below on M and that J|M satisfies (PS −
ck,λ) for every k ≥ 1. Then, for any k ≥ 1, ck,λ is finite, it is a critical value of J|M and
−∞ < c1,λ ≤ c2,λ ≤ ... ≤ ck,λ ≤ ... .

Remark 2.6.4. In our case, we will consider J = T ≥ 0. Furthermore, we proved in
Section 1.4.2 that c1,λ = infM T > 0, so ck,λ > 0 for all k ≥ 1.

The idea is to prove that for each fixed k ≥ 1, if λ > λk, then ck,λ is sufficiently small
in order to get Palais-Smale condition. Precisely, we are going to prove

ck,λ → 0 as λ→ +∞,

for each fixed k ≥ 1. We will estimate them from above as in Theorem 2.3.1, in view of
constructing a special set with genus equal to k. In particular, Theorem 2.3.1 does not
require conditions on g but the only hypothesis is:

∃ξ > 0 such that G(ξ) > 0,

which is verified in our case by condition (1.4.6). Indeed, in view of λ > 1, we can take
by a simple calculation

ξ := q
1

q−2

independent of λ, for every N ≥ 2.
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With the same notations of the theorem, fix ξ > 0 as above, k ∈ N and let us consider
u ∈ τ(πk−1) ⊂ H1

0 (BR), where R := Rk ≥ k + 1. Let define

ũ :=

{
u on BR

0 on RN \BR

∈ H1
r (RN ).

We identify T (u) and V (u) with T (ũ) and V (ũ) respectively; that is, for u ∈ H1
0 (BR)

T (u) =

∫
BR

|∇u|2dx, V (u) =

∫
BR

G(u)dx.

Now, from Theorem 2.3.1
V (u) ≥ 1 ∀u ∈ τ(πk−1).

So, let us consider σ = σu > 0 such that uσ(x) = u(xσ ) ∈ M, i.e. σ > 0 such that

V (uσ) = σNV (u) = 1 ⇐⇒ σu = (V (u))−
1
N .

Furthermore, again from Theorem 2.3.1, there exists Ck > 0 such that

∥∇u∥2L2(BR) ≤ Ck.

Then, in view of γ(τ(πk−1)) = k, uσ ∈ M and invariance of genus under rescale-
ment, one has the following estimate

ck,λ ≤ sup
u∈τ(πk−1)

T (uσ) = sup
u∈τ(πk−1)

(σN−2
u T (u)) ≤ Ck sup

u∈τ(πk−1)
σN−2
u ,

where

sup
u∈τ(πk−1)

σN−2
u =

(
1

infu∈τ(πk−1) V (u)

)N−2
N

.

Now, from growth conditions on f odd and Poincare’s inequality, for each fixed k ≥ 1
and for all u ∈ τ(πk−1),

V (u) =

∫
BR

G(u)dx =

∫
BR

(
F (u)− u2

2

)
dx ≥

∫
BR

(
λ

q
|u|q − u2

2

)
dx =

=
λ

q
∥u∥qLq(BR) −

1

2
∥u∥2L2(BR) ≥

λ

q
∥u∥qLq(BR) −

1

2λ1
∥∇u∥2L2(BR) ≥

λ

q
∥u∥qLq(BR) −

Ck

2λ1
,

where λ1 := λ1(k) > 0 is the first eigenvalue of −∆ in Dirichlet’s problem on BR

depending on k.
On the other hand, by construction of τ(πk−1), one has∫

BR

|u|qdx ≥ ξq|BR−k| ≥ ξq|B1| = ξq
ωN

N
∀u ∈ τ(πk−1).
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Finally, the above estimates imply for each fixed k ≥ 1:

ck,λ ≤ Ck

2

(
λξqωN

qN
− Ck

2λ1(k)

)−N−2
N

→ 0 as λ→ +∞. (2.6.1)

Now, we will prove a proposition concerning conditions about Palais-Smale sequences for
T|M.

Proposition 2.6.5. Let {un}n ⊂ M such that T (un) → c ∈ (0, 2−
2
N S) and T ′

|M(un) → 0

in H−1(RN ) where S is the best Sobolev constant defined in Section 1.4. Then, up to
subsequences, un → u in H1(RN ) for some u ∈ H1

r (RN ) \ {0}.

Proof. First of all, we will prove that ∥un∥H1(RN ) is bounded. Let {un} such that

1

2

∫
RN

|∇un|2dx→ c and
∫
RN

F (un)dx =

∫
RN

|un|2

2
dx+ 1 ∀n ∈ N.

Using the growth assumptions on f , there exists C > 0 such that

F (s) ≤ 1

4
s2 + C|s|2∗ , ∀s ∈ R.

Hence
C

∫
RN

|un|2
∗
dx ≥ 1

4

∫
RN

|un|2dx+ 1, ∀n ∈ N.

From definition of S,

∫
RN

|un|2
∗
dx ≤ S− 2∗

2

(∫
RN

|∇un|2dx
) 2∗

2

, ∀n ∈ N.

Therefore, ∥un∥H1(RN ) is bounded. Then, up to subsequences, un ⇀ u in H1(RN ).
Now, T ′

|M(un) → 0 in H−1(RN ) implies that exists a sequence {θn}n ⊂ R of Lagrange
multipliers such that

θnT
′(un)− V ′(un) → 0 in H−1(RN ),

where

θn :=

∫
RN g(un)undx∫
RN |∇un|2dx

, ∀n ∈ N

by a simple calculation, and g(s) = f(s)− s. As in Lemma 1.4.7, it is possible to prove
that u ̸≡ 0 and

F (un) → F (u) in L1(RN ). (2.6.2)

Last condition and Fatou’s lemma imply

V (u) ≥ 1.
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By weak semi-continuity,

T (u) ≤ 1

2
lim inf
n→+∞

∫
RN

|∇un|2dx = c.

Now, we want to prove that un → u in H1(RN ), i.e.

V (u) = 1 and T (u) = c.

By the growth assumptions on f ,

lim sup
n→+∞

|θn| ≤
C lim sup

n→+∞

∫
RN (u

2
n + |un|2

∗
)dx∫

RN |∇u|2dx
≤ C ′,

which implies, up to subsequences, θn → θ in R. Then, by continuity of g,

g(un)⇀ −θ∆u

in distributional sense, and so
−θ∆u = g(u)

in H1-sense. Integrating by parts, we obtain

θ

∫
RN

|∇u|2dx =

∫
RN

g(u)udx. (2.6.3)

Furthermore, Pohožaev’s identity

(N − 2)

2
θ

∫
RN

|∇u|2dx = NV (u) ≥ N,

implies that θ > 0.
Now, with the same arguments used to prove (2.6.2) in Section 1.4, one obtains∫

RN

f(un)undx→
∫
RN

f(u)udx.

Hence, by Fatou’s lemma and previous inequality one obtains

lim inf
n→+∞

∫
RN

g(un)undx ≤
∫
RN

g(u)udx,

which implies

0 < θ = lim inf
n→+∞

(∫
RN g(un)undx∫
RN |∇un|2dx

)
≤

∫
RN g(u)udx∫
RN |∇u|2dx

. (2.6.4)

Finally, using (2.6.3), we obtain the equality in (2.6.4) and so un → u in L2(RN ) (which
implies V (u) = 1) and T (u) = c.
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Remark 2.6.6. The upper bound 2−
2
N S for Palais-Smale level c, is given by Lemma

1.4.5. Indeed, assuming that un does not converge strongly to u in H1(RN ), repeating
the same arguments of Lemmas 1.4.4 and 1.4.5, it follows that c ≥ 2−

2
N S.

In conclusion, in order to prove the theorem, it suffices to show that exists a bound c∗ > 0
under which the compactness is guaranteed.

Finally we are ready to prove Theorem 2.6.1.

Proof. (of Theorem 2.6.1 ) We apply Theorem 2.6.2 with J = T . In view of Proposition
2.6.6 and ck,λ > 0 for all k ≥ 1, we have to check that for each k ≥ 1 fixed,

ck,λ < 2−
2
N S. (2.6.5)

So, from (2.6.1), if we choose
λ > λk

for a suitable choice of λk ≫ 1, one has (2.6.2), hence the thesis.

Case N = 2

In the case N = 2, the previous argument does not work anymore. Indeed, the kinetic
part of the functional is invariant under rescalement, namely

T (uσ) = T (u).

Furthermore, the most essential difference is that the C1- constraint M becomes

M =

{
u ∈ H1

r (R2) \ {0} :

∫
R2

G(u)dx = 0

}
by Pohožaev’s identity (Proposition 1.2.1). However, the idea is to apply a constrained
approach, seeking many critical values of T|M using again Theorem 2.3.1.

Our main result is the following:

Theorem 2.6.3. Let f : R → R an odd continuous critical (for Moser-Trudinger in-
equality) function satisfying conditions (1.4.3)-(1.4.6). Then, given any k ∈ N, there
exists λk ≫ 1 such that problem (*) has k pairs of nontrivial solutions ±u1, ...,±uk for
all λ > λk. In particular, the number of solutions of (*) goes to infinity as λ→ +∞.

As already seen above, we want to apply Theorem 2.6.2. Hence, we are going to
estimate

ck,λ = inf
A∈Γk

sup
u∈A

T (u)

using appropriated dilated functions {tu}t∈R+ and the fact that genus does not change
under translations.
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Proposition 2.6.7. Fix k ∈ N. Then, for any u ∈ τ(πk−1), there exists tu,λ > 0 such
that V (tu,λu) = 0, i.e. tu,λu ∈ M.

Proof. We claim that for all u ∈ τ(πk−1), exists t̃u,λ > 0 such that V (t̃u,λu) < 0.
Let t > 0. By hypotheses on f , we know that

lim
s→0

F (s)

s2
= 0.

Then, there exists δ > 0 such that F (tu) ≤ t2u2

4 for all 0 < t < δ
|u| (remember that 0 ̸∈

τ(πk−1)).
So, in view of λ > 1, define

t̃u,λ :=
δ

λα|u|
> 0, (2.6.6)

where α := 1
2 + 1

q . Hence,

V (t̃u,λu) =

∫
BR

(
F (t̃u,λu)−

t̃2u,λu
2

2

)
dx ≤ −

t̃2u,λ
4

inf
u∈τ(πk−1)

∥u∥2L2(BR) ≤ −C
t̃2u,λ
4

for some positive constant C > 0 as in case N ≥ 3.
On the other hand, we say that for all u ∈ τ(πk−1), there exists t̄u,λ > t̃u,λ such that

V (t̄u,λu) =
1
λ > 0. Indeed, since f is odd

F (s) ≥ λ

q
|s|q, ∀s ∈ R

for some q ∈ (2,+∞). Then, in view of Poincare’s inequality, λ ≫ 1 and assuming that
t̄u,λ > t̃u,λ, it holds

V (tu) ≥ t2
(
λtq−2

q
∥u∥qLq(BR) −

1

2
∥u∥L2(BR)

)
>

> t̃2u,λ

(
λtq−2

q
inf

u∈τ(πk−1)
∥u∥qLq(BR) −

1

2λ1(k)
∥∇u∥2L2(BR)

)
≥

≥ t̃2u,λ

(
Cλtq−2 − Ck

λ1(k)

)
=

1

λ
⇐ t̄u,λ :=

((
1

λt̃2u,λ
+

Ck

λ1(k)

)
1

Cλ

) 1
q−2

(2.6.7)

for some positive constant C and Ck depending on k belonged to Theorem 2.3.1, and
λ1(k) as in the previous case. Actually, by the choice of α in (2.6.6), it is possible to
check that

t̄u,λ > t̃u,λ.

Now, by continuity of t ∈ (0,+∞) 7→ V (tu) guaranteed by hypotheses on f , the
intermediate value theorem implies that exists t̃u,λ < tu,λ < t̄u,λ such that

V (tu,λu) = 0 ⇐⇒ tu,λu ∈ M.
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We are ready to estimate ck,λ for each fixed k ≥ 1. In view of last proposition,
γ(τ(πk−1)) = k, Theorem 2.3.1 and invariance of genus under translations, one has by
(2.6.7)

ck,λ ≤ sup
u∈τ(πk−1)

T (tu,λu) = sup
u∈τ(πk−1)

(t2u,λT (u)) ≤ Ck sup
u∈τ(πk−1)

t2u,λ ≤ Ck sup
u∈τ(πk−1)

t̄2u,λ =

=
C ′
k

λ
2

q−2

(
1

λ infu∈τ(πk−1) t̃
2
u

+
Ck

λ1(k)

) 2
q−2

=
C ′
k

λ
2

q−2

(
λ2α−1ξ2

δ2
+

Ck

λ1(k)

) 2
q−2

→ 0 (2.6.8)

as λ → +∞ for each k ≥ 1 fixed, by (2.6.6) and ξ > 0 independent of λ such that
G(ξ) > 0 (we can take ξ = q

1
q−2 as in the case N ≥ 3).

Now, as above we prove a proposition which ensures the Palais-Smale condition.

Proposition 2.6.8. Let {un}n ⊂ M such that T (un) → c ∈ (0, 12) and T ′
|M(un) → 0 in

H−1(R2). Then, up to subsequences, un → u in H1(R2) for some u ∈ H1
r (R2) \ {0}.

Proof. Let {un} ⊂ H1(R2) such that

1

2

∫
R2

|∇un|2dx→ c and
∫
R2

F (un)dx =
1

2

∫
R2

|un|2dx, ∀n ∈ N. (2.6.9)

As already seen in dimension N = 2, up to rescalement, we can assume∫
R2

|un|2dx = 1 ∀n ∈ N.

Hence, {un} is bounded in H1(R2) and so, up to subsequences, there exists u ∈ H1
r (R2)

such that un ⇀ u in H1(R2). Now, since c < 1
2 , Lemma 1.4.9 implies∫

R2

F (un)dx→
∫
R2

F (u)dx

and so u ̸≡ 0 by (2.6.9). Fatou’s lemma and weak semi-continuity imply

T (u) ≤ c and V (u) ≥ 0.

Now, we want to prove strong convergence of un in H1(R2), namely T (u) = c and
V (u) = 0. Since T ′

|M(un) → 0 in H−1(R2), there exists a sequence of {θn}n ⊂ R of
Lagrange multipliers such that

θnT
′(un)− V (un) → 0 in H−1(R2),

where, for any n ∈ N,

θn =

∫
R2 g(un)undx∫
R2 |∇un|2dx

.
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First, observe that by condition (1.4.5), one has∫
R2

g(un)undx =

∫
R2

(f(un)un − u2n)dx > 2

∫
R2

(
F (un)−

u2n
2

)
dx = 0,

implying that ∫
R2

g(un)undx > 0 ∀n ∈ N

and θn > 0. So, by growth assumptions on f ,

lim sup
n→+∞

θn ≤
C lim sup

n→+∞

∫
R2(u

2
n + |un|(e4πu

2
n − 1))dx∫

R2 |∇u|2dx
≤

≤
C ′ lim sup

n→+∞

∫
R2(u

2
n + e

4π
1−ϵ

u2
n − 1)dx∫

R2 |∇u|2dx
≤ C ′′

by Moser-Trudinger inequality due to Cao [10] and ϵ > 0 sufficiently small such that
2c < 1 − ϵ < 1. Then, up to subsequences, θn → θ ≥ 0. As in the proof of Proposition
2.6.8, we have

−θ∆u = g(u) in H1(R2). (2.6.10)

Pohožaev’s identity (Proposition 1.2.1) in dimension N = 2 implies that

V (u) = 0,

and consequently
un → u in L2(R2).

Now, condition (2.6.10) implies θ > 0. Indeed, if θ would be 0, then

g(u) = 0,

so u would be 0, which leads to a contradiction. Hence, θ > 0 and T (u) = c as in
Proposition 2.6.8.

Finally we are ready to prove Theorem 2.6.3.

Proof. We apply Theorem 2.6.2 with J = T . In view of last proposition and ck,λ > 0 for
all k ≥ 1, we have to check that for each k ≥ 1,

ck,λ <
1

2
.

From (2.6.8), if we choose
λ > λk

for a suitable choice of λk ≫ 1, we conclude the proof.
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Chapter 3

Existence of ground-states for
Choquard equations

3.1 Subcritical case

We consider the problem

(*)

{
−∆u+ u = (Iα ∗ F (u))f(u) in RN

u ∈ H1(RN ), u ̸≡ 0,

where N ≥ 3, α ∈ (0, N), F ∈ C1(R;R) with f := F ′ and Iα : RN → R is the Riesz
potential defined for every x ∈ RN \ {0} as

Iα(x) :=
Γ(N−α

2 )

Γ(α2 )π
N
2 2α|x|N−α

,

where Γ(·) denotes the Euler’s Gamma function. Solutions of (*) are formally critical
points of the functional S : H1(RN ) → R defined by

S(u) = 1

2

∫
RN

(|∇u|2 + u2)dx− 1

2

∫
RN

(Iα ∗ F (u))F (u)dx.

We prove the existence of a ground-state solution in the subcritical case, that is we
assume that nonlinearity f ∈ C(R;R) satisfies the growth assumptions:

(f1) there exists C>0 such that ∀s ∈ R, |sf(s)| ≤ C(|s|
N+α
N + |s|

N+α
N−2 ),

(f2) lims→0
F (s)

|s|
N+α
N

= 0 and lim|s|→+∞
F (s)

|s|
N+α
N−2

= 0,

(f3) there exists s0 ∈ R such that F (s0) ̸= 0.

It is standard to check, using condition (f1) and Hardy-Littlewood-Sobolev inequality
(see Proposition A.0.6 with the choice f = g = F , p = t = 2N

N+α , λ = N − α), that
S ∈ C1(H1(RN )).
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Remark 3.1.1. The equation

−∆u+ u = g(u) in RN (3.1.1)

studied in previous chapters, can be considered as a limiting problem of (*) when α→ 0+,
with g = Ff . Indeed, as α → 0+, Iα converges to a Dirac delta measure in the vague
sense ([20], p.46). So conditions (f1)− (f3) are in the same spirit of H. Berestycki and
P.-L. Lions ([6]).

The main result is the following theorem.

Theorem 3.1.1. Assume that N ≥ 3 and α ∈ (0, N). If f ∈ C(R;R) satisfies (f1)−(f3),
then problem (*) has a nontrivial ground-state.

Furthermore, in the following we will prove that every solution u of (*) satisfies u ∈
W 2,q

loc (R
N ) for all q ≥ 1. This regularity information allows us to establish a Pohožaev’s

identity for all solutions of (*) valid also for N = 2.

Proposition 3.1.2. Assume that N ≥ 2 and α ∈ (0, N). If f ∈ C(R;R) satisfies (f1)
and u ∈ H1(RN ) ∩W 2,2

loc (R
N ) solves (*), then

N − 2

2

∫
RN

|∇u|2dx+
N

2

∫
RN

u2dx =
N + α

2

∫
RN

(Iα ∗ F (u))F (u)dx. (3.1.2)

In particular, (3.1.2) implies that if u ̸≡ 0 solves (*), then

S(u) = α+ 2

2(N + α)

∫
RN

|∇u|2dx+
α

2(N + α)

∫
RN

u2dx > 0.

Finally, we obtain qualitative properties of ground-states of (*), summed up in this

Theorem 3.1.2. Assume that N ≥ 3 and α ∈ (0, N). If f ∈ C(R;R) satisfies (f1) and,
in addition, f is odd and has constant sign on (0,+∞), then every ground-state of (*)
has constant sign and is radially decreasing and symmetric with respect to the origin up
to translation.

Before explaining the proofs of these results, we make some remarks. With the same
notations of Remark 3.1.1, we recall the strategy of H. Berestycki and P.-L. Lions’ proof
on the existence of a ground-state. They consider the constrained minimization problem

min

{∫
RN

|∇u|2dx : u ∈ H1(RN ) and
∫
RN

(
G(u)− u2

2

)
dx = 1

}
.

They first show that by Pólya-Szegö inequality, the minimum can be taken among radial
and radially decreasing functions. Then they show the existence of minimum v ∈ H1(RN )
satisfying

−∆v = θ(g(v)− v) in RN ,

with a Lagrange multiplier θ > 0. They conclude that u(x) = v( x√
θ
) solves (3.1.1).
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Unluckily, this approach fails for problem (*). First, the nonlocal term is not pre-
served or controlled under Schwarz symmetrization unless f satisfies more restrictive
assumptions of Theorem 3.1.2. Second, the final scaling argument fails because the three
terms in (*) scale differently in space.
On the other hand, in order to prove the existence of a ground-state of (*), we use a
mountain pass theorem. We will construct a Palais-Smale sequence at the mountain pass
level, that satisfies asymptotically the Pohožaev’s identity in order to ensure its bound-
edness easily. Such sequences will be denoted as Pohožaev-Palais-Smale sequences.

Finally, we will show that the absolute value of a ground-state and its polarization
are also ground-states. This leads to a contradiction with the strong maximum principle
if the solution is not invariant under these transformations.

Construction and convergence of Palais-Smale sequences

We first prove that there is a sequence of almost critical points at the mountain pass
level defined by

b := inf
γ∈Γ

sup
t∈[0,1]

S(γ(t)),

where the set of paths is defined as

Γ := {γ ∈ C([0, 1];H1(RN )) : γ(0) = 0,S(γ(1)) < 0}.

We define the Pohožaev functional P : H1(RN ) → R by

P(u) :=
N − 2

2

∫
RN

|∇u|2dx+
N

2

∫
RN

u2dx− N + α

2

∫
RN

(Iα ∗ F (u))F (u)dx.

Furthermore, let us consider

c := inf{S(u) : u ∈ H1(RN ) \ {0} is a solution of (∗)}.

Proposition 3.1.3. If f ∈ C(R;R) satisfies (f1) and (f3), then there exists a sequence
{un}n ⊂ H1(RN ) such that, as n→ +∞,

S(un) → b ∈ (0,+∞),

S ′(un) → 0 in H−1(RN ),

P(un) → 0.

Proof. First, we have to prove that

0 < b < +∞.

The case b < +∞ is equivalent to show that Γ ̸= ∅. So it is sufficient to construct
u ∈ H1(RN ) such that S(u) < 0. Let s0 ̸= 0 as in (f3) and set w = s0χB1 ∈ L2(RN ) ∩
L

2N
N−2 (RN ); then∫

RN

(Iα ∗ F (w))F (w)dx = F (s0)
2

∫
B1

∫
B1

Iα(x− y)dxdy > 0.
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By (f1) the left-hand side is continuous in L2(RN ) ∩ L
2N
N−2 (RN ), and since H1(RN ) is

dense in L2(RN ) ∩ L
2N
N−2 (RN ), there exists v ∈ H1(RN ) such that∫

RN

(Iα ∗ F (v))F (v)dx > 0.

Now we define uτ (x) := v(xτ ) for every τ > 0. Hence,

S(uτ ) =
τN−2

2

∫
RN

|∇v|2dx+
τN

2

∫
RN

v2dx− τN+α

2

∫
RN

(Iα ∗ F (v))F (v)dx,

and observe that for τ large enough, S(uτ ) < 0.

Now we prove that
b > 0.

From Hardy-Littlewood-Sobolev inequality, it follows that if s ∈ (1, Nα ), then for every
v ∈ Ls(RN ) ∫

RN

|Iα ∗ v|
Ns

N−αsdx ≤ C

(∫
RN

|v|sdx
) N

N−αs

. (3.1.3)

Respectively, by Holder’s inequality, (3.1.3) with s = 2N
N+α and condition (f1), for every

u ∈ H1(RN ) we have:∫
RN

(Iα ∗ F (u))F (u)dx ≤
(∫

RN

|Iα ∗ F (u)|
2N

N−αdx

)N−α
2N

(∫
RN

|F (u)|
2N

N+αdx

)N+α
2N

≤

≤ C

(∫
RN

|F (u)|
2N

N+αdx

)1+ α
N

≤ C ′
(∫

RN

(u2 + |u|
2N
N−2 )dx

)1+ α
N

≤

≤ C ′′
(
∥u∥2(1+

α
N
)

L2(RN )
+ ∥∇u∥

2(1+ α+2
N−2

)

L2(RN )

)
.

Hence there exists δ > 0 such that if ∥u∥2
H1(RN )

≤ δ, then∫
RN

(Iα ∗ F (u))F (u)dx ≤ 1

2

∫
RN

(|∇u|2 + u2)dx,

and therefore
S(u) ≥ 1

4

∫
RN

(|∇u|2 + u2)dx.

In particular, if γ ∈ Γ, then
∫
RN (|∇γ(0)|2 + |γ(0)|2)dx = 0 < δ <

∫
RN (|∇γ(1)|2 +

|γ(1)|2)dx and by the intermediate value theorem there exists t̄ ∈ (0, 1) such that∫
RN (|∇γ(t̄)|2 + |γ(t̄)|2)dx = δ. So

max
t∈[0,1]

S(γ(t)) ≥ S(γ(t̄)) ≥ δ

4
.
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Since γ ∈ Γ is arbitrary, this implies that b ≥ δ
4 > 0.

Finally, we are ready to construct such a Palais-Smale sequence {un}. Let define a
map Φ : R×H1(RN ) → H1(RN ) by

Φ(σ, v)(x) := v(e−σx).

So the functional S ◦ Φ has the form

S(Φ(σ, v)) = eσ(N−2)

2

∫
RN

|∇v|2dx+
eNσ

2

∫
RN

v2dx− eσ(N+α)

2

∫
RN

(Iα ∗ F (v))F (v)dx.

In view of (f1) it is possible to check that S ◦Φ ∈ C1(R×H1(RN )). Now, we define the
following family of paths

Γ̃ :=

{
γ̃ ∈ C([0, 1];R×H1(RN )) : γ̃(0) = (0, 0) and (S ◦ Φ)(γ̃(1)) < 0

}
.

Obviously, as Γ = {Φ ◦ γ̃ : γ̃ ∈ Γ̃},

b = inf
γ̃∈Γ̃

sup
t∈[0,1]

(S ◦ Φ)(γ̃(t)).

By the minimax principle [42, theorem 2.9], there exists a sequence {(σn, vn)}n ⊂ R ×
H1(RN ) such that as n→ +∞,

(S ◦ Φ)(σn, vn) → b and (S ◦ Φ)′(σn, vn) → 0 in (R×H1(RN ))∗.

Since for every (h,w) ∈ R×H1(RN ):

(S ◦ Φ)′(σn, vn)[h,w] = S ′(Φ(σn, vn))[Φ(σn, w)] + P(Φ(σn, vn))h,

we get the conclusion by taking un := Φ(σn, vn).

Now we will show how a solution of (*) can be constructed from the sequence given
by Proposition 3.1.4.

Proposition 3.1.4. Let f ∈ C(R;R) and {un}n ⊂ H1(RN ). If f satisfies (f1) and (f2),
{S(un)}n is bounded and, as n→ +∞,

S ′(un) → 0 in H−1(RN ) and P(un) → 0,

then, up to subsequences,

(i) either un → 0 in H1(RN ),

(ii) or there exists u ∈ H1(RN ) \ {0} such that S ′(u) = 0 and a sequence {xn}n ⊂ RN

such that un(· − xn)⇀ u in H1(RN ).
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Proof. We first establish the boundedness of the sequence. Indeed, for every n ∈ N,

α+ 2

2(N + α)

∫
RN

|∇un|2dx+
α

2(N + α)

∫
RN

u2ndx = S(un)−
1

N + α

∫
RN

P(un).

As the right-hand side is bounded by our assumptions, the sequence {un}n is bounded
in H1(RN ).

Now we are going to prove the nonvanishing of the sequence. Assume that (i) does
not hold, that is,

lim inf
n→+∞

∫
RN

(|∇un|2 + u2n)dx > 0. (3.1.4)

We claim that for every p ∈ (2, 2N
N−2),

lim inf
n→+∞

sup
a∈RN

∫
B1(a)

|un|pdx > 0.

For every n ∈ N∫
RN

(Iα ∗ F (un))F (un)dx =
N − 2

N + α

∫
RN

|∇un|2dx+
N

N + α

∫
RN

u2ndx− 2

N + α
P(un),

so by (3.1.4) it follows that

lim inf
n→+∞

∫
RN

(Iα ∗ F (un)F (un)dx > 0. (3.1.5)

The sequence {un} satisfies the inequality ([21, lemma I.1],[42, lemma 1.21]) for every
n ∈ N ∫

RN

|un|pdx ≤ C

(∫
RN

(|∇un|2 + u2n)dx

)(
sup
a∈RN

∫
B1(a)

|un|pdx
)1− 2

p

.

As F is continuous and satisfies (f2), for every ϵ > 0, there exists Cϵ > 0 such that for
every s ∈ R

|F (s)|
2N

N+α ≤ ϵ(s2 + |s|
2N
N−2 ) + Cϵ|s|p.

Since un is bounded in H1(RN ), by Sobolev embedding

lim inf
n→+∞

∫
RN

|F (un)|
2N

N+αdx ≤ C ′′ϵ+ C ′
ϵ

(
lim inf
n→+∞

sup
a∈RN

∫
B1(a)

|un|pdx
)1− 2

p

.

Now, if lim inf
n→+∞

supa∈RN

∫
B1(a)

|un|pdx = 0, since ϵ > 0 is arbitrary

lim inf
n→+∞

∫
RN

|F (un)|
2N

N+αdx = 0,
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and the Hardy-Littlewood-Sobolev inequality implies that

lim inf
n→+∞

∫
RN

(Iα ∗ F (un))F (un)dx = 0,

in contradiction with condition (3.1.5).

In conclusion, by definition of supremum, there exists {xn} ⊂ R such that
lim inf
n→+∞

∫
B1(xn)

|un|pdx > 0. Since the problem (*) is invariant by translation, we can

assume that xn = 0 for all n ∈ N. So for some p ∈ (2, 2N
N−2),

lim inf
n→+∞

∫
B1

|un|pdx > 0.

By Rellich’s theorem, this implies that up to a subsequence, un ⇀ u in H1(RN ) to some
u ∈ H1(RN ) \ {0}.

Since un ⇀ u in H1(RN ), using a standard diagonal argument and Rellich’s theorem,
it converges, up to a subsequence, to u a.e. in RN . By continuity of F , F (un) converges
a.e. to F (u) in RN . Furthermore, since un is bounded in H1(RN ), by Sobolev embedding
and condition (f1), F (un) is bounded in L

2N
N+α (RN ). So F (un)⇀ F (u) in L

2N
N+α (RN ).

As the Riesz potential defines a linear continuous map from L
2N

N+α (RN ) to L
2N

N−α (RN )

by inequality (3.1.3), Iα ∗ F (un)⇀ Iα ∗ F (u) in L
2N

N−α (RN ).
On the other hand, in view of (f1) and by Rellich’s theorem and dominated conver-

gence theorem, f(un) → f(u) in Lp
loc(R

N ) for every p ∈ [1, 2N
α+2). Hence, using Holder’s

inequality one can readily checks that, as n→ +∞∫
RN

(Iα ∗ F (un))f(un)φdx→
∫
RN

(Iα ∗ F (u))f(u)φdx ∀φ ∈ C∞
0 (RN ).

This implies that for every φ ∈ C∞
0 (RN ),∫

RN

(∇u · ∇φ+ uφ)dx−
∫
RN

(Iα ∗ F (u))f(u)φdx =

= lim
n→+∞

(∫
RN

(∇un · ∇φ+ unφ)dx−
∫
RN

(Iα ∗ F (un))f(un)φdx
)

= 0;

that is, u is a weak solution of (*).

Corollary 3.1.3. If f ∈ C(R;R) satisfies conditions (f1)− (f3), then problem (*) has a
nontrivial solution u ∈ H1(RN ).

Proof. By Proposition 3.1.3, S admits a Pohožaev-Palais-Smale sequence {un}n∈N at the
level b. We apply Proposition 3.1.4 to {un}n∈N. If the first alternative occured, then we
would have by continuity S(un) → S(0) = 0 as n→ +∞, in contradiction with the fact
that b > 0. Therefore, the second alternative must occur.
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Regularity of solutions and Pohožaev-identity

The assumption (f1) is not sufficient to apply the standard bootstrap method as in
[38, proposition 4.1]. Instead, in order to prove regularity of solutions of (*), we extend
the nonlocal Brezis-Kato regularity estimate [8, theorem 2.3] to a class of nonlocal linear
equations.

Proposition 3.1.5. Fix u ∈ H1(RN ) which solves

−∆u+ u = (Iα ∗Hu)K, (3.1.6)

where H(u) := F (u)
u and K(u) := F ′(u). Then, u ∈ Lp(RN ) for every p ∈ [2, Nα

2N
N−2).

Moreover, there exists a constant Cp > 0 independent of u such that(∫
RN

|u|pdx
) 1

p

≤ Cp

(∫
RN

u2dx

) 1
2

.

In order to prove the proposition, we will use a technical lemma whose proof is in the
Appendix (Lemma A.0.7).

Lemma 3.1.6. Let us consider N ≥ 2, α ∈ (0, 2), θ ∈ (0, 2) and H,K defined as above.
If α

N < θ < 2 − α
N , then, for every ϵ > 0, there exists Cϵ,θ ∈ R such that for any fixed

u ∈ H1(RN ) which solves (3.1.6),∫
RN

(Iα ∗ (H|u|θ))K|u|2−θdx ≤ ϵ2
∫
RN

|∇u|2dx+ Cϵ,θ

∫
RN

u2dx.

Now, we are ready to prove Proposition 3.1.5.

Proof. By Lemma 3.1.6 with θ = 1, there exists λ > 0 such that for every φ ∈ H1(RN ),∫
RN

(Iα ∗ |Hφ|)|Kφ|dx ≤ 1

2

∫
RN

|∇φ|2dx+
λ

2

∫
RN

φ2dx. (3.1.7)

Choose sequences {Hn}n and {Kn}n in L
2N
α (RN ) such that |Hn| ≤ |H|, |Kn| ≤ |K| and

Hn → H, Kn → K a.e. in RN . For each n ∈ N, consider the form an : H1(RN ) ×
H1(RN ) → R defined as

an(φ,ψ) :=

∫
RN

(∇φ · ∇ψ + λφψ)dx−
∫
RN

(Iα ∗Hnφ)Knψdx.

Note that an is bilinear and coercive by (3.1.7). So, by the Lax-Milgram theorem, there
exists a unique solution un ∈ H1(RN ) of

−∆un + λun = (Iα ∗ (Hnun))Kn + (λ− 1)u, (3.1.8)

where u ∈ H1(RN ) solves (3.1.6). It can be proved that the sequence {un}n converges
weakly to u in H1(RN ) as n→ +∞.
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For µ > 0, we define the truncation un,µ : RN → R as

un,µ(x) :=


−µ if un(x) ≤ −µ
un(x) if − µ < un(x) < µ

µ if un(x) ≥ µ.

Since G(u) = |u|q−2u is globally Lipschitz on R for every q ≥ 2, then |un,µ|q−2un,µ ∈
H1(RN ) for those q; therefore we can take it as a test function in (3.1.8):∫

RN

(
4(q − 1)

q2
|∇|un,µ|

q
2 |2 + ||un,µ|

q
2 |2

)
dx ≤

≤
∫
RN

(
(q − 1)|un,µ|q−2|∇un,µ|2 + |un,µ|q−2un,µun

)
dx =

=

∫
RN

(
(Iα ∗ (Hnun))(Kn|un,µ|q−2un,µ) + (λ− 1)u|un,µ|q−2un,µ

)
dx.

If q < 2N
α , by Lemma 3.1.6 with θ = 2

q , there exists C > 0 such that∫
RN

(Iα ∗ |Hnun,µ|)(|Kn||un,µ|q−2un,µ)dx ≤
∫
RN

(Iα ∗ (|H||un,µ|))(|K||un,µ|q−1)dx ≤

≤ 2(q − 1)

q2

∫
RN

|∇|un,µ|
q
2 |2dx+ C

∫
RN

||un,µ|
q
2 |2dx.

Since the convolution is symmetric, we have

2(q − 1)

q2

∫
RN

|∇|un,µ|
q
2 |2dx ≤ C ′

∫
RN

(|un|q+ |u|q)dx+
∫
An,µ

(Iα∗(|Kn||un|q−1))|Hnun|dx,

where
An,µ := {x ∈ RN : |un(x)| > µ}.

Since q < 2N
α , by the Hardy-Littlewod-Sobolev inequality (Proposition A.0.6 with f =

|Kn||un|q−1 and g = |Hnun|χAn,µ , where χAn,µ denotes the characteristic function of
An,µ),∫

An,µ

(Iα ∗ (|Kn||un|q−1))|Hnun|dx ≤ C

(∫
RN

||Kn||un|q−1|rdx
) 1

r
(∫

An,µ

|Hnun|sdx
) 1

s

,

with 1
r = α

2N + 1 − 1
q and 1

s = α
2N + 1

q . By Holder’s inequality, if un ∈ Lq(RN ),
then |Kn||un|q−1 ∈ Lr(RN ) and |Hnun| ∈ Ls(RN ), whence by Lebesgue’s dominated
convergence theorem for every n ∈ N

lim
µ→+∞

∫
An,µ

(Iα ∗ (|Kn||un|q−1))|Hnun|dx = 0.
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Now, in view of Sobolev embedding, definition of un,µ and un → u a.e., we have

lim sup
n→+∞

(∫
RN

|un|
qN
N−2dx

)1− 2
N

≤ C ′′ lim sup
n→+∞

∫
RN

|un|qdx.

By iterating over q a finite number of times we cover the range p ∈ [2, Nα
2N
N−2).

We are finally ready to prove the following theorem which establishes additional
regularity of solutions of (*).

Theorem 3.1.4. Let N ≥ 3 and α ∈ (0, N). If f ∈ C(R;R) is odd, satisfies (f1) and
does not change sign on (0,+∞), then for every u ∈ H1(RN ) which solves (*), it holds
u ∈W 2,q

loc (R
N ) for any q ≥ 1.

Proof. Let us consider H,K defined as in Proposition 3.1.5. Observe that H is defined
on the set {x ∈ RN : u(x) ̸= 0}; on the other hand we will prove later that |u| > 0 on RN

if f is odd and does not change sign on (0,+∞). Since u solves (*), by Proposition 3.1.5
it follows that u ∈ Lp(RN ) for every p ∈ [2, Nα

2N
N−2). In view of (f1), F (u) ∈ Lq(RN ) for

every q ∈ [ 2N
N+α ,

N
α

2N
N+α). Since N

α < N
α

2N
N+α , by Proposition A.0.7 one has Iα ∗ (F (u)) ∈

L∞(RN ), and thus
| −∆u+ u| ≤ C(|u|

α
N + |u|

α+2
N−2 ).

Now by the classical bootstrap method for subcritical local problems in bounded domains,
we deduce that u ∈W 2,q

loc (R
N ) for any q ≥ 1.

The further regularity of solutions allows us to prove Proposition 3.1.2.
The proof of Pohožaev’s identity is classical and consists in testing the equation against
a suitable cut-off of x · ∇u(x) and integrating by parts.

Proof. (of Proposition 3.1.2 ) Fix φ ∈ C∞
0 (RN ) such that φ = 1 in a neighbourhood of

0. Let define a function vλ : RN → R for every λ ∈ R as

vλ(x) := φ(λx)x · ∇u(x).

By Theorem 3.1.4, u ∈W 2,2
loc (R

N ), so vλ ∈ H1(RN ) and it can be used as a test function
in the equation to obtain∫

RN

∇u · ∇vλdx+

∫
RN

uvλdx =

∫
RN

(Iα ∗ F (u))(f(u)vλ)dx.

The left-hand side can be computed by integration by parts as∫
RN

uvλdx =

∫
RN

u(x)φ(λx)x · ∇u(x)dx =

∫
RN

φ(λx)x · ∇
(
u2

2

)
(x)dx =
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= −
∫
RN

(Nφ(λx) + λx · ∇φ(λx))u
2(x)

2
dx.

Lebesgue’s dominated convergence theorem implies that

lim
λ→0

∫
RN

uvλdx = −N
2

∫
RN

u2dx.

Similarly, as u ∈W 2,2
loc (R

N ), the gradient term can be written as∫
RN

∇u · ∇vλdx =

∫
RN

φ(λx)

(
|∇u|2 + x · ∇

(
|∇u|2

2

)
(x)

)
dx =

= −
∫
RN

((N − 2)φ(λx) + λx · ∇φ(λx)) |∇u(x)|
2

2
dx.

Again by Lebesgue’s dominated convergence theorem

lim
λ→0

∫
RN

∇u · ∇vλdx = −N − 2

2

∫
RN

|∇u|2dx.

Finally the last term can be rewritten by∫
RN

(Iα ∗ F (u))(f(u)vλ)dx =

∫
RN

∫
RN

(F ◦ u)(y)Iα(x− y)φ(λx)x · ∇(F ◦ u)(x)dxdy =

=
1

2

∫
RN

∫
RN

Iα(x−y)
(
(F◦u)(y)φ(λx)x·∇(F◦u)(x)+(F◦u)(x)φ(λy)y·∇(F◦u)(y)

)
dxdy =

= −
∫
RN

∫
RN

F (u(y))Iα(x− y)(Nφ(λx) + x · ∇φ(λx))F (u(x))dxdy+

+
N − α

2

∫
RN

∫
RN

F (u(y))Iα(x−y)
(x− y) · (xφ(λx)− yφ(λy))

|x− y|2
F (u(x))dxdy.

We can thus apply Lebesgue’s dominated convergence theorem to conclude that

lim
λ→0

∫
RN

(Iα ∗ F (u))f(u)vλdx = −N + α

2

∫
RN

(Iα ∗ F (u))F (u)dx.
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Recovery of the ground-state and its qualitative properties

An important application of the Pohožaev’s identity is the possibility to associate to
any variational solution of (*) a path. The following proposition is crucial to recover a
ground-state solution from Proposition 3.1.4.

Proposition 3.1.7. Take f ∈ C(R;R) satisfying (f1) and u ∈ H1(RN )\{0} solving (*).
Then, there exists a path γu ∈ Γ such that

γu(1/2) = u and S(γu(t)) < S(u) ∀ t ∈ [0, 1] \ {1/2}.

Proof. We define the path γ̃ : [0,+∞) → H1(RN ) as

γ̃(τ)(x) :=

{
u(xτ ) if τ > 0

0 if τ = 0.

The function γ̃ is continuous on (0,+∞) by integrability of u; for every τ > 0,∫
RN

(|∇γ̃(τ)|2 + |γ̃(τ)|2)dx = τN−2

∫
RN

|∇u|2dx+ τN
∫
RN

u2dx,

so that γ̃ is continuous also at 0. As in Proposition 3.1.3, the functional can be computed
for every τ > 0 as

S(γ̃(τ)) = τN−2

2

∫
RN

|∇u|2dx+
τN

2

∫
RN

u2dx− τN+α

2

∫
RN

(Iα ∗ F (u))F (u)dx

=

(
τN−2

2
− (N − 2)τN+α

2(N + α)

)∫
RN

|∇u|2dx+

(
τN

2
− NτN+α

2(N + α)

)∫
RN

u2dx.

Now, one easily checks that S ◦ γ̃ achieves strict global maximum at τ = 1, namely
S(γ̃(τ)) < S(u) ∀τ ∈ [0,+∞) \ {1}. Since

lim
τ→+∞

S(γ̃(τ)) = −∞,

there exists τ1 ≫ 1 such that

γ̃(0) = 0, γ̃(1) = u, S(γ̃(τ)) < S(u) ∀τ ∈ [0, τ1] \ {1} and S(γ̃(τ1)) < 0.

Finally, to get the required γu it suffices to take a suitable change of variables γu(t) :=
γ̃(T (t)) for some function T ∈ C([0, 1];R) satisfying T (0) = 0, T (12) = 1 and T (1) =
τ1.

We now have all the tools available to show Theorem 3.1.1, namely that the mountain-
pass level b coincides with the ground-state energy level c.
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Proof. (of Theorem 3.1.1 ) By Propositions 3.1.3 and 3.1.4, we get a Pohožaev-Palais-
Smale sequence {un}n ⊂ H1(RN ) \ {0} at level b > 0 which, up to subsequences and
translations, converges weakly to some u ∈ H1(RN ) \ {0} that solves (*).
Since limn→+∞ P(un) = 0, Pohožaev’s identity, Fatou’s lemma and weak semi-continuity,
we have

S(u) = S(u)− P(u)

N + α
=

α+ 2

2(N + α)

∫
RN

|∇u|2dx+
α

2(N + α)

∫
RN

u2dx ≤

≤ lim inf
n→+∞

(
α+ 2

2(N + α)

∫
RN

|∇un|2dx+
α

2(N + α)

∫
RN

u2ndx

)
=

= lim inf
n→+∞

(
S(un)−

P(un)

N + α

)
= b.

By definition of c we have S(u) ≥ c, and hence c ≤ b. Let v ∈ H1(RN ) \ {0} be
another solution of (*) such that S(v) ≤ S(u). Now, Proposition 3.1.7 implies that
S(v) ≥ b ≥ S(u) by definition of b. We have thus proved that S(v) = S(u) = c = b.

As a direct consequence of previous theorem, one can prove the strong convergence
of Pohožaev-Palais-Smale sequence.

Corollary 3.1.5. Under the assumptions of Propositions 3.1.3 and 3.1.3, if

lim inf
n→+∞

S(un) ≤ c,

then there exists u ∈ H1(RN ) \ {0} such that S ′(u) = 0 and up to a subsequence and a
translation, un → u in H1(RN ).

Proof. We can assume that, up to subsequences and translations, un ⇀ u in H1(RN ) \
{0}. By previous theorem

α+ 2

2(N + α)

∫
RN

|∇u|2dx+
α

2(N + α)

∫
RN

u2dx =

= lim inf
n→+∞

α+ 2

2(N + α)

∫
RN

|∇un|2dx+
α

2(N + α)

∫
RN

u2ndx,

and hence, up to a subsequence, un → u in H1(RN ) \ {0}.

As conclusion, we now prove some additive properties of ground-states.

Positivity of ground-states. In order to get positivity of any ground-state, we
need the following lemma about optimal paths.
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Lemma 3.1.8. Let f ∈ C(R;R) satisfying (f1) and γ ∈ Γ. If there exists t̄ ∈ (0, 1) such
that for every t ∈ [0, 1] \ {t̄}

b = S(γ(t̄)) > S(γ(t)),

then S ′(γ(t̄)) = 0.

Proof. The proof of the lemma is standard arguing by contradiction and using a quanti-
tative deformation lemma (see [42, lemma 2.3]).

Proposition 3.1.9. Let f ∈ C(R;R) satisfying (f1). If f is odd and does not change
sign on (0,+∞), then any ground-state u ∈ H1(RN ) \ {0} of (*) has constant sign.

Proof. Without loss of generality, we can assume that f ≥ 0 on (0,+∞). By Proposition
3.1.7, there exists an optimal path γu ∈ Γ on which S achieves its maximum at 1

2 equal
to S(u). Since f is odd, F is even and thus for every v ∈ H1(RN ),

S(|v|) = S(v).

Hence, for every t ∈ [0, 1] \ {1
2},

S(|γ(t)|) = S(γ(t)) < S(γ(1/2)) = S(|γ(1/2)|).

By Lemma 3.1.8, |u| = |γ(1/2)| is also a ground-state and it satisfies

−∆|u|+ |u| = (Iα ∗ F (|u|))f(|u|).

By the strong maximum principle we conclude that |u| > 0 on RN and thus u has
constant sign.

Symmetry of ground-states.

Proposition 3.1.10. Take f ∈ C(R;R) satisfying (f1), odd and of constant sign on
(0,+∞). Then, any ground-state u ∈ H1(RN ) of (*) is radially decreasing and symmetric
about some point x0 in RN .

The argument of the proof relies on polarizations. In the following, we will recall
some necessary results of the theory of polarization.
Assume that H ⊂ RN is a closed half-space and that σH is the reflection with respect to
∂H. The polarization uH : RN → R of u : RN → R is defined as

uH(x) :=

{
max(u(x), u(σH(x))) if x ∈ H

min(u(x), u(σH(x))) if x ̸∈ H.

We will use the following standard property of polarizations [13, lemma 5.3].

Lemma 3.1.11. If u ∈ H1(RN ), then uH ∈ H1(RN ) and∫
RN

|∇uH |2dx =

∫
RN

|∇u|2dx.

76



We shall also use a polarization inequality with equality cases [38, lemma 5.3].

Lemma 3.1.12. Let α ∈ (0, N), u ∈ L
2N

N+α (RN ) and H ⊂ RN be a closed half-space. If
u ≥ 0, then ∫

RN

∫
RN

u(x)u(y)

|x− y|N−α
dxdy ≤

∫
RN

∫
RN

uH(x)uH(y)

|x− y|N−α
dxdy,

with equality if and only if either uH = u or uH = u ◦ σH .

The last tool that we need is a characterization of symmetric functions by polariza-
tions [38, lemma 5.4].

Lemma 3.1.13. let us consider u ∈ L2(RN ) a nonnegative function. Then, there exist
x0 ∈ RN and a decreasing function v : (0,+∞) → R such that for a.e. x ∈ RN ,
u(x) = v(|x − x0|) if and only if for every closed half-space H ⊂ RN , uH = u or
uH = u ◦ σH .

Proof. (of Proposition 3.1.10). The strategy is to prove that uH is also a ground-state
of (*) and deduce therefrom that u = uH or uH = u ◦ σH .

Without loss of generality, we can assume that f ≥ 0 on (0,+∞). By Proposition
3.1.9, we can further assume that u > 0. We first observe that from Lemma 3.1.11 and
definition of uH , for every u ∈ H1(RN )∫

RN

(|∇uH |+ |uH |2)dx =

∫
RN

(|∇u|2 + |u|2)dx. (3.1.9)

Now, in view of Proposition 3.1.7, there exists an optimal path γ ∈ Γ such that γ(1/2) = u
and γ(t) ≥ 0 for every t ∈ [0, 1] by construction. For every half-space H ⊂ RN , let define
the path γH : [0, 1] → H1(RN ) by γH(t) := (γ(t))H . By (3.1.9), γH ∈ C([0, 1];H1(RN )).

Note that since F is increasing on (0,+∞), F (uH) = (F ◦ u)H , and therefore, for
every t ∈ [0, 1], by condition (3.1.9) and Lemma 3.1.12,

S(γH(t)) ≤ S(γ(t))

and so γH ∈ Γ. From this,
max
t∈[0,1]

S(γH(t)) ≥ b.

Since for every t ∈ [0, 1] \ {1/2}

S(γH(t)) ≤ S(γ(t)) < b,

we have
S(uH) = S(γH(1/2)) = S(γ(1/2)) = S(u) = b.

Combining last condition with (3.1.9) and Lemma 3.1.12, we get that (F ◦ u)H = F (u)
or F (uH) = F (u ◦ σH) in RN . Assume that (F ◦ u)H = F (u). Then, for every x ∈ H,∫ u(x)

u(σH(x))
f(s)ds = F (u(x)− F (u(σH(x))) ≥ 0.

77



This implies that either u(σH(x)) ≤ u(x) or f = 0 on the interval
[min(u(x), u(σH(x))),max(u(x), u(σH(x)))], for every x ∈ H. In particular, f(uH) =
f(u) on H. Furthermore, it is possible to repeat the same argument and deduce f(uH) =
f(u) on RN \H.

Hence, by the previous inequalities and Lemma 3.1.8, we have S ′(uH) = 0 and
therefore uH is a ground-state of (*) which solves

−∆uH + uH = (Iα ∗ F (uH))f(uH) = (Iα ∗ F (u))f(u).

Since u solves (*), we conclude that uH = u.
If F (uH) = F (u ◦ σH), we conclude similarly that uH = u ◦ σH . Since this holds for

arbitrary H, we conclude by Lemma 3.1.13 that u is radially decreasing and symmetric
about some point x0 in RN .

3.2 Existence of ground-states in subcritical case on the
plane

In the present section, we provide a general existence result for ground-state solutions
of problem (*) in the planar case N = 2, which is a two dimensional counterpart of [37].
We need the following hypotheses on F ∈ C1(R;R):

(F1) there exists s0 ∈ R such that F (s0) ̸= 0,

(F2) ∀ θ > 0 ∃ C = Cθ > 0 such that |F ′(s)| ≤ Cθ min{1, |s|
α
2 }eθs2 ∀s ∈ R,

(F3) lims→0
F (s)

|s|1+
α
2
= 0.

The main result reads as follows.

Theorem 3.2.1. Assume N = 2 and F ∈ C1(R;R) satisfying conditions (F1) − (F3).
Then problem (*) has a nontrivial ground-state solution u ∈ H1(R2). Furthermore, if
F is even and increasing on (0,+∞), then every ground-state of (*) has constant sign,
radially decreasing and symmetric with respect to some point x0 ∈ R2.

Let us discuss the assumptions of Theorem 3.2.1. As in previous section, condition
(F1) is necessary for the existence of a nontrivial solution. On the other hand, condition
(F2) ensures that the energy functional S : H1(R2) → R defined as

S(u) = 1

2

∫
R2

(|∇u|2 + u2)dx− 1

2

∫
R2

(Iα ∗ F (u))F (u)dx,

is Frechet-differentiable with continuity on H1(R2) (see [22, proposition 2.3]) . The
condition has a different shape, because in dimension N = 2 the critical nonlinearity for
Sobolev embedding is not anymore a power but rather an exponential-type nonlinearity.
Furthermore, by integrating F ′ from (F2), it holds

lim
|s|→+∞

|F (s)|+ |F ′(s)||s|
eθs2

= 0
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for every θ > 0. Finally, a subcriticality condition (F3) still needs to be imposed in 0.
In order to prove Theorem 3.2.1, we will use a mountain pass construction as in [37].

Let recall some definitions. We start by constructing a Palais-Smale sequence for the
mountain pass level

b = inf
γ∈Γ

sup
t∈[0,1]

S(γ(t)),

where the set of paths is

Γ = {γ ∈ C([0, 1];H1(R2)) : γ(0) = 0,S(γ(1)) < 0}.

In addition, the sequence satisfies asymptotically the Pohožaev’s identity

P(u) =

∫
R2

u2dx−
(
1 +

α

2

)∫
R2

(Iα ∗ F (u))F (u)dx = 0,

which implies the boundedness of the sequence in H1(R2).
We are left with showing that the solution u is actually a ground-state. To prove this,

we first show that u satisfies Pohožaev’s identity (Proposition 3.1.2) up to ensure further
regularity, which turns out to be easier to prove from (F2) than in dimension N ≥ 3.
The last tool we need is an optimal path γv ∈ Γ associated to any solution v of (*). The
construction of such paths is inspired by [37] but it is more delicate in the plane because
dilations t 7−→ v(·/t) ∈ H1(R2) are not anymore continuous at t = 0.

Before proving Theorem 3.2.1, we need a quantitative estimate of Moser-Trudinger
inequality of Adachi and Tanaka [1].

Proposition 3.2.1. For any β ∈ (0, 4π) there exists C = Cβ > 0 such that for every
u ∈ H1(R2) satisfying∫

R2

|∇u|2dx ≤ 1 and
∫
R2

u2dx ≤M < +∞,

one has ∫
R2

min{1, u2}eβu2
dx ≤ Cβ

∫
R2

u2dx.

First, we construct a sequence of almost critical points which asymptotically satisfies
(*) and the Pohožaev’s identity.

Proposition 3.2.2. Take F ∈ C1(R;R) satisfying (F1) and (F2). Then there exists a
sequence {un}n∈N ⊂ H1(R2) such that as n→ +∞,

S(un) → b ∈ (0,+∞),

S ′(un) → 0 in H−1(R2),

P(un) → 0.

Proof. The proof can be adapted from Proposition 3.1.3, using appropriately the growth
condition (F2).

79



Now, we will construct a nontrivial solution of (*) from the sequence given by previous
proposition.

Proposition 3.2.3. Take F ∈ C1(R;R) satisfying (F2) and (F3) and let us consider a
sequence {un}n∈N ⊂ H1(R2) satisfying:

(a) S(un) is bounded,

(b) S ′(un) → 0 in H−1(R2) as n→ +∞,

(c) P(un) → 0 as n→ +∞.

Then, up to subsequences, as n→ +∞

(i) either un → 0 in H1(R2),

(ii) or there exist u ∈ H1(R2) \ {0} solving (*) and a sequence {xn}n∈N ⊂ R2 such that
un(· − xn)⇀ u in H1(R2).

We follow the strategy of [37], proposition 2.2]. Since the gradient does not appear
in the Pohožaev’s identity, it will be more delicate to show that the nonlocal term does
not vanish.

Proof. We assume that the first alternative does not hold, namely

lim inf
n→+∞

∫
R2

(|∇un|2 + u2n)dx > 0.

For every n ∈ N,

1

2

∫
R2

|∇un|2dx+
α

2(α+ 2)

∫
R2

u2ndx = S(un)−
P(un)

2 + α

implies that un is bounded in H1(R2).
Now, since S ′(un) → 0 in H−1(R2) as n→ +∞, clearly S ′(un)[un] → 0 as n→ +∞,

therefore∫
R2

(Iα ∗ F (un))F ′(un)undx =

∫
R2

(|∇un|2 + u2n)dx− S ′(un)[un] ≥
1

C
∀n≫ 1,

for some constant C > 0. Taking C0 ≥ supn∈N∥un∥2H1(R2), we can apply Proposition
3.2.1 to un√

C0
with β = 2π and we obtain

∫
R2

min{1, u2n}e
2π
C0

u2
ndx ≤ C0

∫
R2

min

{
1,
u2n
C0

}
e

2π
C0

u2
ndx ≤ C0C2π

∫
R2 u

2
ndx

C0
≤ C0C2π

for each n ∈ N. Moreover, we also have∫
R2

u2ndx =

(
1 +

α

2

)∫
R2

(Iα ∗ F (un))F (un)dx+ P(un) =

80



=

(
1 +

α

2

)∫
R2

(Iα ∗ F (un))F (un)dx+ o(1)

as n→ +∞. Hence, from conditions (3.1.3) and (F2) with θ = 2π
C0

, we get

1

C

∫
R2

(Iα ∗ F (un))F ′(un)undx ≤ C ′
(∫

R2

|F (un)|
4

2+αdx

∫
R2

(|F ′(un)||un|)
4

2+αdx

) 2+α
4

≤

≤ C ′′
(∫

R2

min{1, u2n}e
2π
C0

u2
ndx

)1+α
2

≤ C ′′′
(∫

R2

u2ndx

)1+α
2

=

= C ′′′
((

1 +
α

2

)∫
R2

(Iα ∗ F (un))F (un)dx+ o(1)

)1+α
2

,

namely

lim inf
n→+∞

∫
R2

(Iα ∗ F (un))F (un)dx > 0.

We now want to prove that un does not vanish. We will use the following inequality
(see [42, lemma 1.21]): for every n ∈ N and p > 2,∫

RN

|un|pdx ≤ C

(∫
RN

(|∇un|2 + u2n)dx

)(
sup
a∈RN

∫
B1(a)

|un|pdx
)1− 2

p

.

By assumptions (F2) and (F3), for every ϵ > 0 there exists Cϵ,θ > 0 such that

|F (s)|
4

2+α ≤ ϵmin{1, s2}eθs2 + Cϵ,θ|s|p, ∀s ∈ R.

Therefore, ∀n≫ 1(
sup
a∈RN

∫
B1(a)

|un|pdx
)1− 2

p

≥ 1

C

∫
R2 |un|pdx∫

R2(|∇un|2 + u2n)dx
≥

≥ 1

CC0Cϵ

(∫
R2

|F (un)|
4

2+αdx− ϵ

∫
R2

min{1, u2n}e
2π
C0

u2
ndx

)
≥

≥ 1

C ′
ϵ

((∫
R2

(Iα∗F (un))F (un)dx
) 2+α

2

−ϵC
∫
R2

u2ndx

)
≥ 1

C ′
ϵ

(
1

C ′−ϵCC0

)
.

From the arbitrariness of ϵ and definition of supremum, there exists a sequence {xn} ⊂ R
such that lim inf

n→+∞

∫
B1(xn)

|un|pdx > 0. Since the problem (*) is invariant under translations,
we can assume that xn = 0 for all n ∈ N. Therefore, for every p > 2,

lim inf
n→+∞

∫
B1

|un|pdx > 0.
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By Rellich’s theorem, this implies that up to a subsequence, un ⇀ u in H1(R2) to
some u ∈ H1(R2) \ {0}. Since un ⇀ u in H1(R2), using a standard diagonal argument
and Rellich’s theorem, it converges up to a subsequence to u a.e. in R2. So, by the
continuity of F , we also have F (un) → F (u) a.e. in R2 as n→ +∞.
Moreover, (F2) implies that {F (un)}n∈N is bounded in Lp(R2) for every p ≥ 4

2+α . This
implies that F (un) ⇀ F (u) in Lp(R2) for every such p. As the Riesz potential defines
a linear continuous map from L

4
2+α (R2) to L

4
2−α (R2) by condition (3.1.3), Proposition

A.0.9 (since 2
α >

4
2+α) implies that

Iα ∗ F (un)⇀ Iα ∗ F (u) in L
4

2−α (R2) ∩ L∞(R2).

By condition (F2) and Proposition 3.2.1, the sequence {F ′(un)}n∈N is bounded in
Lp(R2) for every p ≥ 4

α and by continuity F ′(un) → F ′(u) a.e. in R2 as n → +∞.
Now, dominated convergence theorem and condition (F2) imply that F ′(un) → F ′(u) in
Lq
loc(R

2) for every q ∈ [1,+∞). Hence, it is possible to check that∫
R2

(Iα ∗ F (un))F ′(un)φdx→
∫
R2

(Iα ∗ F (u))F ′(u)φdx ∀φ ∈ C∞
0 (R2).

Therefore, for every φ ∈ C∞
0 (R2) we have∫

RN

(∇u · ∇φ+ uφ)dx−
∫
RN

(Iα ∗ F (u))F ′(u)φdx =

= lim
n→+∞

(∫
RN

(∇un · ∇φ+ unφ)dx−
∫
RN

(Iα ∗ F (un))F ′(un)φdx

)
= 0;

that is, u is a weak solution of (*).

Corollary 3.2.2. If F ∈ C1(R;R) satisfies conditions (F1)− (F3), then problem (*) has
a nontrivial solution u ∈ H1(R2).

Proof. By Proposition 3.2.2, S admits a Pohožaev-Palais-Smale sequence {un}n∈N at the
level b. We apply Proposition 3.2.3 to {un}n∈N. If the first alternative occured, then we
would have by continuity S(un) → S(0) = 0 as n→ +∞, in contradiction with the fact
that b > 0. Therefore, the second alternative must occur.

Now we have to prove a local regularity result for solutions of (*), which is easier
than in dimension N ≥ 3. Indeed, the growth assumption (F2) gives a good control on
Iα ∗ F (u), which permits to apply a standard bootstrap method.

Proposition 3.2.4. Take F ∈ C1(R;R) satisfying condition (F2) and u ∈ H1(R2)
solving (*). Then u ∈W 2,p

loc (R
2) for any p ≥ 1.

82



Proof. By (F2) and Proposition 3.2.1, we deduce that if v ∈ H1(R2), then F (v) ∈ Lp(R2)
for every p ≥ 4

2+α . Since 2
α >

4
2+α , by Proposition A.0.9 we get Iα ∗ F (v) ∈ L∞(R2).

Therefore, any solution u of (*) satisfies

| −∆u+ u| ≤ C|F ′(u)|

with F ′(u) ∈ Lp
loc(R

2) for every p ≥ 1 because of (F2). By standard (interior) regularity
theory on bounded domains, we deduce that u ∈W 2,p

loc (R
2) for any p ≥ 1.

The extra regularity is crucial to say that all the solutions of (*) satisfy the Pohožaev’s
identity (Proposition 3.1.2), which in dimension N = 2 is the following

Proposition 3.2.5. Take F ∈ C1(R;R) satisfying (F2) and u ∈ H1(R2) ∩ W 2,2
loc (R

2)
solving (*). Then,

P(u) =

∫
R2

u2dx−
(
1 +

α

2

)∫
R2

(Iα ∗ F (u))F (u)dx = 0.

As in dimension N ≥ 3, the Pohožaev’s identity allows us to associate to any solution
v a path γv ∈ Γ passing through v. The main difficult here is that the integral of |∇u|2
is invariant by dilation. To overcome this difficulty, we will combine properly dilatations
and multiplication by constants.

Proposition 3.2.6. Take F ∈ C1(R;R) satisfying (F2) and u ∈ H1(RN ) \ {0} solving
(*). Then, there exists a path γu ∈ Γ such that

γu(1/2) = u and S(γu(t)) < S(u) ∀t ∈ [0, 1] \ {1/2}.

Proof. We consider the path γ̃ : [0,+∞) → H1(R2) given for each τ ∈ [0,+∞) by

(γ̃(τ))(x) :=

{
τ
τ0
u(x/τ0) if τ ≤ τ0

u(x/τ) if τ ≥ τ0,

with τ0 ≪ 1 to be chosen later. The function γ̃ is clearly continuous on [0,+∞).
For τ ≥ τ0, Proposition 3.2.5 implies

S(γ̃(τ)) = 1

2

∫
R2

|∇u|2dx+
τ2

2

∫
R2

u2dx− τ2+α

2

∫
R2

(Iα ∗ F (u))F (u)dx =

=
1

2

∫
R2

|∇u|2dx+

(
τ2

2
− τ2+α

2 + α

)∫
R2

u2dx.

It is possible to check that S(γ̃(τ)) attains its strict maximum equal to S(u) in τ = 1
and is negative for τ ≥ τ1, for some τ1 ≫ 1.

For τ ≤ τ0, we use (F2) and Proposition 3.2.1 (choosing appropriately θ > 0) to the
function γ̃(τ)/(

∫
R2 |∇γ̃(τ)|2dx)1/2 to obtain∫
R2

|F (γ̃(τ))|
4

2+αdx ≤ C

∫
R2

min{1, |γ̃(τ)|2}e
4θ

2+α
|γ̃(τ)|2dx ≤
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≤ C

∫
R2 |γ̃(τ)|2dx∫

R2 |∇γ̃(τ)|2dx
= Cτ20

∫
R2 u

2dx∫
R2 |∇u|2dx

. (3.2.1)

Therefore, because of inequality (3.1.3) and τ ≤ τ0, we have

S(γ̃(τ)) = τ2

2τ20

∫
R2

|∇u|2dx+
τ2

2

∫
R2

u2dx− 1

2

∫
R2

(Iα ∗ F (γ̃(τ)))F (γ̃(τ))dx ≤

≤ 1

2

∫
R2

|∇u|2dx+
τ20
2

∫
R2

u2dx+ C

(∫
R2

|F (γ̃(τ))|
4

2+αdx

)1+α
2

.

Hence, in view of (3.2.1) and Pohožaev’s identity

S(γ̃(τ)) ≤ 1

2

∫
R2

|∇u|2dx+
τ20
2

∫
R2

u2dx+ Cτ2+α
0

( ∫
R2 u

2dx∫
R2 |∇u|2dx

)1+α
2

=

= S(u) +
(
τ20
2

− α

2(2 + α)

)∫
R2

u2dx+ Cτ2+α
0

( ∫
R2 u

2dx∫
R2 |∇u|2dx

)1+α
2

,

which is strictly less than S(u) for some τ0 ≪ 1.
Therefore, the function γ̃ satisfies:

γ̃(0) = 0, γ̃(1) = u, S(γ̃(τ)) < S(u) ∀τ ∈ [0, τ1] \ {1} and S(γ̃(τ1)) < 0.

Hence, to get the required γu it suffices to take a suitable change of variables γu(t) :=
γ̃(T (t)) for some function T ∈ C([0, 1];R) satisfying T (0) = 0, T (12) = 1 and T (1) =
τ1.

Proof. (of Theorem 3.2.1) Take u ∈ H1(R2) given by Proposition 3.2.3. As in previous
section, we may prove that u is a nontrivial ground-state solution to (*). It can be seen
easily that positivity and radial symmetry of ground-states hold also in dimension N = 2.
This concludes the proof of Theorem 3.2.1.

3.3 Critical case

In this section we are concerned with the existence of a ground state solution of (*)
when N ≥ 3 in the critical case, namely when the nonlinearity has a critical growth
in the sense of Hardy-Littlewood-Sobolev inequality. In order to overcome the lack of
compactness of the nonlinear term we require, in the spirit of [4], the following hypotheses
on f ∈ C(R+;R):

(F1) lims→0+
f(s)
s = 0,

(F2) lims→+∞
f(s)

s
α+2
N−2

= 1,
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(F3) there exists µ > 0 and q ∈ (2, N+α
N−2 ) such that

f(s) ≥ s
α+2
N−2 + µsq−1, ∀s > 0.

Our first main result is the following:

Theorem 3.3.1. Assume N ≥ 3, α ∈ ((N −4)+, N), q > max{1+ α
N−2 ,

N+α
2(N−2)} and let

f ∈ C(R+;R) satisfying (F1)− (F3). Then, problem (*) has a positive nontrivial ground
state solution.

Since we seek a positive solution to (*), we may assume that

f(s) = 0 ∀s < 0.

Furthermore, it is possible to prove qualitative properties of ground state solutions,
namely positivity and radial symmetry, as in Propositions 3.1.12 and 3.1.13.

Brezis-Lieb lemma and splitting lemma

In this subsection, we prove two technical lemmas which involve the nonlocal term of the
energy.

Lemma 3.3.1. (Brezis-Lieb lemma). Assume there exists a constant C > 0 such that

|f(s)| ≤ C(|s|
α
N + |s|

α+2
N−2 ), ∀s ∈ R.

Let {un}n∈N be such that un ⇀ u in H1(RN ) and consider F (s) :=
∫ s
0 f(t)dt for every

s ∈ R. Then, as n→ +∞,∫
RN

(Iα∗F (un))F (un)dx =

∫
RN

(Iα∗F (un−u))F (un−u)dx+
∫
RN

(Iα∗F (u))F (u)dx+o(1).

Proof. Using Fubini’s theorem, by Hardy-Littlewood-Sobolev inequality, it holds∫
RN

((Iα ∗ F (un))F (un)− (Iα ∗ F (un − u))F (un − u)− (Iα ∗ F (u))F (u))dx =

=

∫
RN

((Iα ∗ [F (un) + F (un − u)])(F (un)− F (un − u))− (Iα ∗ F (u))F (u))dx.

Furthermore, there exists C > 0 such that

|F (s)| ≤ C(|s|
N+α
N + |s|

N+α
N−2 ), ∀s ∈ R,

which implies F (u) ∈ L
2N

N+α (RN ). For any ϵ > 0 sufficiently small, by the Hardy-
Littlewood-Sobolev inequality, there exists K1 > 0 such that∣∣∣∣ ∫

Ω1

(Iα ∗ F (u))F (u)dx
∣∣∣∣ ≤ ϵ

6
, Ω1 := {x ∈ RN : |u(x)| ≥ K1}.
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Again by the Hardy-Littlewood-Sobolev inequality,∣∣∣∣ ∫
Ω1

(Iα ∗ [F (un) + F (un − u)])(F (un)− F (un − u))dx

∣∣∣∣ ≤

≤ C

(∫
RN

|F (un) + F (un − u)|
2N

N+αdx

)N+α
2N

(∫
Ω1

|F (un)− F (un − u)|
2N

N+αdx

)N+α
2N

≤

≤ C ′
(∫

Ω1

|F (un)− F (un − u)|
2N

N+αdx

)N+α
2N

,

where we have used the fact that {un} is bounded in H1(RN ). It is easy to check there
exists C > 0 such that for n ∈ N,

|F (un)− F (un − u)| ≤ C

(
|un|

2α
N+α |u|

2N
N+α + |un|

2+α
N−2

2N
N+α |u|

2N
N+α + u2 + |u|

2N
N−2

)
.

Then, by Holder’s inequality∫
Ω1

|un|
2α

N+α |u|
2N

N+αdx ≤
(∫

Ω1

u2ndx

) α
N+α

(∫
Ω1

u2dx

) N
N+α

and ∫
Ω1

|un|
2+α
N−2

2N
N+α |u|

2N
N+αdx ≤

(∫
Ω1

|un|
2N
N−2dx

) 2+α
N+α

(∫
Ω1

|u|
2N
N−2dx

)N−2
N+α

.

So up to redefine ϵ sufficiently small and K1 large enough, we get for any n∣∣∣∣ ∫
Ω1

(Iα ∗ [F (un) + F (un − u)])(F (un)− F (un − u))dx

∣∣∣∣ ≤ ϵ

6
.

Similarly, let Ω2 := {x ∈ RN : |x| ≥ R} \ Ω1 with R > 0 large enough such that∣∣∣∣ ∫
Ω1

(Iα ∗ F (u))F (u)dx
∣∣∣∣ ≤ ϵ

6

and for any n,∣∣∣∣ ∫
Ω1

(Iα ∗ [F (un) + F (un − u)])(F (un)− F (un − u))dx

∣∣∣∣ ≤ ϵ

6
.

Now, for K2 > K1, let Ω3(n) := {x ∈ RN : |un(x)| ≥ K2} \ (Ω1 ∪ Ω2). If Ω3(n) ̸= ∅,
then |u(x)| < K1 and |x| < R for any x ∈ Ω3(n). By a standard diagonal argument,
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un → u a.e. in RN . So by Egorov’s theorem, un converges to u in measure in BR, which
implies that |Ω3(n)| → 0 as n→ +∞. Similarly, for n large enough we have∣∣∣∣ ∫

Ω3(n)
(Iα ∗ F (u))F (u)dx

∣∣∣∣ ≤ ϵ

6

and ∣∣∣∣ ∫
Ω3(n)

(Iα ∗ [F (un) + F (un − u)])(F (un)− F (un − u))dx

∣∣∣∣ ≤ ϵ

6
.

Finally, let us estimate∫
Ω4(n)

((Iα ∗ [F (un) + F (un − u)])(F (un)− F (un − u))− (Iα ∗ F (u))F (u))dx,

where Ω4(n) := RN \ (Ω1 ∪ Ω2 ∪ Ω3(n)). Obviously, Ω4(n) ⊂ BR. By Lebesgue’s
convergence theorem and Rellich’s theorem we have

lim
n→+∞

∫
Ω4(n)

|F (un − u))|
2N

N+αdx = 0 and lim
n→+∞

∫
Ω4(n)

|F (un)− F (u)|
2N

N+αdx = 0,

which implies by the Hardy-Littlewood-Sobolev inequality∣∣∣∣ ∫
RN

(Iα ∗ [F (un) + F (un − u)])F (un − u)dx

∣∣∣∣ ≤ C

(∫
Ω4(n)

|F (un − u))|
2N

N+αdx

)N+α
2N

→ 0

as n→ +∞, and ∣∣∣∣ ∫
RN

(Iα ∗ [F (un) + F (un − u)])(F (un)− F (u))dx

∣∣∣∣ ≤
≤ C

(∫
Ω4(n)

|F (un)− F (u)|
2N

N+αdx

)N+α
2N

→ 0

as n→ +∞. Hence, let Hn := F (un) + F (un − u)− F (u) and we have

lim sup
n→+∞

∫
Ω4(n)

((Iα ∗ F (un))F (un)− (Iα ∗ F (un − u))F (un − u)− (Iα ∗ F (u))F (u))dx =

= lim sup
n→+∞

∫
Ω4(n)

(Iα ∗Hn)F (u)dx.

Noting that Hn is bounded in L
2N

N+α (RN ) and Hn → 0 a.e. in RN , then Hn ⇀ 0 in
L

2N
N+α (RN ). In view of inequality (3.1.3), Iα ∗Hn ⇀ 0 in L

2N
N−α (RN ), yielding

lim
n→+∞

∫
Ω4(n)

(Iα ∗Hn)F (u)dx = 0.
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Thus,

lim sup
n→+∞

∣∣∣∣ ∫
RN

((Iα ∗ F (un))F (un)− (Iα ∗ F (un − u))F (un − u)− (Iα ∗ F (u))F (u))dx
∣∣∣∣ ≤ ϵ

and the arbitrary choice of ϵ concludes the proof.

Next we prove a splitting property for the nonlocal energy.

Lemma 3.3.2. (Splitting lemma). Assume α ∈ ((N − 4)+, N), (F1) − (F2) and let
{un}n∈N ⊂ H1(RN ) such that un ⇀ u in H1(RN ). Then, up to subsequences,
as n→ +∞∫
RN

((Iα∗F (un))f(un)−(Iα∗F (un−u))f(un−u)−(Iα∗F (u))f(u))ϕdx = o(1)∥ϕ∥L∞(RN ),

for any ϕ ∈ C∞
0 (RN ).

In order to prove Lemma 3.3.2, we need first to prove Lemmas 3.3.3 and 3.3.4 below.

Lemma 3.3.3. Let {un}n∈N ⊂ H1(RN ) be such that un ⇀ u in H1(RN ). Then the
following hold:

(i) For any 1 < q ≤ r ≤ 2N
N−2 and r > 2,

lim
n→+∞

∫
RN

||un|q−1un − |un − u|q−1(un − u)− |u|q−1u|
r
q dx = 0.

(ii) Assume h ∈ C(R;R) such that h(t) = o(t) as t → 0 and |h(t)| ≤ C(1 + |t|q) for
any t ∈ R, where q ∈ (1, N+2

N−2 ]. The following hold:

(1) For any r ∈ [q + 1, 2N
N−2 ],

lim
n→+∞

∫
Ω
|H(un)−H(un − u)−H(u)|

r
q+1dx = 0

where H(t) =
∫ t
0 h(s)ds,

(2) If we further assume that α ∈ ((N − 4)+, N) and lim|t|→+∞
h(t)

|t|
α+2
N−2

= 0, then as

n→ +∞ ∫
RN

|h(un)− h(un − u)− h(u)|
2N

N+α |ϕ|
2N

N+αdx = o(1)∥ϕ∥L∞(RN ),

for any ϕ ∈ C∞
0 (RN ).
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Proof. The proofs of (i) and (1) are similar to [45, lemma 2.5]. We only give the proof
of (2).
For any fixed ϵ ∈ (0, 1), there exists s0 = s0(ϵ) ∈ (0, 1) such that |h(t)| ≤ ϵ|t| for |t| ≤ 2s0.
Choose s1 = s1(ϵ) > 2 such that

|h(t)| ≤ ϵ|t|
α+2
N−2

for |t| ≥ s1 − 1. From the continuity of h, there exists δ = δ(ϵ) ∈ (0, s0) such that
|h(t1) − h(t2)| ≤ s0ϵ for |t1 − t2| ≤ δ, |t1|, |t2| ≤ s1 + 1. Moreover, there exists c(ϵ) > 0
such that

|h(t)| ≤ c(ϵ)|t|+ ϵ|t|
α+2
N−2

for every t ∈ R. In the following let C denote a positive constant independent of n and
ϵ.
Noting that α ∈ ((N − 4)+, N) (it will be used many times), we have 2 < 4N

N+α < 2N
N−2 .

Then, there exists R = R(ϵ) > 0 large enough such that, by Holder’s inequality,∫
RN\BR

|h(u)ϕ|
2N

N+αdx ≤ c(ϵ)

∫
RN\BR

(|u|
2N

N+α + ϵ|u|
α+2
N−2

2N
N+α )|ϕ|

2N
N+αdx ≤

≤ c(ϵ)

(∫
RN\BR

|u|
4N

N+αdx

) 1
2
(∫

RN

|ϕ|
4N

N+αdx

) 1
2

+

+Cϵ

(∫
RN\BR

|u|
2N
N−2dx

) 2+α
N+α

(∫
RN

|ϕ|
2N
N−2dx

)N−2
N+α

≤ Cϵ∥ϕ∥
2N

N+α
∞ . (3.3.1)

Setting An := {x ∈ RN \BR : |un(x)| ≤ s0}, then by Holder’s inequality∫
An∩{|u|≤δ}

|h(un)−h(un−u)|
2N

N+α |ϕ|
2N

N+αdx ≤ Cϵ

∫
RN

(|un|
2N

N+α +|un−u|
2N

N+α )|ϕ|
2N

N+αdx ≤

≤ Cϵ∥ϕ∥
2N

N+α
∞ .

Let Bn := {x ∈ RN \BR} : |un(x)| ≥ s1}. Then,∫
Bn∩{|u|≤δ}

|h(un)− h(un − u)|
2N

N+α |ϕ|
2N

N+αdx ≤

≤ Cϵ

∫
RN

(|un|
2+α
N−2

2N
N+α + |un − u|

2+α
N−2

2N
N+α )|ϕ|

2N
N+αdx ≤

≤ Cϵ∥ϕ∥
2N

N+α
∞ .
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Setting Cn := {x ∈ Rn \BR : s0 ≤ |un(x)| ≤ s1}, then |Cn| < +∞ for any n and∫
Cn∩{|u|≤δ}

|h(un)− h(un − u)|
2N

N+α |ϕ|
2N

N+αdx ≤ (s0ϵ)
2N

N+α

∫
Cn∩{|u|≤δ}

|ϕ|
2N

N+αdx ≤

≤ (s0ϵ)
2N

N+α |Cn|
1
2

(∫
RN

|ϕ|
4N

N+αdx

) 1
2

≤ ϵ
2N

N+α

(∫
Cn

|un|
4N

N+αdx

) 1
2
(∫

RN

|ϕ|
4N

N+αdx

) 1
2

≤

≤ Cϵ∥ϕ∥
2N

N+α
∞ .

Thus, (RN \BR) ∩ {|u| ≤ δ} = An ∪Bn ∪ Cn and∫
(RN\BR)∩{|u|≤δ}

|h(un)− h(un − u)|
2N

N+α |ϕ|
2N

N+αdx ≤ Cϵ∥ϕ∥
2N

N+α
∞ , ∀n ∈ N.

Now for ϵ given above, there exists c(ϵ) > 0 such that

|h(un)−h(un−u)|
2N

N+α ≤ ϵ(|un|
2+α
N−2

2N
N+α + |un−u|

2+α
N−2

2N
N+α )+c(ϵ)(|un|

2N
N+α + |un−u|

2N
N+α )

and ∫
(RN\BR)∩{|u|≥δ}

|h(un)− h(un − u)|
2N

N+α |ϕ|
2N

N+αdx ≤

≤
∫
(RN\BR)∩{|u|≥δ}

(
ϵ(|un|

2+α
N−2

2N
N+α + |un − u|

2+α
N−2

2N
N+α )|ϕ|

2N
N+α+

+c(ϵ)(|un|
2N

N+α + |un − u|
2N

N+α )|ϕ|
2N

N+α

)
dx ≤

≤ Cϵ∥ϕ∥
2N

N+α
∞ + c(ϵ)

∫
(RN\BR)∩{|u|≥δ}

(|un|
2N

N+α + |un − u|
2N

N+α )|ϕ|
2N

N+αdx.

Noting that |(RN \ BR) ∩ {|u| ≥ δ}| → 0 as R → +∞, there exists R = R(ϵ) > 0 large
enough, such that, by the generalized Holder’s inequality,

c(ϵ)

∫
(RN\BR)∩{|u|≥δ}

(|un|
2N

N+α + |un − u|
2N

N+α )|ϕ|
2N

N+αdx ≤

≤ c(ϵ)

[(∫
RN

|un|
2N
N−2dx

)N−2
N+α

+

(∫
RN

|un − u|
2N
N−2dx

)N−2
N+α

](∫
RN

|ϕ|
2N
N−2dx

)N−2
N+α

)
×

×|(RN \BR) ∩ {|u| ≥ δ}|
α+4−N
N+α ≤ ϵ∥ϕ∥

2N
N+α
∞ .

Thus, by (3.3.1), for any n ∈ N,∫
RN\BR

|h(un)− h(un − u)− h(u)|
2N

N+α |ϕ|
2N

N+αdx ≤ Cϵ∥ϕ∥
2N

N+α
∞ . (3.3.2)
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Finally, for ϵ > 0 given above, there exists C(ϵ) > 0 such that

|h(t)|
2N

N+α ≤ C(ϵ)|t|
2N

N+α + ϵ|t|
2N

N+α
2+α
N−2 , ∀t ∈ R.

Recalling that un ⇀ u in H1(RN ), up to subsequences, by Rellich’s theorem un → u in
Lp(BR) for all 1 ≤ p < 2N

N−2 . Then, for n large enough∫
BR

|h(un − u)|
2N

N+α |ϕ|
2N

N+αdx ≤
∫
BR

(C(ϵ)|un − u|
2N

N+α + ϵ|un − u|
2N

N+α
α+2
N−2 )|ϕ|

2N
N+αdx ≤

≤ Cϵ∥ϕ∥
2N

N+α
∞ . (3.3.3)

Moreover, setting Dn := {x ∈ BR : |un(x) − u(x)| ≥ 1}, we have |Dn| = 0 for n large
enough in view of un → u a.e. x ∈ BR. Hence, noting that |{|u| ≥ L}| → 0 as L→ +∞,
there exists L = L(ϵ) > 1 large enough such that∫
BR∩{|u|≥L}

|h(un)−h(u)|
2N

N+α |ϕ|
2N

N+αdx =

∫
(BR\Dn)∩{|u|≥L}

|h(un)−h(u)|
2N

N+α |ϕ|
2N

N+αdx ≤

≤
∫
(BR\Dn)∩{|u|≥L}

(
c(ϵ)(|u|

2N
N+α + |un|

2N
N+α ) + ϵ(|u|

2N
N+α

α+2
N−2 + |un|

2N
N+α

α+2
N−2

)
|ϕ|

2N
N+αdx ≤

≤ Cϵ∥ϕ∥
2N

N+α
∞ .

On the other hand, by Lebesgue’s convergence theorem, as n→ +∞∫
BR∩{|u|≤L}

|h(un)−h(u)|
2N

N+α |ϕ|
2N

N+αdx =

∫
(BR\Dn)∩{|u|≤L}

|h(un)−h(u)|
2N

N+α |ϕ|
2N

N+αdx =

= o(1)∥ϕ∥
2N

N+α
∞ .

Thus, by (3.3.3) for n large enough∫
BR

|h(un)− h(un − u)− h(u)|
2N

N+α |ϕ|
2N

N+αdx ≤ Cϵ∥ϕ∥
2N

N+α
∞ .

Finally, combining the previous estimate with (3.3.2), we conclude the proof.

Lemma 3.3.4. Let α ∈ (0, N), s ∈ (1, Nα ) and let {gn}n∈N ∈ L1(RN ) ∩ Ls(RN ) be
bounded and such that, up to subsequences, gn → 0 in Ls

loc(RN ) as n → +∞. Then, up
to a subsequence, (Iα ∗ gn)(x) → 0 a.e. in RN as n→ +∞.
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Proof. Let us prove that for any fixed k ∈ N, up to subsequences, (Iα ∗ gn)(x) → 0 a.e.
in Bk. Let k ∈ N be fixed; due to {gn} bounded in L1(RN ), for any ϵ > 0 there exists
R = R(ϵ) > k such that

Aα

∫
RN\BR(x)

|gn(y)|
|x− y|N−α

dy ≤ ϵ, for any x ∈ RN , n ∈ N

where Aα :=
Γ(N−α

2
)

Γ(α
2
)2α . Obviously, BR(x) ⊂ B2R for any x ∈ BR. Noting that gnχB2R

∈
Ls(RN ), by inequality (3.1.3),

∥Iα ∗ (|gn|χB2R
)∥

L
Ns

N−αs (RN )
≤ C∥gn∥Ls(B2R).

It follows that, up to a subsequence, Iα ∗ (|gn|χB2R
) → 0 in L

Ns
N−αs (RN ) and a.e. in Bk.

Then, for a.e. x ∈ Bk,

lim sup
n→+∞

|(Iα ∗ gn)(x)| ≤ Aα lim sup
n→+∞

(∫
BR(x)

|gn(y)|
|x− y|N−α

dy +

∫
RN\BR(x)

|gn(y)|
|x− y|N−α

dy

)
≤

≤ ϵ+Aα lim sup
n→+∞

∫
BR(x)

|gn(y)|
|x− y|N−α

dy ≤ ϵ+Aα lim sup
n→+∞

∫
B2R

|gn(y)|
|x− y|N−α

dy =

= ϵ+ lim sup
n→+∞

(Iα ∗ (|gn|χB2R
))(x) = ϵ.

Since ϵ > 0 is arbitrary, the proof is completed.

Now we are set to prove Lemma 3.3.2.

Proof. Set for every t ∈ R:

f1(t) := f(t)− |t|
4+α−N
N−2 t and F1(t) :=

∫ t

0
f(s)ds.

Note that for any ϕ ∈ C∞
0 (RN ),∫

RN

(Iα∗F (un))f(un)ϕdx =

∫
RN

(Iα∗F (un))f1(un)ϕdx+
∫
RN

(Iα∗F (un))|un|
4+α−N
N−2 unϕdx.

Step 1. We claim as n→ +∞:∫
RN

(Iα ∗ F (un))|un|
4+α−N
N−2 unϕdx =

∫
RN

(Iα ∗ F (un − u))|un − u|
4+α−N
N−2 (un − u)ϕdx+

+

∫
RN

(Iα ∗ F (u))|u|
4+α−N
N−2 uϕdx+ o(1)∥ϕ∥∞
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for any ϕ ∈ C∞
0 (RN ). Noting that α > (N−4)+, by Lemma 3.3.3 (ii) (1) with h(t) = f(t),

q = 2+α
N−2 and r = 2N

N−2 ,

lim
n→+∞

∫
RN

|F (un)− F (un − u)− F (u)|
2N

N+αdx = 0. (3.3.4)

Then for vn = |un|
4+α−N
N−2 un, as well as vn = |un − u|

4+α−N
N−2 (un − u) and also vn =

|u|
4+α−N
N−2 u, there exists C > 0 such that by Holder’s inequality∫

RN

|vnϕ|
2N

N+αdx ≤
(∫

RN

|vn|
2N
2+αdx

) 2+α
N+α

(∫
RN

|ϕ|
2N
N−2dx

)N−2
N+α

,

from which it follows, using Hardy-Littlewood-Sobolev inequality and inequality (3.1.3),∣∣∣∣ ∫
RN

(Iα ∗ [F (un)− F (un − u)− F (u)])vnϕdx

∣∣∣∣ ≤

≤ C

(∫
RN

|F (un)− F (un − u)− F (u)|
2N

N+αdx

)N+α
2N

(∫
RN

|vnϕ|
2N

N+αdx

)N+α
2N

=

= o(1)∥ϕ∥∞, as n→ +∞ (3.3.5)

for any ϕ ∈ C∞
0 (RN ).

On the other hand, by Lemma 3.3.3 with q = 2+α
N−2 and r = 2N

N−2

lim
n→+∞

∫
RN

||un|
4+α−N
N−2 un − |un − u|

4+α−N
N−2 (un − u)− |u|

4+α−N
N−2 u|

2N
2+αdx = 0.

For wn = F (un), as well as wn = F (un − u) and also wn = F (u), one easily checks
that {wn}n is bounded in L

2N
N+α (RN ). By the Hardy-Littlewood-Sobolev inequality and

inequality (3.1.3), we get∣∣∣∣ ∫
RN

(Iα ∗ wn)(|un|
4+α−N
N−2 un − |un − u|

4+α−N
N−2 (un − u)− |u|

4+α−N
N−2 u)ϕdx

∣∣∣∣ ≤

≤ C

(∫
RN

∣∣∣∣|un| 4+α−N
N−2 un − |un − u|

4+α−N
N−2 (un − u)− |u|

4+α−N
N−2 u

∣∣∣∣ 2N
N+α

|ϕ|
2N

N+αdx

)N+α
2N

≤

≤ C

(∫
RN

∣∣∣∣|un| 4+α−N
N−2 un−|un−u|

4+α−N
N−2 (un−u)−|u|

4+α−N
N−2 u

∣∣∣∣ 2N
2+α

dx

) 2+α
2N

(∫
RN

|ϕ|
2N
N−2dx

)N−2
2N

= o(1)∥ϕ∥∞, as n→ +∞ (3.3.6)

93



for any ϕ ∈ C∞
0 (RN ). Then, combining (3.3.5) with (3.3.6) we get∫

RN

(Iα ∗ F (un))|un|
4+α−N
N−2 unϕdx =

∫
RN

(Iα ∗ F (un − u))|un − u|
4+α−N
N−2 (un − u)ϕdx+

+

∫
RN

(Iα ∗ F (u))|u|
4+α−N
N−2 uϕdx+

∫
RN

(Iα ∗ F (un − u))|u|
4+α−N
N−2 uϕdx+

+

∫
RN

(Iα ∗ F (u))|un − u|
4+α−N
N−2 (un − u)ϕdx+ o(1)∥ϕ∥∞, as n→ +∞

for any ϕ ∈ C∞
0 (RN ). Noting that F (u) ∈ L

2N
N+α (RN ), by inequality (3.1.3), |Iα ∗

F (u)|
2N
N+2 ∈ L

N+2
N−α (RN ). Furthermore, |un − u|

2N(2+α)
(N−2)(N+2) ⇀ 0 in L

N+2
N+α (RN ). This yields

lim
n→+∞

∫
RN

|Iα ∗ F (u)|
2N
N+2 |un − u|

2N(2+α)
(N−2)(N+2)dx = 0, (3.3.7)

which implies, by Holder’s inequality,∣∣∣∣ ∫
RN

(Iα ∗ F (u))|un − u|
4+α−N
N−2 (un − u)ϕdx

∣∣∣∣ ≤

≤
(∫

RN

|Iα ∗ F (u)|
2N
N+2 |un − u|

2N(2+α)
(N−2)(N+2)dx

)N+2
2N

(∫
RN

|ϕ|
2N
N−2dx

)N−2
2N

= o(1)∥ϕ∥∞

as n→ +∞, for any ϕ ∈ C∞
0 (RN ).

At the same time, since α ∈ ((N − 4)+, N), for s ∈ (1, 2N
N+α) ⊂ (1, Nα ), by Rellich’s

theorem, up to subsequences, F (un − u) → 0 in Ls
loc(RN ). By Lemma 3.2.5, Iα ∗F (un −

u) → 0 a.e. in RN . So, inequality (3.1.3) implies

sup
n∈N

∥|Iα ∗ F (un − u)|
2N
N+2 ∥

L
N+2
N+α (RN )

≤ C sup
n∈N

∥F (un − u)∥
L

2N
N+α (RN )

< +∞,

which yields |Iα∗F (un−u)|
2N
N+2 ⇀ 0 in L

N+2
N+α (RN ). Noting that |u|

2+α
N−2

2N
N−2 ∈ L

N+2
2+α (RN ),

lim
n→+∞

∫
RN

|Iα ∗ F (un − u)|
2N
N+2 |u|

2+α
N−2

2N
N+2dx = 0

and, by Holder’s inequality,∣∣∣∣ ∫
RN

(Iα ∗ F (un − u))|u|
4+α−N
N−2 uϕdx

∣∣∣∣ ≤

≤
(∫

RN

|Iα ∗ F (un − u)|
2N
N+2 |u|

2N(2+α)
(N−2)(N+2)dx

)N+2
2N

(∫
RN

|ϕ|
2N
N−2dx

)N−2
2N

= o(1)∥ϕ∥∞,
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as n→ +∞, for any ϕ ∈ C∞
0 (RN ). The claim is thus proved.

Step 2. We claim∫
RN

(Iα ∗ F (un))f1(un)ϕdx =

∫
RN

(Iα ∗ F (un − u))f1(un − u)ϕdx+

+

∫
RN

(Iα ∗ F (u))f1(u)ϕdx+ o(1)∥ϕ∥∞, as n→ +∞ (3.3.8)

for any ϕ ∈ C∞
0 (RN ). The following hold:

(i)
∫
RN (Iα ∗ [F (un)− F (un − u)− F (u)])f1(un)ϕdx = o(1)∥ϕ∥∞,

(ii)
∫
RN (Iα ∗ [F (un)− F (un − u)− F (u)])f1(un − u)ϕdx = o(1)∥ϕ∥∞,

(iii)
∫
RN (Iα ∗ [F (un)− F (un − u)− F (u)])f1(u)ϕdx = o(1)∥ϕ∥∞,

as n→ +∞, for any ϕ ∈ C∞
0 (RN ). Let us only prove the first identity (i), the remaining

ones being similar. Observe that there exists δ ∈ (0, 1) and C > 0 such that |f1(t)| ≤ |t|
for |t| ≤ δ and |f1(t)| ≤ C|t|

2+α
N−2 for |t| ≥ δ. Noting that α ∈ ((N − 4)+, N), we have

2 < 4N
N+α <

2N
N−2 . Then, for any ϕ ∈ C∞

0 (RN ) and n ∈ N,∫
RN

|f1(un)ϕ|
2N

N+αdx =

∫
{|un|≤δ}

|f1(un)ϕ|
2N

N+αdx+

∫
{|un|≥δ}

|f1(un)ϕ|
2N

N+αdx ≤

≤
∫
{|un|≤δ}

|unϕ|
2N

N+αdx+ C
2N

N+α

∫
{|un|≥δ}

|un|
2N(2+α)

(N−2)(N+α) |ϕ|
2N

N+αdx ≤

≤
(∫

RN

|un|
4N

N+αdx

) 1
2
(∫

RN

|ϕ|
4N

N+αdx

) 1
2

+

+C
2N

N+α

(∫
RN

|un|
2N
N−2dx

) 2+α
N+α

(∫
RN

|ϕ|
2N
N−2dx

)N−2
N+α

≤ C∥ϕ∥
2N

N+α
∞ .

Then by Hardy-Littlewood-Sobolev inequality, inequality (3.1.3) and (3.3.4),∣∣∣∣ ∫
RN

(Iα ∗ [F (un)− F (un − u)− F (u)])f1(un)ϕdx

∣∣∣∣ ≤

≤
(∫

RN

|F (un)−F (un−u)−F (u)|
2N

N+αdx

)N+α
2N

(∫
RN

|f1(un)ϕ|
2N

N+αdx

)N+α
2N

= o(1)∥ϕ∥∞,

as n→ +∞, for any ϕ ∈ C∞
0 (RN ). So (i) holds.

Similarly we prove

95



(1)
∫
RN (Iα ∗ F (un))[f1(un)− f1(un − u)− f1(u)]ϕdx = o(1)∥ϕ∥∞,

(2)
∫
RN (Iα ∗ F (un − u))[f1(un)− f1(un − u)− f1(u)]ϕdx = o(1)∥ϕ∥∞,

(3)
∫
RN (Iα ∗ F (u))[f1(un)− f1(un − u)− f1(u)]ϕdx = o(1)∥ϕ∥∞,

as n → +∞, for any ϕ ∈ C∞
0 (RN ). By the Hardy-Littlewood-Sobolev inequality,

inequality (3.1.3), (ii) (2) of Lemma 3.3.3 with h(t) = f1(t) and the fact that F (un) is
bounded in L

2N
N+α (RN ),∣∣∣∣ ∫

RN

(Iα ∗ F (un))[f1(un)− f1(un − u)− f1(u)]ϕdx

∣∣∣∣ ≤

≤ C

(∫
RN

|f1(un)− f1(un − u)− f1(u)|
2N

N+α |ϕ|
2N

N+αdx

)N+α
2N

= o(1)∥ϕ∥∞, as n→ +∞

for any ϕ ∈ C∞
0 (RN ). So the first identity (1) holds and the remaining can be proved in

a similar way.
Combining (i)-(iii) with (1)-(3), we get∫

RN

(Iα∗F (un))f1(un)ϕdx =

∫
RN

(Iα∗F (un−u))f1(un−u)ϕdx+
∫
RN

(Iα∗F (u))f1(u)ϕdx+

+

∫
RN

(Iα ∗ F (un − u))f1(u)ϕdx+

∫
RN

(Iα ∗ F (u))f1(un − u)ϕdx+ o(1)∥ϕ∥∞,

as n→ +∞, for any ϕ ∈ C∞
0 (RN ). To conclude the proof of (3.2.8), it remains to prove∫

RN

(Iα ∗ F (un − u))f1(u)ϕdx = o(1)∥ϕ∥∞

and ∫
RN

(Iα ∗ F (u))f1(un − u)ϕdx = o(1)∥ϕ∥∞, (3.3.9)

as n→ +∞, for any ϕ ∈ C∞
0 (RN ). Notice that for any ϵ ∈ (0, 1), there exists δ(ϵ) ∈ (0, 1)

and C(ϵ) > 0 such that |f1(t)| ≤ ϵ|t| for |t| ≤ δ(ϵ) and |f1(t)| ≤ C(ϵ)|t|
2+α
N−2 for |t| ≥ δ(ϵ).

Then, by Holder’s inequality and inequality (3.1.3)∣∣∣∣ ∫
RN

(Iα ∗ F (un − u))f1(u)ϕdx

∣∣∣∣ ≤ ϵ

∫
{|u|≤δ(ϵ)}

|Iα ∗ F (un − u)||uϕ|dx+

+C(ϵ)

∫
{|u|≥δ(ϵ)}

|Iα ∗ F (un − u)||u|
2+α
N−2 |ϕ|dx ≤ Cϵ∥F (un − u)∥

L
2N

N+α (RN )
×

96



×
(∫

{|u|≤δ(ϵ)}
|uϕ|

2N
N+αdx

)N+α
2N

+

+C(ϵ)

(∫
RN

|Iα ∗ F (un − u)|
2N
N+2 |u|

2+α
N−2

2N
N+2dx

)N+2
2N

(∫
RN

|ϕ|
2N
N−2dx

)N−2
2N

.

There exists C > 0 independent of ϵ and ϕ such that∫
{|u|≤δ(ϵ)}

|uϕ|
2N

N+αdx ≤ C∥ϕ∥
2N

N+α
∞ .

Then by (3.3.7), there exists C̃ > 0 independent for ϕ and ϵ such that

lim sup
n→+∞

∣∣∣∣ ∫
RN

(Iα ∗ F (un − u))f1(u)ϕdx

∣∣∣∣ ≤ C̃ϵ∥ϕ∥∞.

It follows that∫
RN

(Iα ∗ F (un − u))f1(u)ϕdx = o(1)∥ϕ∥∞, as n→ +∞

for any ϕ ∈ C∞
0 (RN ). Similarly, (3.3.9) can be proved and the proof of Lemma 3.3.2 is

complete.

Proof of Theorem 3.3.1

First of all, let us consider the following family of functionals, for λ ∈ [12 , 1]:

Sλ(u) =
1

2

∫
RN

(|∇u|2 + u2)dx− λ

2

∫
RN

(Iα ∗ F (u))F (u)dx, u ∈ H1(RN ).

Obviously, if f satisfies the growth assuptions of Theorem 3.3.1, for λ ∈ [12 , 1], Sλ ∈
C1(H1(RN );R) and every critical point of Sλ is a weak solution of

−∆u+ u = λ(Iα ∗ F (u))f(u). (3.3.10)

The existence of critical points of Sλ is a consequence of the following result on critical
point theory.

Theorem 3.3.2. (see [16]) Let (X, ∥·∥X) be a Banach space, let J ⊂ R+ be an interval
and let a family of C1(X;R)-functionals {Sλ}λ∈J of the form

Sλ(u) = A(u)− λB(u).
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Assume that B(u) ≥ 0 for any u ∈ X, at least one between A and B is coercive on X
and there exist two points v1, v2 ∈ X such that for any λ ∈ J ,

cλ := inf
γ∈Γ

max
t∈[0,1]

Sλ(γ(t)) > max{Sλ(v1),Sλ(v2)},

where Γ := {γ ∈ C([0, 1];X) : γ(0) = v1, γ(1) = v2}. Then, for a.e. λ ∈ J , Sλ admits a
bounded Palais-Smale sequence at level cλ. Moreover, cλ is left-continuous with respect
to λ ∈ [12 , 1].

In the following, set X = H1(RN ) and

A(u) =
1

2

∫
RN

(|∇u|2 + u2)dx, B(u) =
1

2

∫
RN

(Iα ∗ F (u))F (u)dx.

Obviously, A(u) → +∞ as ∥u∥H1(RN ) → +∞. Thanks to (F3), B(u) ≥ 0 for any
u ∈ H1(RN ). Moreover, by (F1)−(F2), there exists C > 0 such that |F (s)| ≤ C(|s|1+

α
N +

|s|
N+α
N−2 ) for any s ∈ R. Then, as in Proposition 3.1.3, there exists δ > 0 such that∫

RN

(Iα ∗ F (u))F (u)dx ≤ 1

2
∥u∥2H1(RN ) if ∥u∥2H1(RN ) ≤ δ,

and therefore for any λ ∈ J ,

Sλ(u) ≥
1

4

∫
RN

(|∇u|2 + u2)dx > 0 if 0 < ∥u∥2H1(RN ) ≤ δ. (3.3.11)

By (F3), it follows that F (s) ≥ N−2
N+α |s|

N+α
N−2 + µ

q |s|
q for any s ∈ R and for some µ > 0,

q ∈ (2, N+α
N−2 ). On the other hand, for fixed 0 ̸≡ u0 ∈ H1(RN ) and for any λ ∈ J , t > 0,

Sλ(tu0) ≤
t2

2

∫
RN

(|∇u0|2+u20)dx−
t
2(N+α)
N−2

4

(
N − 2

N + α

)2 ∫
RN

(Iα∗|u0|
N+α
N−2 )|u0|

N+α
N−2 dx→ −∞

as t → +∞. Then there exists t0 = t0(u0) > 0 such that Sλ(t0u0) < 0, λ ∈ J and
∥t0u0∥2H1(RN )

> δ by (3.2.11). Furthermore, by (3.3.11) as in Proposition 3.1.3, cλ ≥ δ
4 >

0 for any λ ∈ J . So in order to satisfy the hypotheses of Theorem 3.2.2, we choose

Γ = {γ ∈ C([0, 1];H1(RN )) : γ(0) = 0, γ(1) = t0u0}.

Remark 3.3.5. Observe that cλ is independent of u0. Indeed, let

dλ := inf
γ∈Γ1

max
t∈[0,1]

Sλ(γ(t)),

where Γ1 := {γ ∈ C([0, 1];H1(RN )) : γ(0) = 0,Sλ(γ(1)) < 0}. Clearly, dλ ≤ cλ. On the
other hand, for any γ ∈ Γ1, it follows from (3.3.11) that ∥γ(1)∥2

H1(RN )
> δ. Due to the

path connectedness of H1(RN ), there exists γ̃ ∈ C([0, 1];H1(RN )) such that γ̃(t) = γ(2t)
if t ∈ [0, 12 ], ∥γ̃(t)∥

2
H1(RN )

> δ if t ∈ [12 , 1] and γ̃(1) = t0u0. Then γ̃ ∈ Γ and

max
t∈[0,1]

Sλ(γ̃(t)) = max
t∈[0,1]

Sλ(γ(t)),

which implies that cλ ≤ dλ and so cλ = dλ for any λ ∈ J .
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Then, as a consequence of Theorem 3.3.2, we have the following

Lemma 3.3.6. Take α ∈ (0, N) and f ∈ C(R;R) satisfying (F1)− (F3). Then, for a.e.
λ ∈ [12 , 1], problem (3.3.10) admits a bounded Palais-Smale sequence {un}n∈N at the level
cλ.

Next, in the spirit of [21], we establish a decomposition of such a Palais-Smale se-
quence {un}, which will play a crucial role in proving Theorem 3.3.1. However, some
difficulties with respect to the local case are carried over by the presence of the nonlocal
critical (respect to Hardy-Littlewood-Sobolev inequality) term.

Proposition 3.3.7. With the same assumptions of Theorem 3.3.1, let {un} be given
by previous lemma. Assume un ⇀ uλ in H1(RN ). Then, up to subsequences, for any
λ ∈ [12 , 1] there exist k ∈ N, {xjn}kj=1 ⊂ RN and {vjλ}

k
j=1 ⊂ H1(RN ) such that

(i) S ′
λ(uλ) = 0 in H−1(RN ),

(ii) vjλ ̸≡ 0 and S ′
λ(v

j
λ) = 0 in H−1(RN ), ∀ 1 ≤ j ≤ k,

(iii) cλ = S(uλ) +
∑k

j=1 Sλ(v
j
λ),

(iv) ∥un − uλ −
∑k

j=1 v
j
λ(· − xjn)∥H1(RN ) → 0 as n→ +∞,

Before proving the proposition, we need a few preliminary lemmas.

Lemma 3.3.8. Take α ∈ (0, N), f ∈ C(R;R) satisfying (F1) and let uλ ∈ H1(RN ) ∩
W 2,2

loc (R
N ) solving problem (3.3.10). Then,

N − 2

2

∫
RN

|∇u|2dx+
N

2

∫
RN

u2dx =
(N + α)λ

2

∫
RN

(Iα ∗ F (u))F (u)dx. (3.3.12)

Moreover, there exist β, γ > 0 independent of λ ∈ [12 , 1], such that ∥uλ∥H1(RN ) ≥ β and
Sλ(uλ) ≥ γ for any nontrivial solution uλ and λ ∈ [12 , 1].

Proof. The proof of identity (3.3.12) is the same as Pohožaev’s identity.
Now, let λ ∈ [12 , 1] and let uλ ∈ H1(RN ) be any nontrivial solution of (3.3.10). Then∫

RN

(|∇uλ|2 + u2λ)dx ≤
∫
RN

(Iα ∗ F (uλ)f(uλ)uλdx. (3.3.13)

Thanks to (F1)− (F2), there exists C > 0 such that F (s), |sf(s)| ≤ C(|s|
N+α
N + |s|

N+α
N−2 )

for any s ∈ R.
Moreover, as in Proposition (3.1.3), there exists β > 0 such that∫

RN

(Iα ∗ F (u))f(u)udx ≤ 1

2
∥u∥2H1(RN ) if ∥u∥H1(RN ) ≤ β,

which yields by (3.3.13), ∥uλ∥H1(RN ) ≥ β. By Pohožaev’s identity (3.3.12), it holds

Sλ(uλ) =
2 + α

2(N + α)

∫
RN

|∇uλ|2dx+
α

2(N + α)

∫
RN

u2λdx

and this concludes the proof.
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Now, for any u ∈ D1,2(RN ), combining the Hardy-Littlewood-Sobolev inequality with
Sobolev inequality, we have∫

RN

(Iα ∗ |u|
N+α
N−2 )|u|

N+α
N−2 dx ≤ AαCα

(∫
RN

|u|
2N
N−2dx

)N+α
N

≤ AαCαS
−N+α

N−2

(∫
RN

|∇u|2dx
)N+α

N−2

,

where Aα :=
Γ(N−α

2
)

Γ(α
2
)2α , Cα is defined in Proposition A.0.6 and

S := inf
0̸≡u∈D1,2(RN )

∫
RN |∇u|2dx

(
∫
RN |u|

2N
N−2dx)

N−2
2N

.

Then,

Sα := inf
0 ̸≡u∈D1,2(RN )

∫
RN |∇u|2dx

(
∫
RN [Iα ∗ |u|

N+α
N−2 ]|u|

N+α
N−2 dx)

N−2
N+α

≥ S

(AαCα)
N−2
N+α

.

Minimizers for Sα are explicitly known from [12, theorem 4.3]. Actually,

Sα =
S

(AαCα)
N−2
N+α

and it is achieved by the "bubble" function

U(x) =
[N(N − 2)]

N−2
4

(1 + |x|2)
N−2

4

.

This information is crucial to prove an upper estimate for cλ.

Lemma 3.3.9. Take α ∈ (0, N), q > max{1+ α
N−2 ,

N+α
2(N−2)}, λ ∈ [12 , 1] and f ∈ C(R;R)

satisfying (F1)− (F3). Then,

cλ <
2 + α

2(N + α)

(
N + α

N − 2

)N−2
2+α

λ
2−N
2+α S

N+α
2+α
α .

Proof. The quite technical proof is inspired by pioneering Brezis-Nirenberg’s work on
critical problem, and it can be seen entirely on [44, Lemma 3.3] (see Appendix).

Now we are ready to prove Proposition 3.3.7.

Proof. Take λ ∈ [12 , 1] and assume un ⇀ uλ in H1(RN ) satisfies Sλ(un) → cλ and
S ′
λ(un) → 0 in H−1(RN ) as n→ +∞.
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Step 1. We claim S ′
λ(uλ) = 0 in H−1(RN ). As a consequence of Lemma 3.3.2, it

sufficient to show, up to subsequences, that for any ϕ ∈ C∞
0 (RN ),∫

RN

(Iα ∗ F (un − u))f(un − u)ϕdx→ 0 as n→ +∞.

In fact, by (F1)− (F2) we get

|f(s)|
2N

N+α ≤ C(|s|
2N

N+α + |s|
2+α
N−2

2N
N+α ), ∀s ∈ R.

Respectively, by inequality (3.1.3), Hardy-Littlewood-Sobolev inequality and F (un − u)

is bounded in L
2N

N+α (RN ) and Rellich’s theorem, we have, for any ϕ ∈ C∞
0 (RN ),∣∣∣∣ ∫

RN

(Iα∗F (un−u))f(un−u)ϕdx
∣∣∣∣ ≤ C

(∫
RN

|f(un−u)ϕ|
2N

N+αdx

)N+α
2N

→ 0 as n→ +∞.

Step 2. Set v1n := un − uλ ∈ H1(RN ). We claim

lim inf
n→+∞

sup
z∈RN

∫
B1(z)

|v1n|2dx > 0. (3.3.14)

Indeed, arguing by contradiction, if not, by Lions’ lemma [21, lemma I.1], v1n → 0 in
Lt(RN ) for any t ∈ (2, 2N

N−2). Noting that S ′
λ(un)[v

1
n] → 0 as n→ +∞ and S ′

λ(uλ)[v
1
n] = 0

for any n, respectively by Lemma 3.3.1 and Lemma 3.3.2, we get

cλ = Sλ(uλ)+Sλ(v
1
n)+o(1), ∥v1n∥2H1(RN ) = λ

∫
RN

(Iα∗F (v1n))f(v1n)v1ndx+o(1), (3.3.15)

as n→ +∞. Next, we show that

lim
n→+∞

∫
RN

(Iα ∗ F1(v
1
n))F1(v

1
n)dx = 0,

where
f1(t) = f(t)− |t|

α+4−N
N−2 t, F1(t) =

∫ s

0
f1(s)ds t ∈ R.

Notice that f1(t) = o(t) as t→ 0 and lim|t|→+∞
|f1(t)|

|t|
α+2
N−2

= 0. So for any ϵ > 0, there exists

Cϵ > 0 such that |F1(t)| ≤ ϵ(t2 + |t|
N+α
N−2 ) + Cϵ|t|r for some r ∈ (2, N+α

N−2 ). Using the fact
that v1n → 0 in Lt(RN ) for any t ∈ (2, 2N

N−2) and 4N
N+α ∈ (2, 2N

N−2), it holds∫
RN

|F1(v
1
n)|

2N
N+αdx ≤ ϵ

∫
RN

(|v1n|
4N

N+α + |v1n|
2N
N−2 )dx+ C ′

ϵ

∫
RN

|v1n|
2Nq
N+αdx ≤ Cϵ+ o(1)

as n→ +∞. From the arbitrariness of ϵ > 0, it follows that

lim
n→+∞

∫
RN

|F1(v
1
n)|

2N
N+αdx = 0,
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which yields, by inequality (3.1.3) and Hardy-Littlewood-Sobolev inequality,∣∣∣∣ ∫
RN

(Iα ∗ F1(v
1
n))F1(v

1
n)dx

∣∣∣∣ ≤ C

(∫
RN

|F1(v
1
n)|

2N
N+αdx

)N+α
N

→ 0 as n→ +∞.

Similarly,

lim
n→+∞

∫
RN

(Iα ∗ F1(v
1
n))|v1n|

N+α
N−2 dx = 0 and lim

n→+∞

∫
RN

(Iα ∗ F1(v
1
n))f1(v

1
n)v

1
ndx = 0.

Then, by (3.3.15), we get

(∗∗)

cλ = Sλ(uλ) +
1
2∥v

1
n∥2H1(RN )

− λ
2

(
N−2
N+α

)2 ∫
RN (Iα ∗ |v1n|

N+α
N−2 )|v1n|

N+α
N−2 dx+ o(1)

∥v1n∥2H1(RN )
= λN−2

N+α

∫
RN (Iα ∗ |v1n|

N+α
N−2 )|v1n|

N+α
N−2 dx+ o(1),

as n→ +∞. Now, let us consider

lim inf
n→+∞

∥v1n∥2H1(RN ) = λ
N − 2

N + α
lim inf
n→+∞

∫
RN

(Iα ∗ |v1n|
N+α
N−2 )|v1n|

N+α
N−2 dx := b > 0.

From ∫
RN

|∇v1n|2dx ≥ Sα

(∫
RN

(Iα ∗ |v1n|
N+α
N−2 )|v1n|

N+α
N−2 dx

)N−2
N+α

for any n, we have

b ≥
(
N + α

N − 2

)N−2
2+α

λ
2−N
2+α S

N+α
2+α
α .

By Lemma 3.3.8 and (**),

cλ ≥ 2 + α

2(N + α)

(
N + α

N − 2

)N−2
2+α

λ
2−N
2+α S

N+α
2+α
α ,

which is a contradiction with Lemma 3.3.9. Thus (3.3.14) holds true.

Step 3. By (3.3.14), Rellich’s theorem and the fact that v1n ⇀ 0 in H1(RN ), there
exists {z1n}n ⊂ RN such that |z1n| → +∞ as n→ +∞ and

lim inf
n→+∞

∫
B1(z1n)

|v1n|2dx > 0.

Let u1n := v1n(· + z1n). Then, up to subsequences, u1n ⇀ v1λ in H1(RN ) for some v1λ ̸≡ 0.
By Lemmas 3.3.1 and 3.3.2, we have

Sλ(u
1
n) → cλ − Sλ(uλ), S ′

λ(u
1
n) → 0 in H−1(RN ).

Similarly as above, S ′
λ(v

1
λ) = 0. Let v2n := u1n − v1λ. Then,

un = uλ + v1λ(· − z1n) + v2n(· − z1n).
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If v2n → 0 in H1(RN ), i.e. u1λ → v1λ, then

cλ = Sλ(uλ) + Sλ(v
1
λ), ∥un − uλ − v1λ(· − z1n)∥H1(RN ) → 0 as n→ +∞,

and we are done. Otherwise, if v2n ↛ 0 in H1(RN ), similarly as above

lim inf
n→+∞

sup
z∈RN

∫
B1(z)

|v2n|2dx > 0.

Then there exists {z2n}n ⊂ RN such that by Rellich’s theorem |z2n| → +∞ and

lim inf
n→+∞

∫
B1(z2n)

|v2n|2dx > 0.

Let u2n := v2n(·+ z2n). Then, up to subsequences, u2n ⇀ v2λ in H1(RN ) for some 0 ̸≡ v2λ.

We have S ′
λ(v

2
λ) = 0 and

Sλ(u
2
n) → cλ − Sλ(uλ)− Sλ(v

1
λ), S ′

λ(u
2
n) → 0 in H−1(RN ).

Let v3n := u2n − v2λ. Then

un = uλ + v1λ(· − z1n) + v2λ(· − z1n − z2n) + v3n(· − z1n − z2n).

If v3n → 0 in H1(RN ), i.e. u2n → v2λ, then

cλ = Sλ(uλ) + Sλ(v
1
λ) + Sλ(v

2
λ), ∥un − uλ − v1λ(· − z1n)− v2λ(· − z1n − z2n)∥H1(RN ) → 0,

and we are done. Otherwise, we can iterate the above procedure and by Lemma 3.3.8,
we will end up in a finite number k of steps. Namely, let xjn :=

∑j
i=1 z

i
n for 1 ≤ j ≤ k.

Then,

cλ = Sλ(uλ) +
k∑

j=1

Sλ(v
j
λ),

∥∥∥∥un − uλ −
k∑

j=1

vjn(· − xjn)

∥∥∥∥
H1(RN )

→ 0 as n→ +∞.

Proof. (of Theorem 3.3.1 ) As a consequence of Lemma 3.3.6, Proposition 3.3.7 and
Lemma 3.3.8, one has that for a.e. λ ∈ [12 , 1], problem (3.3.10) admits a nontrivial
solution uλ (by condition (3.3.14)) satisfying ∥uλ∥H1(RN ) ≥ β, γ ≤ Sλ(uλ) ≤ cλ, where
β, γ > 0 are independent of λ. Then there exist {λn}n ⊂ [12 , 1] and {un}n ⊂ H1(RN )
such that, as n→ +∞,

λn → 1−, γ ≤ Sλn(un) ≤ cλn , S ′
λn
(un) = 0 in H−1(RN ). (3.3.16)
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By Pohožaev’s identity (3.3.12) we have

Sλn(un) =
2 + α

2(N + α)

∫
RN

|∇un|2dx+
α

2(N + α)

∫
RN

u2ndx,

and so {un} is bounded in H1(RN ). Notice that for any λ ∈ [12 , 1] and u ∈ H1(RN ),

S(u) = Sλ(u) +
1

2
(λ− 1)

∫
RN

(Iα ∗ F (u))F (u)dx.

Then by (3.3.16) and boundedness of {un}, up to subsequences, there exists c0 ∈ [γ, c1]
such that

c0 := lim
n→+∞

S(un) = lim
n→+∞

Sλn(un) ≤ lim
n→+∞

cλn = c1,

where we used the fact that cλ is continuous from the left at λ. Moreover, by (3.3.16),
for any ϕ ∈ C∞

0 (RN ),

S ′(un)[ϕ] = (λn − 1)

∫
RN

(Iα ∗ F (un))f(un)ϕdx.

Similarly as above, there exists C > 0 independent for ϕ such that(∫
RN

|f(un)ϕ|
2N

N+αdx

)N+α
2N

≤ C∥ϕ∥∞.

By Hardy-Littlewood-Sobolev inequality and inequality (3.1.3),

|S ′(un)[ϕ]| = (1− λn)

∣∣∣∣ ∫
RN

(Iα ∗ F (un))f(un)ϕdx
∣∣∣∣

≤ C(1− λn)

(∫
RN

|F (un)|
2N

N+αdx

)N+α
2N

(∫
RN

|f(un)ϕ|
2N

N+αdx

)N+α
2N

= o(1)∥ϕ∥∞

as n→ +∞, for any ϕ ∈ C∞
0 (RN ). Namely, by density S ′(un) → 0 in H−1(RN ). Finally,

we obtain

∥un∥H1(RN ) ≥ β, S(un) → c0 ≤ c1, S ′(un) → 0 in H−1(RN ) as n→ +∞.

If un → u0 in H1(RN ), then ∥u0∥H1(RN ) ≥ β, S(u0) = c0 ≤ c1 and S ′(u0) = 0 in
H−1(RN ). Let define

E := inf{S(u) : u ∈ H1(RN ) \ {0} s.t. S ′(u) = 0 in H−1(RN )}.

So we obtained E ≤ c1. As in the subcritical case, Proposition 3.1.7 implies c1 ≤ E and
so S(u0) = E = c1, namely u0 is a ground state solution of (*).
Otherwise, as a consequence of Proposition 3.3.7 with λ = 1, cλ = c0, uλ = u0, there

104



exists k ∈ N and {vj}kj=1 ⊂ H1(RN ) such that vj ̸≡ 0, S ′(vj) = 0 in H−1(RN ) for all
1 ≤ j ≤ k and c0 = S(u0) +

∑k
j=1 S(vj). We know that E ∈ [γ, c1].

We conclude the proof of Theorem 3.3.1 by showing that E is achieved. Clearly by
definition of infimum, there exists {vn}n ⊂ H1(RN ) \ {0} such that S(vn) → E and
S ′(vn) = 0 in H−1(RN ). By Pohožaev’s identity, {vn} is bounded in H1(RN ) and so
vn ⇀ v0 ̸≡ 0 in H1(RN ). As in Proposition 3.1.4, S ′(v0) = 0 in H−1(RN ). If vn → v0 in
H1(RN ), then S(v0) = E and so v0 is a ground state of (*).
Otherwise, by Proposition 3.3.7 there exists k ∈ N and {vj}kj=1 ⊂ H1(RN ) such that
vj ̸≡ 0, S ′(vj) = 0 in H−1(RN ) for all 1 ≤ j ≤ k and E = S(v0) +

∑k
j=1 S(vj). By

definition of E, Lemma 3.3.8 and vj ̸≡ 0, it holds v0 = 0, we can assume k = 1 and so
E = S(v1), which yields v1 as a ground state solution of (*).

3.4 Existence of ground-states in critical case on the plane

The aim of this section is to prove an existence result for ground-states solutions to (*)
in dimension N = 2, assuming that the nonlinearity has an exponential critical growth
at infinity.
Therefore, let us consider f ∈ C(R+;R) satisfying

(f1) lims→0+
f(s)

s
α
2

= 0,

(f2) lims→+∞
f(s)

eβs2
= 0 (+∞) if β > 4π (β < 4π),

(f3) (Ambrosetti-Rabinowitz condition): ∃ θ > 2 s.t 0 < θF (s) ≤ 2f(s)s
∀s > 0, where F (s) =

∫ s
0 f(t)dt,

(f4) ∃p > 2+α
2 , s.t. F (s) ≥ Cps

p ∀s ≥ 0, where Cp >
(
4θ(p−1)
α(θ−2)

)
p−1
2 Sp

p

p
p
2

and

Sp := infu∈H1(R2)\{0}
∥u∥H1(R2)

(
∫
R2 (Iα∗|u|p)|u|pdx)

1
2p
.

The main result is the following:

Theorem 3.4.1. Assume N = 2, α ∈ (0, 2) and f ∈ C(R+;R) satisfying (f1) − (f4).
Then, problem (*) admits a nontrivial ground state solution.

First of all, let us introduce the following Moser-Trudinger inequality due to Cao [10],
which will be crucial for our variational methods.

Lemma 3.4.1. If β > 0 and u ∈ H1(R2), then∫
R2

(eβu
2 − 1)dx < +∞.
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Moreover, if ∥∇u∥L2(R2) ≤ 1, ∥u∥L2(R2) ≤ M < +∞ and β ∈ (0, 4π), then there exists
C > 0, which depends only on M and β, such that∫

R2

(eβu
2 − 1)dx ≤ C(M,β).

Since we are going to study the existence of positive solutions, we will assume that

f(s) = 0 ∀s < 0.

Now let us consider the well-defined energy functional (thanks to Lemma 3.4.1)
S : H1(R2) → R, given by

S(u) = 1

2

∫
R2

(|∇u|2 + u2)dx− 1

2

∫
R2

(Iα ∗ F (u))F (u)dx.

Next, we will show that S verifies the mountain pass geometry.

Lemma 3.4.2. Let f ∈ C(R+;R) satisfying (f1)− (f3). Then,

(i) There exists ρ, δ0 > 0 such that S|Sρ
≥ δ0, ∀u ∈ Sρ := {u ∈ H1(R2) : ∥u∥H1(R2) =

ρ}.

(ii) There is e ∈ H1(R2) with ∥e∥H1(R2) > ρ such that S(e) < 0.

Proof. (i). Conditions (f1) − (f3) imply that for any p > 1, there exists C = C(p) > 0
such that

|F (s)| ≤ C(p)(|s|
2+α
2 + |s|p[e4πs2 − 1]) ∀s ∈ R,

from which it follows by Minkowski’s inequality

∥F (u)∥
L

4
2+α (R2)

≤ C

(
∥u∥

2+α
2

L2(R2)
+ ∥|u|p[e4πu2 − 1]∥

L
4

2+α (R2)

)
.

Since p > 1, Sobolev embedding and Holder’s inequality, there exists a constant C1 > 0
such that∫

R2

|u|
4p

2+α [e4πu
2 − 1]

4
2+αdx ≤

(∫
R2

|u|
8p

2+αdx

) 1
2
(
[e4πu

2 − 1]
8

2+αdx

) 1
2

≤

≤ C1∥u∥
4p

2+α

H1(R2)

(∫
R2

[e
8

2+α
4πu2

− 1]dx

) 1
2

.

Noting that ∫
R2

[e
8

2+α
4πu2

− 1]dx =

∫
R2

[
e

8
2+α

∥u∥2
H14π

u2

∥u∥2
H1 − 1

]
dx,
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fixing ξ ∈ (0, 1) such that 8
2+α∥u∥

2
H1(R2) := ξ < 1, Lemma 3.4.1 implies

∫
R2

[
e
ξ4π u2

∥u∥2
H1 − 1

]
dx ≤ C2 for ∥u∥H1(R2) =

(
ξ(2 + α)

8

) 1
2

.

Then,

∥F (u)∥
L

4
2+α (R2)

≤ C∥u∥
2+α
2

H1(R2)
+ C3∥u∥pH1(R2)

for ∥u∥H1(R2) =

(
ξ(2 + α)

8

) 1
2

.

Thereby, by Hardy-Littlewood-Sobolev inequality and inequality (3.1.3),∫
R2

(Iα ∗ F (u))F (u)dx ≤ C∥u∥2+α
H1(R2)

+ C4∥u∥2pH1(R2)
for ∥u∥H1(R2) =

(
ξ(2 + α)

8

) 1
2

,

and so
S(u) ≥ 1

2
∥u∥2H1(R2) − C∥u∥2+α

H1(R2)
− C4∥u∥2pH1(R2)

.

Since α > 0 and p > 1, (i) follows choosing ρ =

(
ξ(2+α)

8

) 1
2

with ξ sufficiently small.

(ii). Fixing u0 ∈ H1(R2) with u+0 ̸≡ 0, we set

A(t) = ψ

(
tu0

∥u0∥H1

)
> 0 ∀t > 0,

where
ψ(u) =

1

2

∫
R2

(Iα ∗ F (u))F (u)dx.

Now, (f3) implies
A′(t)

A(t)
≥ θ

t
, ∀t > 0.

Then, integrating over [1, s∥u0∥H1 ] with s > 1
∥u0∥H1

, we find

ψ(su0) ≥ ψ

(
u0

∥u0∥H1

)
∥u0∥θH1s

θ.

Therefore
S(su0) ≤ C1s

2 − C2s
θ for s >

1

∥u0∥H1

,

and (ii) holds for e = su0 with s large enough.

By the mountain pass theorem without (PS) condition from [42], there is a (PS)-c
sequence {un} ⊂ H1(R2), where the mountain pass level c is defined by

δ0 ≤ c := inf
γ∈Γ

max
t∈[0,1]

S(γ(t))
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with
Γ := {γ ∈ C([0, 1];H1(R2)) : γ(0) = 0,S(γ(1)) = e < 0}.

The next lemma is crucial because it establishes an important estimate involving the
level c.

Lemma 3.4.3. The mountain pass level c satisfies c ∈ [δ0,
α2(θ−2)
8θ(2+α)). Moreover, the (PS)-c

sequence is bounded in H1(R2) and its weak limit u satisfies S ′(u) = 0 in H−1(R2).

Proof. First, note that in the proof of (i) we can choose ρ > 0 sufficiently small such that
δ0 <

α2(θ−2)
8θ(2+α) . From (f3),

c = lim sup
n→+∞

(
S(un)−

1

θ
S ′(un)[un]

)
≥

(
1

2
− 1

θ

)
lim sup
n→+∞

∥un∥2H1(R2)

which means
lim sup
n→+∞

∥un∥2H1(R2) ≤
2θ

θ − 2
c. (3.4.1)

Let u ∈ H1(R2) such that u+ ̸≡ 0 and t > 0. By (f4),

S(tu) ≤ t2

2
∥u∥2H1(R2) −

C2
p

2
t2p

∫
R2

(Iα ∗ up)updx < 0 (3.4.2)

for some tu ≫ 1. Now, it is well-known that exists a positive radial function up ∈ H1(R2)
such that Sp is achieved by up. By (f4), it easy to see that

c = inf
γ∈Γ

max
t∈[0,1]

S(γ(t)) ≤ inf
u∈H1(R2),u+ ̸≡0

max
t∈[0,1]

S(ttuu) ≤ inf
u∈H1(R2),u+ ̸≡0

max
t≥0

S(tu) ≤

≤ max
t≥0

S(tup) ≤ max
t≥0

(
t2

2
∥up∥2H1(R2) −

C2
p

2
t2p

∫
R2

(Iα ∗ upp)uppdx
)

=

=
(p− 1)S

2p
p−1
p

2p
p

p−1C
2

p−1
p

<
α2(θ − 2)

8θ(2 + α)
.

Consequently, from (3.4.1),

lim sup
n→+∞

∥un∥2H1(R2) <
α2

4(2 + α)
.

So without loss of generality, we may assume that

∥un∥2H1(R2) ≤ m ∀n ∈ N,

for some m ∈ (0, α2

4(2+α)). Furthermore, we claim that

∥Iα ∗ F (un)∥L∞(R2) ≤ C ∀n ∈ N. (3.4.3)
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In fact, observe that for any 4
2+α ≤ p ≤ 4

α , in view of Sobolev embedding and Holder’s
inequality,∫

R2

|F (un)|pdx ≤ C1

(∫
R2

|un|
p(2+α)

2 dx+

∫
R2

|un|p[e4πu
2
n − 1]pdx

)
≤

≤ C2∥un∥
p(α+2)

2

H1(R2)
+ C1

(∫
R2

|un|
p(α+2)

2 dx

) 2
2+α

(∫
R2

[e4πu
2
n − 1]

p(2+α)
α dx

) α
2+α

≤

≤ C3 + C4

(∫
R2

[
e

p(2+α)m
α

4π
u2n

∥un∥2
H1 − 1

]
dx

) α
2+α

≤ C5 ∀n ∈ N

by Lemma 3.4.1 and definition of m. Since 4
2+α < 2

α < 4
α , Proposition A.0.9 and the

above estimate imply (3.4.3).
Now, since {un} is bounded in H1(R2), let us consider its weak limit u ∈ H1(R2).

We are going to prove that S ′(u) = 0 in H−1(R2). Indeed, we will prove that for any
ϕ ∈ C∞

0 (R2), as n→ +∞∫
R2

(Iα ∗ F (un)f(un)ϕdx→
∫
R2

(Iα ∗ F ((u))f(u)ϕdx.

First, observe that as in previous inequality, it is easy to show that {f(un)}n is bounded
in L

4
α (R2). So, for any ϕ ∈ C∞

0 (R2),∣∣∣∣ ∫
R2

(
(Iα ∗ F (un))f(un)− (Iα ∗ F (u))f(u)

)
ϕdx

∣∣∣∣ ≤

≤
∣∣∣∣ ∫

R2

(Iα ∗ F (un))(f(un)− f(u))ϕdx

∣∣∣∣+ ∣∣∣∣ ∫
R2

(Iα ∗ [F (un)− F (u)])f(u)ϕdx

∣∣∣∣. (3.4.4)

For the above first term, we recall that Iα ∗ F (un) is bounded in L∞(R2). Then,∣∣∣∣ ∫
R2

(
(Iα ∗ F (un))f(un)− (Iα ∗ F (u))f(u)

)
ϕdx

∣∣∣∣ ≤ C

∣∣∣∣ ∫
R2

(f(un)− f(u))ϕdx

∣∣∣∣.
Since un → u a.e. in R2, the continuity of f implies f(un) → f(u) a.e. in R2. This fact,
combined with the boundedness of f(un) in L

4
α (R2), leads to

f(un)⇀ f(u) in L
4
α (R2),

from where it follows that ∫
R2

(f(un)− f(u))ϕdx→ 0
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as n→ +∞.
For the second term of (3.4.4), notice that by Fubini-Tonelli’s theorem∣∣∣∣ ∫

R2

(Iα ∗ [F (un)− F (u)])f(u)ϕdx

∣∣∣∣ = ∣∣∣∣ ∫
R2

(F (un)− F (u))(Iα ∗ (f(u)ϕ))dx
∣∣∣∣.

Since un → u a.e. in R2, the continuity of F implies F (un) → F (u) a.e. in R2. Using
the boundedness of F (un) in L

4
2+α (R2) leads to

F (un)⇀ F (u) in L
4

2+α (R2).

As, by Holder’s inequality,
Iα ∗ (f(u)ϕ) ∈ L

4
2−α (R2),

we get ∣∣∣∣ ∫
R2

(Iα ∗ [F (un)− F (u)])f(u)ϕdx

∣∣∣∣ → 0

for any ϕ ∈ C∞
0 (R2). So the lemma is proved.

Proof. (of Theorem 3.4.1 ) Let {un}n ⊂ H1(R2) be the (PS)-c sequence and u its weak
limit. We are left to prove that u ̸≡ 0 and it is actually a ground state solution to (*).

Since {un} is bounded in H1(R2), we have either {un} is vanishing, i.e.,

lim inf
n→+∞

sup
y∈R2

∫
B1(y)

u2ndx = 0,

or non-vanishing, i.e., there exists a sequence {yn} ⊂ R2 such that

lim inf
n→+∞

∫
B1(yn)

u2ndx > 0.

If {un} is vanishing, then, by Lions’ result [21, lemma I.1], we have that

un → 0 in Ls(R2), 2 < s < +∞. (3.4.5)

Using inequality (3.1.3), Hardy-Littlewood-Sobolev inequality and (f3), we get∣∣∣∣ ∫
R2

(Iα ∗ F (un))f(un)undx
∣∣∣∣ ≤ C∥F (un)∥

L
4

2+α (R2)
∥f(un)un∥

L
4

2+α (R2)
≤

≤ C ′∥f(un)un∥2
L

4
2+α (R2)

.

For any ϵ > 0, there exists C = C(ϵ) > 0 such that

|f(s)| ≤ ϵ|s|
α
2 + C(ϵ)(e4πs

2 − 1) ∀s ∈ R,
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from which we derive, using Minkowski’s inequality,

∥f(un)un∥
L

4
2+α (R2)

≤ ϵ∥un∥
2+α
2

L2(R2)
+ C(ϵ)

(∫
R2

|un|
4

2+α [e4πu
2
n − 1]

4
2+αdx

) 2+α
4

.

Now, from Holder’s inequality and for some p > 1 to be chosen later, we have∫
R2

|un|
4

2+α [e4πu
2
n−1]

4
2+αdx ≤

(∫
R2

|un|2pdx
) 2

(2+α)p
(∫

R2

[
e4πu

2
n−1

] 4p
(2+α)p−2

dx

) (2+α)p−2
(2+α)p

≤
(∫

R2

|un|2pdx
) 2

(2+α)p
(∫

R2

[
e

4pm
(2+α)p−2

4π
u2n

∥un∥2
H1 −1

]
dx

) (2+α)p−2
(2+α)p

≤ C1

(∫
R2

|un|2pdx
) 2

(2+α)p

by Lemma 3.4.1 if we choose p > 2+α
1+α > 1. Then,∣∣∣∣ ∫

R2

(Iα ∗ F (un))f(un)undx
∣∣∣∣ ≤ ϵ∥un∥2+α

L2(R2)
+ C2(ϵ)

(∫
R2

|un|2pdx
) 1

p

≤

≤ C3ϵ+ C2(ϵ)

(∫
R2

|un|2pdx
) 1

p

.

Since p > 1, (3.4.5) and arbitrariness of ϵ > 0 imply∫
R2

(Iα ∗ F (un))f(un)undx→ 0,

from which we derive
un → 0 in H1(R2),

since S ′(un)[un] → 0 as n→ +∞. Recalling that S is a continuous functional, we have

S(un) → 0,

from where it follows that c = 0, which is a contradiction. Thereby, vanishing does not
hold.

From now on, we set vn := un(· − yn). Therefore, ∥vn∥H1 = ∥un∥H1 for all n and

lim inf
n→+∞

∫
B1

|vn|2dx > 0. (3.4.6)

Since S and S ′ are both invariant by translations,

S(vn) → c and S ′(vn) → 0 in H−1(R2).

Since {vn} is also bounded in H1(R2), we may assume vn ⇀ v in H1(R2) and vn → v in
L2
loc(R2) by Rellich’s theorem. From (3.4.6) we get v ̸≡ 0 and by the same arguments in

Lemma 3.4.3 we can assume that S ′(v) = 0 in H−1(R2).
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Finally, let N be the Nehari manifold by

N := {u ∈ H1(R2) \ {0} : S ′(u)[u] = 0}.

From [30, Proposition 3.11], the mountain pass level can be characterized by

c = inf
u∈H1(R2)\{0}

max
t≥0

S(tu) = inf
u∈N

S(u) ≤ S(v). (3.4.7)

On the other hand, by weak lower-semicontinuity of H1-norm, Fatou’s lemma and (f3),
we get

c = lim inf
n→+∞

(
(
1

2
−1

θ
)∥vn∥2H1(R2)−

1

2

∫
R2

(Iα∗F (vn))F (vn)dx+
1

θ

∫
R2

(Iα∗F (vn))f(vn)vndx
)

≥

≥ S(v)− 1

θ
S ′(u)[u] = S(v),

since S ′(v) = 0. So, last inequality combined with (3.4.7) give S(v) = c, showing that v
is a ground state solution to (*).

3.5 Existence of infinitely many pairs of radial solutions

Case N ≥ 3

In this section we will discuss the existence of infinitely many radial solutions to problem
(*), assuming the nonlinearity belongs to a particular class of subcritical functions.
In Section 2, we proved that the equation

−∆u+ u = f(u), u ∈ H1(RN )

has a sequence of radial solutions {uk}k with the energies going to infinity as k → +∞
when N ≥ 2. On this way, we are interested on the existence of radial solutions to
Choquard equation (*) for N ≥ 3 assuming the following conditions:

(f1) f ∈ C(R;R) and there exist C > 0 and N+α
N < q1 ≤ q2 <

N+α
N−2 such that

|f(s)| ≤ C(|s|q1−1 + |s|q2−1), ∀s ∈ R.

(f2) lim|s|→+∞
F (s)
|s| = +∞, where F (s) =

∫ t
0 f(t)dt ∀s ∈ R.

(f3) f is odd.

Now we state the main result.

Theorem 3.5.1. Let (f1)−(f3) hold and N ≥ 3. Then, problem (*) admits an unbounded
sequence in H1(RN ) of radial solutions {±uk}k∈N such that S(uk) = S(−uk) → +∞ as
k → +∞.
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First, let explain why it is possible to seek solutions on the space H1
r (RN ).

Let us consider the orthonormal group of dimension N ≥ 2

G := O(N),

and its action on H1(RN ) defined as

gu(x) := u(g−1x), for every g ∈ G and x ∈ RN .

So
Fix(G) := {u ∈ H1(RN ) : gu = u,∀g ∈ G}

consists actually of the space H1
r (RN ).

To prove our result, we need the principle of symmetric criticality theorem.

Lemma 3.5.1. ([42], theorem 1.28). Assume that the action of a topological group G on
a Hilbert space X is isometric. If S ∈ C1(X,R) is invariant and if u is a critical point
of S restricted to Fix(G), then u is a critical point of S.

From the above lemma, it suffices to look for critical points of S on H1(RN ).
To prove Theorem 3.5.1, we need the following fountain theorem [42, theorem 3.6].

Theorem 3.5.2. Let (E, ∥·∥) be a Hilbert space with {ej}j∈N an orthonormal space, and
set Ek := span(e1, ..., ek) for any fixed k ∈ N. Consider an even C1-functional ϕ : E → R
which satisfies (PS) condition. If, for every k ∈ N, there exists Rk > rk > 0 such that

(i) maxu∈Ek,∥u∥=Rk
ϕ(u) ≤ 0;

(ii) infu∈E⊥
k−1,∥u∥=rk

ϕ(u) → +∞ as k → +∞.

Then ϕ possesses an unbounded sequence of critical values ck characterized as

ck = inf
h∈Γk

sup
u∈Bk

ϕ(h(u)),

where Bk := {u ∈ Ek : ∥u∥ ≤ Rk} with Rk large enough so that (i) holds, and

Γk := {h : Bk → E : h is odd, h|∂BRk
= id}.

Now, we will give some important lemmas.

Lemma 3.5.2. There exist ρ, ξ > 0 such that S|∂Bρ
≥ ξ.

Proof. By (f1), Hardy-Littlewood-Sobolev inequality and Sobolev embedding, we have
for any u ∈ H1(RN )

S(u) ≥ 1

2
∥u∥2H1 − C1(∥u∥2q1Lr0q1 + ∥u∥2q2Lr0q2 ) ≥

1

2
∥u∥2H1 − C2(∥u∥2q1H1 + ∥u∥2q2

H1 ).

Since q2 ≥ q1 > 1 we can choose constants ρ, α > 0 such that S|∂Bρ
≥ α.
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Lemma 3.5.3. For each finite dimensional space Ẽ ⊂ H1
r (RN ), there exists R = R(Ẽ) >

0 such that S|Ẽ\BR
≤ 0.

Proof. We argue by contradiction. Supppose that, for some finite dimensional subspace
Ẽ ⊂ H1

r (RN ), there exists {vn}n ⊂ Ẽ satisfying ∥vn∥H1(RN ) → +∞ and S(vn) > 0 for
any n ∈ N. Set wn := vn

∥vn∥H1
, we may assume wn ⇀ w in H1(RN ), wn → w in Ls(RN )

for 2 < s < 2N
N−2 and wn → w a.e. in RN . If w ̸≡ 0, there exists a Lebesgue-measurable

set Λ ⊂ RN with |Λ| > 0, such that |vn(x)| → +∞ a.e. x ∈ Λ. Then, by (f2) and Fatou’s
lemma

0 <
S(vn)
∥vn∥2H1

≤ 1

2
−C

2

∫
Λ

(∫
Λ

1

|x− y|N−α

F (vn(y))

|vn(y)|
|wn(y)|dy

)
F (vn(x))

|vn(x)|
|wn(x)|dx→ −∞

as n → +∞. This is a contradiction. So w ≡ 0 and wn → 0 in Ls for 2 < s <
2N
N−2 . Since all norms are equivalent on finite dimensional spaces, we have ∥wn∥H1(RN ) ≤
C∥wn∥Ls(RN ) → 0 which is an absurd since ∥wn∥H1 = 1 for any n.

Lemma 3.5.4. S satisfies the (PS)-ck for every k ∈ N.

Proof. Set r0 := 2N
N+α . First, observe that by Lemma 3.5.2, ck > 0 for any k. Assume

that {un}n ⊂ H1
r (RN ) satisfies S(un) → ck and S ′(un) → 0 in H−1(RN ) as n → +∞.

Arguing as in Propositions 3.1.3 and 3.1.4 using [42, theorem 2.9] (involving Lemma
3.5.3), it follows that {un}n is bounded in H1(RN ). So we may suppose un ⇀ u in
H1

r (RN ), un → u in Lr0q1(RN ) and Lr0q2(RN ) by Corollary A.0.4, and un → u a.e. in
RN . By Hardy-Littlewood-Sobolev inequality, inequality (3.1.3), Holder’s inequality and
(f1) we deduce ∣∣∣∣ ∫

RN

(Iα ∗ F (un))f(un)(un − u)dx

∣∣∣∣ ≤
≤ C(∥un∥q1Lr0q1 + ∥un∥q2Lr0q2 )(∥un∥

q1−1
Lr0q1∥un − u∥Lr0q1 + ∥un∥q2−1

Lr0q2∥un − u∥Lr0q2 ) = o(1)

as n→ +∞. Similarly, ∣∣∣∣ ∫
RN

(Iα ∗ F (u))f(u)(un − u)dx

∣∣∣∣ = o(1)

as n→ +∞. Then,

o(1) = (S ′(un)− S ′(u))[un − u] = ∥un − u∥2H1(RN ) + o(1)

as n→ +∞. So un → u in H1(RN ).

Lemma 3.5.5. Let E = H1
r (RN ). Then there exists rk > 0 such that

inf
u∈E⊥

k−1,∥u∥H1=rk

S(u) → +∞ as k → +∞.
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Proof. Set r0 = 2N
N+α . We previously proved that for any u ∈ H1(RN ),

S(u) ≥ 1

2
∥u∥2H1 − C(∥u∥2q1Lr0q1 + ∥u∥2q2Lr0q2 )

for some constant C > 0. Let define us, for any k ∈ N,

αk := sup
u∈E⊥

k−1,∥u∥H1=1

∥u∥Lr0q1 , βk := sup
u∈E⊥

k−1,∥u∥H1=1

∥u∥Lr0q2 .

So, for u ∈ E⊥
k−1, we have, by homogeneity of the norm, for any k ∈ N,

S(u) ≥ 1

2
∥u∥2H1 − Cα2q1

k ∥u∥2q1
H1 − Cβ2q2k ∥u∥2q2

H1 .

Using the fact that q2 ≥ q1 > 1, it holds

∥u∥2q1
H1 ≤ ∥u∥2H1 + ∥u∥2q2

H1 ,

so that
S(u) ≥ ∥u∥2H1(

1

2
− Cα2q1

k )− C∥u∥2q2
H1 (α

2q1
k + β2q2k ). (3.5.1)

Now, by Lemma 3.5.6, αk, βk → 0 as k → +∞. So, for k ≫ 1, relation (3.5.1) becomes

S(u) ≥ 1

4
∥u∥2H1 − C∥u∥2q2

H1 (α
2q1
k + β2q2k ).

Choosing rk :=

(
4q2C(α

2q1
k + β2q2k )

) 1
2(1−q2)

→ +∞ as k → +∞, we obtain for u ∈ E⊥
k−1

S(u) ≥ 1

4

(
1− 1

q2

)
r2k → +∞ as k → +∞.

Lemma 3.5.6. Let E = H1
r (RN ) with 2 < p < 2∗ (p = 2 if N = 2). Then we have that

dk := sup
u∈E⊥

k−1,∥u∥H1=1

∥u∥Lp → 0 as k → +∞.

Proof. Let N ≥ 3. It is clear that 0 < dk+1 ≤ dk for every k ∈ N, so that dk → d ≥ 0
as k → +∞. By definition of sup, for any k ∈ N, there exists uk ∈ E⊥

k−1 such that
∥uk∥H1 = 1 and ∥uk∥Lp > dk

2 . By definition of E⊥
k−1 and weak-convergence, uk ⇀ 0 in

H1(RN ). By Corollary A.0.4, uk → 0 in Lp(RN ) for those p. Thus we have proved that
d = 0.
The case N = 2 is equivalent to the case N ≥ 3, in view of Corollary A.0.4 on the
plane.

Proof. (of Theorem 3.5.1) Using Theorem 3.5.2 and (f3) with {ei}n∈N orthonormal basis
of E = H1

r (RN ), ϕ = S and choosing Rk > rk large enough characterized by Lemma
3.5.3, we deduce that S possesses a sequence of radial critical points {±uk}k ⊂ H1(RN )
such that ck = S(uk) → +∞, and so unbounded in H1(RN ).
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Case N = 2

We now want to extend Theorem 3.5.1 giving a new result on the plane. As in previous
subsection, we seek infinitely many radial solutions to problem (*) assuming the nonlin-
earity has subcritical growth conditions in the same spirit of Section 3.2, but a little bit
different. Consider f ∈ C(R;R) satisfying

(f1) ∀θ > 0,∃C = Cθ > 0 such that |f(s)| ≤ Cθ min{1, |s|q}eθs2 ∀s ∈ R, for some
q > α

2 .

(f2) lim|s|→+∞
F (s)
|s| = +∞, where F (s) =

∫ t
0 f(t)dt ∀s ∈ R.

(f3) f is odd.

Our main result is the following

Theorem 3.5.3. Take f ∈ C(R;R) and let (f1)− (f3) hold on the plane. Then, problem
(*) admits an unbounded sequence in H1(R2) of radial solutions {±uk}k∈N such that
S(uk) = S(−uk) → +∞ as k → +∞.

With the same notations above, thanks to Lemma 3.5.1, we use the fountain theorem
to get infinitely many radial solution. So we need to verify the conditions of Theorem
3.5.2.

Lemma 3.5.7. There exist ρ, ξ > 0 such that S|∂Bρ
≥ ξ.

Proof. Condition (f1) implies that for any θ > 0 and p > 1, there exists C = Cp,θ > 0
such that

|F (s)| ≤ Cp,θ(|s|
2+α
2 + |s|p[eθs2 − 1]) ∀s ∈ R.

Now, arguing as in (i) of Lemma 3.4.2, we get for any fixed u ∈ H1(R2)∫
R2

(Iα ∗ F (u))F (u)dx ≤ C∥u∥2+α
H1(R2)

+ C1∥u∥2pH1(R2)

and so
S(u) ≥ 1

2
∥u∥2H1(R2) − C∥u∥2+α

H1(R2)
− C1∥u∥2pH1(R2)

.

Since α > 0 and p > 1, there exist constants ξ, ρ > 0 such that S|∂Bρ
≥ ξ.

Lemma 3.5.8. S satisfies the (PS)-ck for any k ∈ N.

Proof. Assume that {un}n ⊂ H1
r (R2) satisfies S(un) → ck and S ′(un) → 0 in H−1(R2)

as n → +∞. As in Lemma 3.5.4, we get that {un}n is bounded in H1(R2) and we may
suppose un ⇀ u in H1

r (R2), un → u in Ls(R2) for any s > 2 by Corollary A.0.4, and
un → u a.e. in R2.

By Hardy-Littlewood-Sobolev inequality and inequality (3.1.3), we have∣∣∣∣ ∫
R2

(Iα ∗ F (un))f(un)(un − u)dx

∣∣∣∣ ≤ C∥F (un)∥
L

4
2+α (R2)

∥f(un)(un − u)∥2
L

4
2+α (R2)

.
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It is easy to check (as in Section 3.2) that

∥F (un)∥
L

4
2+α (R2)

≤ C ′, ∀n ∈ N.

Now, by (f1), Holder’s inequality and Proposition 3.2.1 we get∫
R2

|f(un)|
4

2+α |un − u|
4

2+αdx ≤ Cθ

∫
R2

min{1, |un|
4q

2+α }eθu2
n |un − u|

4
2+αdx ≤

≤ Cθ

(∫
R2

min{1, u2n}e
θ(2+α)

2q
u2
ndx

) 2q
2+α

(∫
R2

|un − u|
4

2+α−2q dx

) 2+α−2q
4

≤

≤ C ′
θ

(∫
R2

|un − u|
4

2+α−2q dx

) 2+α−2q
4

→ 0

as n → +∞, since α
2 < q < 1 + α

2 and Corollary A.0.4 (it is not restrictive to assume
q < 1 + α

2 ). Arguing as in Lemma 3.5.2, we conclude the proof.

Lemma 3.5.9. Let E = H1
r (R2). Then there exists rk > 0 such that

inf
u∈E⊥

k−1,∥u∥H1=rk

S(u) → +∞ as k → +∞.

Proof. Condition (f1) implies that for any θ > 0 and p > 1, there exists C = Cp,θ > 0
such that

|F (s)| ≤ Cp,θ(|s|q + |s|p(eθs2 − 1)) ∀s ∈ R,

for some q > 1 + α
2 . So for any u ∈ H1(R2),

∥F (u)∥2
L

4
2+α

≤ C(∥u∥2q
L

4q
2+α

+ ∥u∥2p
L

8p
2+α

).

Then, by Hardy-Littlewood-Sobolev inequality and inequality (3.1.3), we have

S(u) ≥ 1

2
∥u∥2H1 − C∥u∥2q

L
4q

2+α

− C∥u∥2p
L

8p
2+α

.

Choosing p > q > 1, arguing as in Lemma 3.5.5, we conclude the proof.

Proof. (of Theorem 3.5.3) We use Theorem 3.5.2 since Lemmas 3.5.6, 3.5.7, 3.5.9 and
Lemma 3.5.3 (valid also for N = 2) hold. So we obtain a sequence of radial solutions
{±uk}k with their energy unbounded as in the proof of Theorem 3.5.1, and so unbounded
in H1(R2).
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Appendix A

Technical results and useful tools

In this chapter we will prove some technical results used in the thesis.

Theorem A.0.1. Let Ω be an open bounded set with Lipschitz boundary in RN with
N ≥ 3. Let g ∈ C(R) satisfying g(0) = 0 and

lim sup
s→0

|g(s)|
|s|

< +∞, lim sup
|s|→+∞

|g(s)|
|s|2∗−1

< +∞. (A.0.1)

Let denote G(u) =
∫ u
0 g(s)ds. Then, the functional V (u) =

∫
ΩG(u(x))dx is well-defined

and of class C1 on H1(Ω). Moreover:

V ′(u)[v] =

∫
Ω
g(u(x))vdx, ∀u, v ∈ H1(Ω).

Proof. The fact that G(u) ∈ L1(Ω) follows from (A.0.1) and Sobolev embedding theorem
if u ∈ H1(Ω). Now, it suffices to show:

(i)
∣∣∣∣1t

(
V (u+ tv)− V (u)− t

∫
Ω g(u)vdx

)∣∣∣∣ → 0 as t→ 0, ∀u, v ∈ H1(Ω);

(ii) If un → u in H1(Ω), then: sup∥v∥H1(Ω)≤1

∣∣∣∣ ∫Ω(g(un)−g(u))vdx∣∣∣∣ → 0 as n→ +∞.

To prove the first statement, we have that∣∣∣∣1t
(
V (u+ tv)− V (u)− t

∫
Ω
g(u)vdx

)∣∣∣∣ ≤ ∫
Ω

∣∣∣∣(G(u+ tv)−G(u)− tg(u)v)
1

t

∣∣∣∣dx.
Now, by the Mean Value Theorem:∣∣∣∣(G(u+ tv)−G(u)− tg(u)v)

1

t

∣∣∣∣ ≤ (
sup

r∈[0,1]
|g(u+ rv)|+ |g(u)|

)
|v| ≤

≤ (C + C|u|2∗−1 + C|v|2∗−1)|v| =: h,
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using that |g(s)| ≤ C + C|s|2∗−1 for s ∈ R, for some constant C > 0. By Holder’s
inequality and Sobolev embedding theorem, one has h ∈ L1(Ω). Next, by continuity of
g, we have

(G(u+ tv)−G(u)− tg(u)v)
1

t
→ 0 a.e. x ∈ Ω, as t→ 0.

The conclusion now follows applying Lebesgue’s dominated convergence theorem.
On the other hand, to prove the second statement, we also know that un → u in

L2∗(Ω) by the Sobolev embedding theorem. Hence, by a standard result in integration
theory, there exists 0 ≤ ū ∈ L2∗(Ω) such that (up to a subsequence)

|u|, |un| ≤ ū a.e. in Ω, ∀n ∈ N.

Therefore we have
|g(un)− g(u)|

2N
N+2 ≤ C(1 + ū2

∗
).

Due to the boundedness of Ω, by continuity of g and dominated convergence theorem,
we have g(un) → g(u) in L

2N
N+2 (Ω) . Finally, by Holder’s inequality:

sup
∥v∥H1(Ω)≤1

∣∣∣∣ ∫
Ω
(g(un)−g(u))vdx

∣∣∣∣ ≤ (∫
Ω
|g(un)−g(u)|

2N
N+2dx

)N+2
2N

sup
∥v∥H1(Ω)≤1

(∫
Ω
|v|2∗dx

) 1
2∗

.

Theorem A.0.2. Let N ≥ 3 and let g : R → R be a continuous function satisfying

g(0) = 0, lim sup
s→0

|g(s)|
|s|

< +∞, lim sup
|s|→+∞

|g(s)|
|s|2∗−1

< +∞. (A.0.2)

Let denote G(u) =
∫ u
0 g(s)ds. Then, the functional V (u) =

∫
RN G(u(x))dx is well-defined

and of class C1 on H1(RN ). Moreover:

V ′(u)[v] =

∫
RN

g(u(x))vdx, ∀u, v ∈ H1(RN ).

Proof. The fact that G(u) ∈ L1(RN ) follows from (A.0.2) and Sobolev embedding
theorem if u ∈ H1(RN ). Now, we follow the proof of previous theorem. For any
u, v ∈ H1(RN ), one has∣∣∣∣1t

(
V (u+ tv)− V (u)− t

∫
RN

g(u)vdx

)∣∣∣∣ → 0 as t→ 0, ∀u, v ∈ H1(RN ).

Indeed, using now the inequality

|g(s)| ≤ C|s|+ C|s|2∗−1 ∀s ∈ R,
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for some positive constant C, we have (with the same notation above)

h = (C|u|+ C|v|+ C|u|2∗ + C|v|2∗)|v|,

which is in L1(RN ) due to Holder’s inequality and Sobolev embedding theorem.
In order to prove the second statement (as above), by previous theorem, it suffices

to show that ∀ϵ > 0, there exists R0 > 0 such that

sup
∥v∥H1≤1

∣∣∣∣ ∫
|x|≥R0

(g(un)− g(u))vdx

∣∣∣∣ < ϵ.

Now, we know that un → u in L2∗(RN ) by Sobolev embedding theorem because
un → u in H1(RN ). Hence, as in the proof of Theorem A.0.1, there exists (up to a
subsequence) ū ∈ L2∗(RN ), ũ ∈ L2(RN ) such that for all n ∈ N:

|u|, |un| ≤ ū a.e. in RN , |u|, |un| ≤ ũ a.e. in RN .

Then, for any R > 0, using the inequality |g(s)| ≤ C|s|+C|s|2∗−1, ∀s ∈ R, we have

sup
∥v∥H1≤1

∣∣∣∣ ∫
|x|≥R

(g(un)− g(u))vdx

∣∣∣∣ ≤ C∥ũ∥L2({|x|≥R})

(
sup

∥v∥H1≤1

∥v∥L2({|x|≥R})

)
+

+C∥ū∥L2∗ ({|x|≥R})

(
sup∥v∥H1≤1

∥v∥L2∗ ({|x|≥R})

)
by Holder’s inequality. Hence, again by Sobolev embedding theorem, one has

sup
∥v∥H1≤1

∣∣∣∣ ∫
|x|≥R

(g(un)− g(u))vdx

∣∣∣∣ ≤ C∥ũ∥L2({|x|≥R}) + C∥ū∥L2∗ ({|x|≥R}).

Since ũ ∈ L2(RN ) and ū ∈ L2∗(RN ), we derive the existence of R0 > 0 such that

sup
∥v∥H1≤1

∣∣∣∣ ∫
|x|≥R0

(g(un)− g(u))vdx

∣∣∣∣ < ϵ.

Now, we will give some results about radial functions in Sobolev spaces:

Lemma A.0.1. (Radial Lemma) Let N ≥ 2. If u ∈ Lp(RN ), with 1 ≤ p < +∞, is
a radial decreasing function (i.e. |u(x)| ≤ |u(y)| if |x| ≥ |y|), then u is a.e. equal to a
continuous function for x ̸= 0 such that

|u(x)| ≤ |x|−
N
p

(
N

|SN−1|

) 1
p

∥u∥Lp(RN ), ∀x ̸= 0.

Proof. For all r > 0, setting r = |x| in polar coordinates, we have

∥u∥p
Lp(RN )

≥ |SN−1|
∫ r

0
[u(s)]psN−1ds ≥ |SN−1|[u(r)]p r

N

N
.
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Theorem A.0.3. (Strauss’ Compactness Lemma) For N ≥ 1, let P,Q : R → R be two
continuous functions satisfying

P (s)

Q(s)
→ 0 as |s| → +∞. (A.0.3)

Let {un} be a sequence of measurable functions : RN → R such that

sup
n

∫
RN

|Q(un(x))|dx < +∞ and P (un(x)) → v(x) a.e. in RN , as n→ +∞.

Then, for any bounded Borel set B, one has∫
B
|P (un(x))− v(x)|dx→ 0 as n→ +∞.

If one further assumes that

P (s)

Q(s)
→ 0 as s→ 0 and un(x) → 0 as |x| → +∞ uniformly with respect to n,

(A.0.4)
then P (un) converges to v in L1(RN ) as n→ +∞.

Proof. To prove the first part of the theorem, we need to show that {P (un)}n is uniformly
integrable on B. In fact, uniform integrability on a bounded set B and convergence a.e.
for P (un) implies L1(B)-convergence by Vitali’s convergence theorem.
First of all, from condition (A.0.3) we have

|P (un(x))| ≤ C + C|Q(un(x))| ∀x ∈ RN ,

for some constant C > 0, by continuity of P and Q. Thus P (un) and v (by Fatou’s
lemma) are in L1(B) for all n, because

sup
n

∫
RN

|Q(un(x))|dx < +∞.

Applying again (A.0.3), one has∫
{|P (un(x))|≥K}∩B

|P (un(x))|dx ≤ ϵ(K)

∫
B
|Q(un(x))|dx ≤ Cϵ(K),

where ϵ(K) → 0 as K → +∞. This shows the uniform integrability on B.
Now, take ϵ > 0; condition (A.0.4) implies that exists R0 > 0 such that

|x| ≥ R0 ⇒ |P (un(x))| ≤ ϵ|Q(un(x))|, ∀n.

Therefore, by Fatou’s lemma, v ∈ L1(RN ), and∫
{|x|≥R0}

|v(x)|dx ≤ Cϵ.
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Now, from the first part of the theorem, there exists n0 ≫ 1 such that for any n ≥ n0:∫
{|x|<R0}

|P (un(x))− v(x)|dx ≤ ϵ.

To sum up, we have for n ≥ n0,∫
RN

|P (un(x))− v(x)|dx ≤ 2ϵC + ϵ.

Since ϵ > 0 is arbitrary, the proof is finished.

Corollary A.0.4. If N ≥ 3, the embedding H1
r (RN ) ↪→ Lp(RN ) is compact for 2 < p <

2N
N−2 . If N = 2, the embedding H1

r (R2) ↪→ Lp(R2) is compact for 2 < p <∞.

Proof. let us consider N ≥ 3. The embedding H1(RN ) ↪→ Lp(RN ) is continuous from
Sobolev embedding theorem for those p. Now let {un} ⊂ H1

r (RN ) be a sequence of radial
functions such that ∥un∥H1 is bounded. From Lemma A.0.1 we deduce that |un(x)| → 0
as |x| → +∞ uniformly with respect to n. Hence, we can extract a subsequence (always
denoted by un) which converges a.e. in RN and weakly in H1(RN ) to a radial function u.
More precisely, by Rellich-Kondrachov’s theorem we find a subsequence that converges
a.e on Bk for each k ≥ 1. Now, a standard diagonal argument implies the existence of a
subsequence convergent a.e. in RN to u.

Therefore, applying Theorem A.0.3 with the choice P (s) = |s|p and Q(s) = s2+ |s|2∗ ,
we have that un converges strongly in Lp(RN ) for 2 < p < 2N

N−2 .
Finally, when N = 2, it is possible to repeat the same arguments above using Theorem
A.0.3 with Q(s) = s2 + eαs

2 − 1 and an appropriate α > 0 given by classical Moser-
Trudinger inequality.

Lemma A.0.2. For N ≥ 2, every radial function u ∈ H1(RN ) is a.e. equal to a
continuous function for x ̸= 0 such that

|u(x)| ≤ CN |x|
1−N

2 ∥u∥H1(RN ) ∀|x| ≥ αN ,

where CN and αN are positive constant depending only on the dimension N .

Proof. As C∞
0 (RN ) is dense in H1(RN ), it suffices to consider radial u ∈ C∞

0 (RN ). Let
m = N−1

2 and u = u(r) with r = |x| > 0; by a simple calculation we have

(r2mu2)r = 2(rmu)rr
mu ≤ [(rmu)r]

2 + (rmu)2 = rN−1(u2r + u2) +m(rN−2u2)r−

− (N−1)(N−3)
4 rN−3u2 ≤ rN−1(u2r + u2) +m(rN−2u2)r.

Now, if N ≥ 3, integrating over (0, r) with r such that Br ⊃ supp(u), we obtain

rN−1u2(r) ≤
∫ r

0
(u2ρ + u2)ρN−1dρ+mrN−2u2(r).
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Using polar coordinates, we have(
1− m

r

)
rN−1u2(r) ≤ CN∥u∥2H1(RN ).

Choosing r > m fixed, we have concluded the proof.

In the case N = 2, the differential inequality becomes

−(ru2)r ≤ r(u2r + u2) +
1

2
(u2)r +

1

4r
u2.

Integrating over (r,+∞) with r > 0 such that the integrals below make sense, we have(
r +

1

2

)
u2(r) ≤

∫ ∞

r
(u2ρ + u2)ρdρ+

∫ ∞

r

u2

4ρ
dρ ≤

∫ ∞

0
(u2ρ + u2)ρdρ+

∫ ∞

0

1

4
u2ρdρ,

if r ≥ 1. Thus,

2π

(
r +

1

2

)
u2(r) ≤ 5

4
∥u∥2H1(RN ).

The proof is completed as before.

Lemma A.0.3. For N ≥ 3, every radial function u in D1,2(RN ) is a.e. equal to a
continuous function for x ̸= 0, such that

|u(x)| ≤ CN |x|
2−N

2 ∥u∥D1,2(RN ) ∀x ̸= 0,

where CN > 0 only depends on N .

Proof. As above by density, it suffices to consider u ∈ C∞
0 (RN ) radial. Now, setting

r = ey for y ∈ R, consider
v(y) = u(r)e

1
2
(N−2)y.

Using polar coordinates, by a simple change of variables, one readily checks that

∥∇u∥2L2(RN ) = |SN−1|
(∫ +∞

−∞
(v′(y))2dy +

∫ +∞

−∞

(N − 2)2

4
v2(y)dy

)
,

using the fact that also v ∈ C∞
0 (RN ). Now, for any g ∈ H1(R) one has

g2(y) ≤ 2∥g∥L2(R)∥g′∥L2(R) ∀y ∈ R.

Indeed, since g ∈ H1(R), we have that g is absolute continuous on R and vanishes to 0
at infinity. So, by fundamental theorem of calculus and Holder’s inequality:

g2(y) =

∣∣∣∣ ∫ y

−∞

d

dt
(g2(t))dt

∣∣∣∣ = ∣∣∣∣ ∫ y

−∞
2g(t)g′(t)dt

∣∣∣∣ ≤ 2∥g∥L2(R)∥g′∥L2(R).

Then, in our case we obtain ∣∣∣∣u(r)rN−2
2

∣∣∣∣ ≤ CN∥∇u∥L2(RN )

for some positive constant CN . Finally, by definition of D1,2-norm, we have the desired
inequality.

123



Some results about Schwarz symmetrization: We recall here, without proofs
(see [18]), the basic properties of Schwarz symmetrization.
Let f ∈ L1(RN ); then f∗, the Schwarz symmetrized function of f , is a radial, decreasing
in |x| = r, measurable function such that for any α > 0,

|{f∗ ≥ α}| = |{|f | ≥ α}|.

Furthermore, one easily finds that∫
RN

F (f)dx =

∫
RN

F (f∗)dx

for every continuous function F : R → R such that F (f) is integrable.
An important property of Schwarz symmetrization is the following:

Theorem A.0.5. (Riesz’s inequality) For N ≥ 1, let f, g be in L2(RN ); then∫
RN

f(x)g(x)dx =

∫
RN

f∗(x)g∗(x)dx.

A fundamental fact about Schwarz symmetrization is the following result:

Theorem A.0.6. (Pólya-Szegö inequality) Let u be in D1,2(RN ) if N ≥ 3 (respectively,
in H1(RN ) for any N ≥ 1). Then u∗ belongs to D1,2(RN ) (respectively, to H1(RN ) for
any N), and we have ∫

RN

|∇u∗(x)|2dx ≤
∫
RN

|∇u(x)|2dx.

Now, we will give the proof of Theorem 2.3.1.

Theorem A.0.7. For any k ≥ 1, there exists a constant R = R(k) > 1 and an odd
continuous mapping τ : πk−1 → H1

0 (BR) (recalling that πk−1 = {l = (l1, ..., lk) ∈ Rk :∑k
i=1 |li| = 1}) such that τ(l) is a radial function for all l ∈ πk−1 and

0 /∈ τ(πk−1), (A.0.5)

∃ρ, C > 0 depending on k such that ρ ≤ ∥∇u∥2L2(BR) ≤ C ∀u ∈ τ(πk−1), (A.0.6)∫
BR

G(u)dx ≥ 1 ∀u ∈ τ(πk−1). (A.0.7)

Proof. The proof is divided into three steps:

(i) Choice of R = R(k) > 0;

(ii) Construction of τ ;

(iii) Properties of τ .
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Step 1. In the following, we consider u = u(r) for r ∈ [0, R], r = |x|. Recall that
there exist ξ > 0, given by hypothesis (1.1.3), such that G(ξ) > 0. We now define a
subset in H1(BR) which will be useful later.
For k ≥ 1 and R > 1, we say that u ∈ Nk(R) if u ∈ H1

0 (BR) is radial, continuous and
satisfies the following three properties:

−ξ ≤ u ≤ ξ on [0, R]. (A.0.8)

u = ±ξ on [0, R] except in at most k subintervals J1, ..., Jp (p ≤ k) of [0, R],

each of which having length one, such that u(R) = 0. (A.0.9)

In each of the intervals Jj , 1 ≤ j ≤ p, u is affine with |u′(r)| = 2ξ. (A.0.9)

The choice of R = R(k) > 1 is determined by the following lemma.

Lemma A.0.4. For all k ≥ 1, there exists R = R(k) > 1 such that V (u) ≥ 1 for all
u ∈ Nk(R).

Remark A.0.5. In the preceding statement, and henceforth, we identify T (u) and V (u)
with T (ũ) and V (ũ), respectively (as in Theorem 2.3.1); that is, for u ∈ H1

0 (BR) we set

T (u) =

∫
BR

|∇u|2dx, V (u) =

∫
BR

G(u)dx.

Proof. (of Lemma A.0.4) Take R ≥ k + 1; it is easily seen, using (A.0.8) and (A.0.9),
that for u ∈ Nk(R) one has

V (u) ≥ G(ξ)|BR−k| − Ck|BR −BR−1|,

where 0 < C = max|z|≤ξ |G(z)|. Since |BR −BR−1| ≤ C ′RN−1, we deduce

V (u) ≥ CkR
N − C ′

kR
N−1, u ∈ Nk(R), R ≥ k + 1.

Therefore, there exist an R = R(k) > 1 verifying Lemma A.0.4.

Step 2. Let k ≥ 1 and fix R = R(k) > 1 as in previous lemma. Now, we are going
to construct an odd continuous mapping τ : πk−1 → Nk(r) ⊂ H1

0 (BR).
Let l = (l1, ..., lk) ∈ πk−1; we set

αi = R

i∑
j=1

|lj |, or equivalently, R|li| = αi − αi−1, i ≤ p.

For li ̸= 0 and r ∈ (αi−1, αi), we let ϵl(r) = sign(li). Joining together all adjacent
intervals like (αi−1, αi), (αi, αi+1), ... on which ϵl(r) has the same sign, we obtain a new
subdivision of [0, R] based on endpoints

0 = a0 < a1 < ... < ap = R, with 1 ≤ p ≤ k,
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which is coarser than the subdivision {αi}i.
In this way, ϵl(r) has a given sign for all r ∈ (ai−1, ai). We denote this sign by ϵi,

thus ϵl = ϵl(r) for r ∈ (αi−1, αi). In particular, ϵi = ±1 and ϵi is alternating, that
is ϵi+1 = −ϵi. Let us observe at this point that the subdivision (ai) is unambiguously
determined from l ∈ πk−1.

Let Ii = (ai−1, ai), 1 ≤ i ≤ p. We first define u = τ(l) on Ip, then on Ip−1, and so
on, inductively for all Ii’s.

(i) In Ip. Set u(r) = 2ϵpξ(R− r), for max{ap−1, R− 1
2} ≤ r ≤ R. There are now two

cases:
If ap−1 ≥ R− 1

2 , then u is defined in all of Ip.
If ap−1 ≤ R− 1

2 , then we set u(r) = ϵpξ for ap−1 ≤ r ≤ R− 1
2 .

(ii) In Ip−1. Set
u(r) = u(ap−1) + 2ϵp−1ξ(ap−1 − r),

for all r such that ap−2 ≤ r ≤ ap−1 and |u(r)| < ξ; that is for ap−1 ≥ r ≥ max{ap−2, rp−1},
where

rp−1 = ap−1 −
ξ − ϵp−1u(ap−1)

2ξ
.

Again there are two cases:
If rp−1 ≤ ap−2, then u is defined on all of Ip−1.
If rp−1 > ap−2, then we set u(r) = ϵp−1ξ for ap−2 ≤ r ≤ rp−1 ≤ ap−1.
(iii) Define u by induction on Ij , 1 ≤ j ≤ p− 1. Set

u(r) = u(aj) + ϵj2ξ(aj − r)

for all r ∈ [aj−1, aj ] for which |u(r)| < ξ; that is, for r ≥ max(aj−1, rj), where

rj = aj −
ξ − ϵju(aj)

2ξ
.

If rj ≤ aj−1, u is defined on all of Ij . Otherwise, aj−1 < rj < aj and we let u(r) = ϵjξ
for r in aj−1 ≤ r ≤ rj .

This construction defines unambiguously, for all l ∈ πk−1, a function u; we denote as
u = τ(l). It is immediately checked that τ(l) ∈ Nk(R) for all l ∈ τk−1. Thus we have
constructed a map τ : πk−1 → Nk(R) ⊂ H1

0 (BR).

Step 3. We now show that τ has the properties stated in the theorem. First, one
readily checks that τ : πk−1 → H1

0 (BR) is a continuous mapping. Furthermore τ is odd.
Indeed, it is easily seen that τ(−l) = −τ(l) at each step in the preceding construction.
The subdivisions (ai) associated with l and −l are the same, while the ϵi’s are of opposite
signs for l and −l. By construction, τ(l) is a radial function. Lastly, as (A.0.5) and (A.0.6)
are consequences of the definition and continuity of τ , we get(A.0.7).
Since τ(l) ∈ Nk(R), we have, by the choice of R in Lemma A.0.4,

V (u) ≥ 1 for u ∈ τ(πk−1).

126



Proposition A.0.6. (Hardy-Littlewood-Sobolev inequality) Take N ≥ 2, f ∈
Lp(RN ), g ∈ Lt(RN ) with p > 1, t < ∞ such that 1

p + 1
t + λ

N = 2 and λ ∈ (0, N).
Then, there exists C > 0 such that∫ ∫

RN×RN

f(x)|x− y|−λg(y)dxdy ≤ Cp,λ,N∥f∥Lp(RN )∥g∥Lt(RN ).

In particular, if p = t = 2N
N+α , the best possible constant is given by

Cα := π
N−α

2
Γ(α2 )

Γ(N+α
2 )

[
Γ(N2 )

Γ(N)

]− α
N

.

Proof. The proof of the inequality can be seen on [12, theorem 4.3].

Lemma A.0.7. Let N ≥ 2, α ∈ (0, 2), θ ∈ (0, 2) and H,K defined as in Proposition
3.1.5. If α

N < θ < 2 − α
N , then, for every ϵ > 0, there exists Cϵ,θ ∈ R such that for any

fixed u ∈ H1(RN ) which solves (3.1.6),∫
RN

(Iα ∗ (H|u|θ))K|u|2−θdx ≤ ϵ2
∫
RN

|∇u|2dx+ Cϵ,θ

∫
RN

u2dx.

In order to prove the lemma, we will use several times the following inequality.

Lemma A.0.8. Let N ≥ 2, q, r, s, t ∈ [1,+∞) and λ ∈ [0, 2] such that

1 +
α

N
− 1

s
− 1

t
=
λ

q
+

2− λ

r
.

If θ ∈ (0, 2) satisfies

min{q, r}
(
α

N
− 1

s

)
< θ < max{q, r}

(
1− 1

s

)
,

min{q, r}
(
α

N
− 1

t

)
< 2− θ < max{q, r}

(
1− 1

t

)
,

then for every H ∈ Ls(RN ), K ∈ Lt(RN ) and u ∈ Lq(RN ) ∩ Lr(RN ),∫
RN

(Iα ∗ (H|u|θ))K|u|2−θdx ≤ C∥u∥Ls(RN )∥u∥Lt(RN )∥u∥λLq(RN )∥u∥
2−λ
Lr(RN )

.

Proof. First observe that if s̃ > 1, t̃ > 1 satisfy 1
t̃
+ 1

s̃ = 1 + α
N , the Hardy-Littlewood-

Sobolev inequality implies∫
RN

(Iα ∗ (H|u|θ))K|u|2−θdx ≤ C

(∫
RN

(|H||u|θ)s̃dx
) 1

s̃
(∫

RN

(|K||u|2−θ)t̃dx

) 1
t̃

.
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Let µ ∈ R. Note that if

0 ≤ µ ≤ θ and
1

s̃
:=

µ

q
+
θ − µ

r
+

1

s
< 1, (A.0.10)

then by Holder’s inequality(∫
RN

(|H||u|2−θ)s̃dx

) 1
s̃

≤ ∥H∥Ls(RN )∥u∥
µ
Lq(RN )

∥u∥θ−µ
Lr(RN )

.

Similarly, if

λ− (2− θ) ≤ µ ≤ λ and
1

t̃
:=

λ− µ

q
+

(2− θ)− (λ− µ)

r
+

1

t
< 1, (A.0.11)

then (∫
RN

(|K||u|2−θ)t̃dx

) 1
t̃

≤ ∥K∥Lt(RN )∥u∥
λ−µ
Lq(RN )

∥u∥2−θ−(λ−µ)

Lr(RN )
.

It can be checked that (A.0.10) and (A.0.11) may be satisfied for some µ ∈ R if and only
if the assumptions of the lemma hold. In particular, 1

t̃
+ 1

s̃ = 1
s +

1
t = λ

q + 2−λ
r = 1+ α

N ,
so that we can conclude.

Proof. (of Lemma A.0.7) Fix u ∈ H1(RN ). Let R > 0 and ϕR ∈ C∞
0 (R) be such that

0 ≤ ϕR ≤ 1, ϕR(s) = 1 for |s| ≤ R and ϕR(s) = 0 for |s| ≥ 2R. Set

H∗(u) := ϕR(u)H(u), H∗(u) := H(u)−H∗(u)

and the same thing for K := K∗+K∗. By growth conditions on F , we get that H∗,K∗ ∈
L

2N
α (RN ) and H∗,K∗ ∈ L

2N
α+2 (RN ). Applying previous lemma with q = r = 2N

N−2 ,
s = t = 2N

α+2 and λ = 0, we have since |θ − 1| < N−α
N−2 ,∫

RN

(Iα ∗ (H∗|u|θ))(K∗|u|2−θ)dx ≤ C∥H∗∥
L

2N
α+2 (RN )

∥K∗∥
L

2N
α+2 (RN )

∥u∥2
L

2N
N−2 (RN )

.

Taking now s = t = 2N
α and q = r = λ = 2, we have since |θ − 1| < N−α

N ,∫
RN

(Iα ∗ (H∗|u|θ))(K∗|u|2−θ)dx ≤ C∥H∗∥
L

2N
α (RN )

∥K∗∥
L

2N
α (RN )

∥u∥2L2(RN ).

Similarly, with s = 2N
α+2 , t =

2N
α , q = 2, r = 2N

N−2 and λ = 1,∫
RN

(Iα ∗ (H∗|u|θ))(K∗|u|2−θ)dx ≤ C∥H∗∥
L

2N
α+2 (RN )

∥K∗∥
L

2N
α (RN )

∥u∥
L

2N
N−2 (RN )

∥u∥L2(RN )

and with s = 2N
α , t = 2N

α+2 , q = 2, r = 2N
N−2 and λ = 1,∫

RN

(Iα ∗ (H∗|u|θ))(K∗|u|2−θ)dx ≤ C∥H∗∥
L

2N
α (RN )

∥K∗∥
L

2N
α+2 (RN )

∥u∥
L

2N
N−2 (RN )

∥u∥L2(RN ).
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By Sobolev inequality, we have thus proved that for every u ∈ H1(RN ),∫
RN

(Iα ∗ (H∗|u|θ))(K∗|u|2−θ)dx ≤

≤ C

(
∥H∗∥

L
2N
α+2 (RN )

∥K∗∥
L

2N
α+2 (RN )

∫
RN

|∇u|2dx+∥H∗∥
L

2N
α (RN )

∥K∗∥
L

2N
α (RN )

∫
RN

u2dx

)
.

The conclusion follows by choosing R = R(ϵ) > 0 sufficiently small such that

C∥H∗∥
L

2N
α+2 (RN )

∥K∗∥
L

2N
α+2 (RN )

≤ ϵ2.

Proposition A.0.9. Take N ≥ 2, p ∈ [1, Nα ), q ∈ (Nα ,+∞) and f ∈ Lp(RN ) ∩ Lq(RN ).
Then, there exists C > 0 such that

∥Iα ∗ f∥L∞(RN ) ≤ C(∥f∥Lp(RN ) + ∥f∥Lq(RN )).

Proof. By choosing p, q in that range we have (N −α) q
q−1 < N < (N −α) p

p−1 ; therefore,
after splitting the integral, Holder’s inequality and a change of variables, we get, for every
x ∈ RN

|Iα ∗ f(x)| ≤ C

∫
RN

|f(x− y)|
|y|N−α

dy ≤ C

(∫
B1

dy

|y|
(N−α)q

q−1

)1− 1
q

∥f∥Lq(B1(x))+

+C

(∫
RN\B1

dy

|y|
(N−α)p

p−1

)1− 1
p

∥f∥Lp(RN\B1(x)) ≤ C(∥f∥Lp(RN ) + ∥f∥Lq(RN )).

Finally, we give the proof of Lemma 3.3.9.

Proof. (of Lemma 3.3.9) Let ϕ ∈ C∞
0 (RN ) be a cut-off function with support B2 such

that ϕ ≡ 1 on B1 and 0 ≤ ϕ ≤ 1 on B2. Given ϵ > 0, we set ψϵ(x) := ϕ(x)Uϵ(x), where

Uϵ(x) =
(N(N − 2)ϵ2)

N−2
4

(ϵ2 + |x|2)
N−2

2

.

By [42, lemma 1.46], we have the following estimates:∫
RN

|∇ψϵ|2dx = S
N
2 +

{
O(ϵN−2) if N ≥ 4

K1ϵ+O(ϵ3) if N = 3,
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∫
RN

|ψϵ|
2N
N−2dx = S

N
2 +O(ϵN ) if N ≥ 3,

∫
RN

ψ2
ϵdx =


K2ϵ

2 +O(ϵN−2) if N ≥ 5

K2ϵ
2| log ϵ|+O(ϵ2) if N = 4

K2ϵ+O(ϵ2) if N = 3,

where K1,K2 > 0 and S being the Sobolev constant. Then we get

∫
RN

(|∇ψϵ|2 + ψ2
ϵ )dx = S

N
2 +


K2ϵ

2 +O(ϵN−2) if N ≥ 5

K2ϵ
2| log ϵ|+O(ϵ2) if N = 4

(K1 +K2)ϵ+O(ϵ2) if N = 3.

(A.0.12)

By direct computation, we get(∫
RN

|ψϵ|
2Nq
N+αdx

)N+α
N

= K3ϵ
N+α−(N−2)q + o(ϵN+α−(N−2)q),

and then by the Hardy-Littlewood-Sobolev inequality,∫
RN

(Iα ∗ |ψϵ|
N+α
N−2 )|ψϵ|qdx ≤ Cα

(∫
RN

|ψϵ|
2N
N−2dx

)N+α
2N

(∫
RN

|ψϵ|
2Nq
N+αdx

)N+α
2N

≤

≤ K4ϵ
N+α−(N−2)q

2 + o(ϵ
N+α−(N−2)q

2 ), (A.0.13)

where K3,K4 > 0 and Cα defined in Proposition A.0.6. Moreover, similarly as in [40,41],
by direct computation, for some K5 > 0,∫

RN

(Iα ∗ |ψϵ|
N+α
N−2 )|ψϵ|

N+α
N−2 dx ≥ (AαCα)

N
2 S

N+α
2

α −K5ϵ
N+α

2 + o(ϵ
N+α

2 ), (A.0.14)

where Aα :=
Γ(N−α

2
)

Γ(α
2
)2α and Sα is defined in Section 3.3. We also have

∫
RN

(Iα ∗ |ψϵ|
N+α
N−2 )|ψϵ|qdx ≥ Aα

(∫
RN

∫
RN

U
N+α
N−2
ϵ (x)U q

ϵ (y)

|x− y|N−α
dxdy−

−
∫
RN\B1

∫
B1

U
N+α
N−2
ϵ (x)U q

ϵ (y)

|x− y|N−α
dxdy −

∫
B1

∫
RN\B1

U
N+α
N−2
ϵ (x)U q

ϵ (y)

|x− y|N−α
dxdy

−
∫
RN\B1

∫
RN\B1

U
N+α
N−2
ϵ (x)U q

ϵ (y)

|x− y|N−α
dxdy

)
,
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where for some K̃i > 0, i = 1, 2, 3, 4,

∫
RN

∫
RN

U
N+α
N−2
ϵ (x)Uq

ϵ (y)
|x−y|N−α dxdy = K̃1ϵ

N+α−(N−2)q
2 ,∫

RN\B1

∫
B1

U
N+α
N−2
ϵ (x)Uq

ϵ (y)
|x−y|N−α dxdy ≤ K̃2ϵ

N+α−N−2
2

q + o(ϵN+α−N−2
2

q),∫
B1

∫
RN\B1

U
N+α
N−2
ϵ (x)Uq

ϵ (y)
|x−y|N−α dxdy ≤ K̃3ϵ

N−2
2

q + o(ϵ
N−2

2
q),∫

RN\B1

∫
RN\B1

U
N+α
N−2
ϵ (x)Uq

ϵ (y)
|x−y|N−α dxdy ≤ K̃4ϵ

N+α−(N−2)q
2 + o(ϵ

N+α−(N−2)q
2 ).

Thus, for some K6 > 0, we have∫
RN

(Iα ∗ |ψϵ|
N+α
N−2 )|ψϵ|qdx ≥ K6ϵ

N+α−(N−2)q
2 + o(ϵ

N+α−(N−2)q
2 ). (A.0.15)

Here we used the fact that q > N+α
2(N−2) . Then, for any t > 0,

Sλ(tψϵ) ≤
t2

2

∫
RN

(|∇ψϵ|2 + ψ2
ϵ )dx− µλ

q

N − 2

N + α
tq+

N+α
N−2

∫
RN

(Iα ∗ |ψϵ|
N+α
N−2 )|ψϵ|qdx−

− t
2(N+α)
N−2

2

(
N − 2

N + α

)2

λ

∫
RN

(Iα ∗ ψ
N+α
N−2
ϵ )ψ

N+α
N−2
ϵ dx =: gϵ(t).

One has gϵ(t) → −∞ as t→ +∞ and gϵ(t) > 0 for t > 0 small. By a simple calculation,
gϵ has a unique critical point tϵ ∈ (0,+∞), which is its maximum point. From g′ϵ(tϵ) = 0,

tϵ

∫
RN

(|∇ψϵ|2 + ψ2
ϵ )dx−

(
q +

N + α

N − 2

)
µλ

q

N − 2

N + α
t
q+N+α

N−2
−1

ϵ

∫
RN

)Iα ∗ ψ
N+α
N−2
ϵ )ψq

ϵdx =

= t
2(N+α)
N−2

−1
ϵ

N − 2

N + α
λ

∫
RN

(Iα ∗ ψ
N+α
N−2
ϵ )ψ

N+α
N−2
ϵ dx. (A.0.16)

Claim. There exist t0, t1 > 0 (both independent of ϵ) such that tϵ ∈ [t0, t1] for ϵ > 0
small.

Consider first the case tϵ → 0 as ϵ → 0+. Then by (A.0.12)-(A.0.14), there exist
c1, c2 > 0 (independent of ϵ) such that for ϵ small,

c1tϵ ≤ c2ϵ
N+α−(N−2)q

2 t
q+N+α

N−2
−1

ϵ + t
q+N+α

N−2
−1

ϵ ≤ 2t
q+N+α

N−2
−1

ϵ ,

where we used the fact that q < N+α
N−2 : hence a contradiction and tϵ ≥ t0. By (A.0.16),

one has ∫
RN

(|∇ψϵ|2 + ψ2
ϵ )dx ≥ t

2(N+α)
N−2

−2
ϵ

N − 2

N + α
λ

∫
RN

(Iα ∗ ψ
N+α
N−2
ϵ )ψ

N+α
N−2
ϵ dx,

which implies, combining (A.0.12) and (A.0.14), that tϵ ≤ t1 for some t1 > 0 and ϵ small.
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By the claim just proved and (A.0.15), we have for some K7 > 0,

µλ

q

N − 2

N + α
t
q+N+α

N−2
ϵ

∫
RN

(Iα ∗ ψ
N+α
N−2
ϵ )ψq

ϵdx ≥ K7ϵ
N+α−(N−2)q

2 + o(ϵ
N+α−(N−2)q

2 ),

and hence

max
t≥0

Sλ(tψϵ) = gϵ(tϵ) ≤
t2ϵ
2

∫
RN

(|∇ψϵ|2 + ψ2
ϵ )dx−K7ϵ

N+α−(N−2)q
2 −

−t
2(N+α)
N−2

ϵ

(
N − 2

N + α

)2

λ

∫
RN

(Iα ∗ ψ
N+α
N−2
ϵ )ψ

N+α
N−2
ϵ dx+ o(ϵ

N+α−(N−2)q
2 ) ≤

≤ max
t≥0

[
t2

2

∫
RN

(|∇ψϵ|2 + ψ2
ϵ )dx− t

2(N+α)
N−2

2

(
N − 2

N + α

)2

λ

∫
RN

(Iα ∗ ψ
N+α
N−2
ϵ )ψ

N+α
N−2
ϵ dx

]
−

−K7ϵ
N+α−(N−2)q

2 + o(ϵ
N+α−(N−2)q

2 ) =

=
2 + α

2(N + α)

(
N + α

N − 2

)N−2
2+α

λ
2−N
2+α

(
∫
RN (|∇ψϵ|2 + ψ2

ϵ )dx)
N+α
2+α

(
∫
RN (Iα ∗ ψ

N+α
N−2
ϵ )ψ

N+α
N−2
ϵ dx)

N−2
2+α

−

−K7ϵ
N+α−(N−2)q

2 + o(ϵ
N+α−(N−2)q

2 ).

On the other hand, by (A.0.12) and (A.0.14), for some K8 > 0,

(
∫
RN (|∇ψϵ|2 + ψ2

ϵ )dx)
N+α
2+α

(
∫
RN (Iα ∗ ψ

N+α
N−2
ϵ )ψ

N+α
N−2
ϵ dx)

N−2
2+α

≤ S
N+α
2+α
α +


K8ϵ

2 + o(ϵ2) if N ≥ 5

K8ϵ
2| log ϵ|+ o(ϵ2| log ϵ|) if N = 4

K8ϵ+ o(ϵ) if N = 3.

Then, for some K9,K10 > 0,

max
t≥0

Sλ(tψϵ) ≤
2 + α

2(N + α)

(
N + α

N − 2

)N−2
2+α

λ
2−N
2+α S

N+α
2+α
α +

+


K9ϵ

2 −K10ϵ
N+α−(N−2)q

2 + o(ϵ
N+α−(N−2)q

2 ) if N ≥ 5

K9ϵ
2| log ϵ| −K10ϵ

N+α−(N−2)q
2 + o(ϵ

N+α−(N−2)q
2 ) if N = 4

K9ϵ−K10ϵ
N+α−(N−2)q

2 + o(ϵ
N+α−(N−2)q

2 ) if N = 3.

<

<
2 + α

2(N + α)

(
N + α

N − 2

)N−2
2+α

λ
2−N
2+α S

N+α
2+α
α if ϵ > 0 is sufficiently small,

since N + α − (N − 2)q < 2. Therefore, for any λ ∈ [12 , 1] and ϵ > 0 sufficiently small,
we get

cλ ≤ max
t≥0

Sλ(tψϵ) <
2 + α

2(N + α)

(
N + α

N − 2

)N−2
2+α

λ
2−N
2+α S

N+α
2+α
α .
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