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Singular Liouville systems

I considered Singular Liouville systems on a compact surface
(Σ, g):

−∆ui =
N∑
j=1

aijρj

(
hje

uj∫
Σ hjeuj dVg

− 1

)
−4π

M∑
m=1

αim(δpm−1), i = 1, . . . ,N.

A = (aij)
N
i ,j=1 symmetric positive definite N × N matrix,

ρ1, . . . , ρN > 0,

0 < h1, . . . , hN ∈ C∞(Σ),

p1, . . . , pM ∈ Σ,

α11, . . . , αNM > −1,

Without loss of generality |Σ| = 1.
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Singular Liouville systems
Motivations

Such systems arise from different fields:

Statistical mechanics (Chern-Simons vortices theory)

Physics of particles (Kinetic plasma models)

Algebraic Geometry (Complex holomorphic curves)

Biology (Chemotaxis)
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Singular Liouville systems
A change of variables

We re-write the system in an equivalent form:

Consider the solution of −∆Gp = δp − 1∫
Σ
GpdVg = 0

and apply the change of variable

ui → ui + 4π
M∑

m=1

αimGpm

Luca Battaglia S.I.S.S.A.

Variational aspects of singular Liouville systems



Singular Liouville systems
A change of variables

The new u solve

−∆ui =
N∑
j=1

aijρj

(
h̃je

uj∫
Σ h̃jeujdVg

− 1

)
h̃i := hie

−4π
∑M

m=1 αimGpm

Since Gp =
1

2π
log

1

d(·, p)
+ O(1) around p, then

h̃i ∼ d(·, pm)2αim around pm,

that is

αim > 0 ⇒ h̃i goes to 0 around pm

αim < 0 ⇒ h̃i goes to +∞ around pm
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Singular Liouville systems
The variational structure

In the last form, the problem has a variational structure:
solutions are all and only the critical points of

Jρ(u) :=
1

2

N∑
i ,j=1

aij
∫

Σ
∇ui ·∇ujdVg−

N∑
i=1

ρi

(
log

∫
Σ
h̃ie

uidVg −
∫

Σ
uidVg

)
.

If Jρ is coercive (up to constants), then the system has
minimizing solutions.
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Existence of minimizing solutions
The scalar case

If N = 1,

−∆u = ρ

(
h̃eu∫

Σ h̃eudVg

− 1

)
and we have

Iρ(u) :=
1

2

∫
Σ
|∇u|2dVg − ρ

(
log

∫
Σ
h̃eudVg −

∫
Σ
udVg

)
.

It is well known that, setting with α̃ := min
{

0,min
m
αm

}
ρ < 8π(1 + α̃) ⇒ Iρ coercive

ρ = 8π(1 + α̃) ⇒ Iρ bounded from below but not coercive

ρ > 8π(1 + α̃) ⇒ Iρ not bounded from below
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Existence of minimizing solutions
Concentration-compactness alternative

We deduce that Jρ is coercive for small ρ and we get minimizing
solutions uρ.

What happens for higher values of ρ?

We take a sequence uρn and discuss its convergence for ρn → ρ.
If uρn → uρ, then Jρ must be coercive and uρ is a minimizer.
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Existence of minimizing solutions
Concentration-compactness alternative

Concentration-compactness Theorem

Let {uρn}ρn→ρ be a sequence of solutions with

∫
Σ
h̃ie

ui,ρn dVg = 1.

Then,

Si := {x ∈ Σ : ∃ xn → x such that ui ,ρn(xn)→ +∞}

is finite for all i ’s. Moreover,

Either S :=
N⋃
i=1

Si = ∅, and uρn → uρ in W 2,q(Σ)N ;

Or S 6= ∅, for each i , either ui ,ρn → ui in W 2,q
loc (Σ\S) or

ui ,ρn → −∞ in L∞loc (Σ\S); the latter occurs for at least one i .
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Existence of minimizing solutions
Concentration-compactness alternative

Define, for x ∈ Si ,

σi (x) := lim
r→0

lim
n→+∞

ρi ,n

∫
Br (x)

h̃ie
ui,ρndVg .

Then,

ρi ≥
∑
x∈Si

σi (x);

ρi =
∑
x∈Si

σi (x) ⇐⇒ ui ,ρn → −∞ in L∞loc (Σ\S) .
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Existence of minimizing solutions
Concentration-compactness alternative

If x ∈ Si for i ∈ I, then

ΛI,x(σ(x)) := 8π
∑
i∈I

(1 + αi (x))σi (x)−
∑
i ,j∈I

aijσi (x)σj(x) = 0

where αi (x) =

{
αim if x = pm
0 otherwise

0.5 1.0

-0.5

0.5

1.0
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Existence of minimizing solutions
Conditions for coercivity

Since σi (x) ≤ ρi , blow-up cannot occur if ΛI,x(ρ) > 0 for all I, x .

Setting Λ(ρ) := min
I,x

ΛI,x(ρ), we get:

B.-Malchiodi, 2014 - B., preprint

Λ(ρ) > 0 ⇒ Jρ coercive
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Existence of minimizing solutions
Conditions for coercivity

The set Λ > 0:

0.5 1.0

-0.5

0.5

1.0
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Existence of minimizing solutions
Competitive systems

Suppose now aij ≤ 0 for all i 6= j .

Then,
Λ(ρ) = min

i=1,...,N

(
8π(1 + α̃i )ρi − aiiρ

2
i

)
,

with
α̃i = min

x
αi (x) = min

{
0,min

m
αim

}
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Existence of minimizing solutions
Competitive systems

The set Λ(ρ) > 0 =

{
ρi <

8π(1 + α̃i )

aii

}
:

0.5 1.0 1.5 2.0

-0.5

0.5

1.0

1.5

2.0
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Existence of minimizing solutions
Competitive systems

For blowing-up sequences of minimizers for ρi ,n →
8π(1 + α̃i )

aii
,

Si = {xi} and either aij = 0 or xi 6= xj for all i 6= j .

By the scalar Moser-Trudinger inequality we get a sharp result.

B.-Malchiodi, 2014 - B., preprint

Λ(ρ) > 0 ⇒ Jρ coercive

Λ(ρ) = 0 ⇒ Jρ not coercive but bounded from below

Λ(ρ) < 0 ⇒ Jρ not coercive nor bounded from below
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Min-max solutions
The role of sub-levels

If Λ(ρ) < 0, we cannot have minimizers.
We have to look for min-max critical points.

We will study the topology of sub-levels {Jρ ≤ a}:

No critical points with a ≤ Jρ ≤ b ⇒ {Jρ ≤ a} ' {Jρ ≤ b}
{Jρ ≤ a} 6' {Jρ ≤ b} ⇒ Critical points with a ≤ Jρ ≤ b
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Min-max solutions
The role of sub-levels

J

a

b

{J ≤ a}

{J ≤ b}

{J ≤ c}

We need some compactness conditions.
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J

a

b

c

{J ≤ a}

{J ≤ b}

{J ≤ c}
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Min-max solutions
Compactness issues

In general, such compactness conditions are not known, except for
some particular systems.

A2 :=

(
2 −1
−1 2

)
B2 :=

(
2 −1
−2 2

)
αim ≡ 0

G2 :=

(
2 −1
−3 2

)
αim ≡ 0
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Min-max solutions
Compactness issues

Although B2,G2 are not symmetric, we can argue in the same way:
−∆u1 = 2ρ1

(
h1e

u1∫
Σ h1eu1dVg

− 1

)
− 2 · ρ2

2

(
h2e

u2∫
Σ h2eu2dVg

− 1

)
−∆u2 = −2ρ1

(
h1e

u1∫
Σ h1eu1dVg

− 1

)
+ 4 · ρ2

2

(
h2e

u2∫
Σ h2eu2dVg

− 1

)

Jρ(u) =

∫
Σ

( |∇u1|2
2

+
∇u1 · ∇u2

2
+
|∇u2|2

4

)
dVg

− ρ1

(
log

∫
Σ
h1e

u1dVg −
∫

Σ
u1dVg

)
− ρ2

2

(
log

∫
Σ
h2e

u2dVg −
∫

Σ
u2dVg

)
.

The coercivity threshold is ρ1, ρ2 < 4π.
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−∆u1 = 2ρ1

(
h1e

u1∫
Σ h1eu1dVg

− 1

)
− 3 · ρ2

3

(
h2e

u2∫
Σ h2eu2dVg

− 1

)
−∆u2 = −3ρ1

(
h1e

u1∫
Σ h1eu1dVg

− 1

)
+ 6 · ρ2

3

(
h2e

u2∫
Σ h2eu2dVg

− 1

)

Jρ(u) =

∫
Σ

(
|∇u1|2 +∇u1 · ∇u2 +

|∇u2|2
3

)
dVg

− ρ1

(
log

∫
Σ
h1e

u1dVg −
∫

Σ
u1dVg

)
− ρ2

3

(
log
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)
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Min-max solutions
Compactness issues

Concerning A2, the coercivity threshold is ρ1, ρ2 < 4π(1 + α̃i ):
−∆u1 = 2ρ1

(
h̃1e

u1∫
Σ h̃1eu1dVg

− 1

)
− ρ2

(
h̃2e

u2∫
Σ h̃2eu2dVg

− 1

)

−∆u2 = −ρ1

(
h̃1e

u1∫
Σ h̃1eu1dVg

− 1

)
+ 2ρ2

(
h̃2e

u2∫
Σ h̃2eu2dVg

− 1

)

Jρ(u) =

∫
Σ

|∇u1|2 +∇u1 · ∇u2 + |∇u2|2
3

dVg

− ρ1

(
log

∫
Σ
h̃1e

u1dVg −
∫

Σ
u1dVg

)
− ρ2

(
log

∫
Σ
h̃2e

u2dVg −
∫

Σ
u2dVg

)
.
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Min-max solutions
Compactness issues

Jost-Lin-Wang, 2006 - Lin-Zhang, preprint

Assume αim ≡ 0 and A = A2,B2. Then, σ1(x), σ2(x) ∈ 4πN.
The same holds true for A = G2 if

σ1(x) < 4π
(

2 +
√

2
)
, σ2(x) < 4π

(
5 +
√

7
)

.

Combining with concentration-compactness Theorem, we get

B.-Gabriele Mancini, 2015

Under the same assumptions, if blow-up occurs then
ρ ∈ Γ0 := 4πN× R+ ∪ R+ × 4πN.
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Min-max solutions
Compactness issues

Similarly,

Lin-Wei-Zhang, 2015

Assume A = A2. If x 6∈ {p1, . . . , pM}, then σ1(x), σ2(x) ∈ 4πN,
and (σ1(pm), σ2(pm)) ∈ Ξm for some finite Ξm.

Therefore,

B.-Gabriele Mancini, 2015

Under the same assumptions, if blow-up occurs then
ρ ∈ Γ := Γ1 × R+ ∪ R+ × Γ2 for some discrete Γ1, Γ2 ⊂ R+
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Min-max solutions
Compactness issues

Moreover, Jρ ≤ L for all solutions, so {Jρ ≤ L} is a deformation
retract of H1(Σ)2, hence it is contractible.

Existence of solutions will follow if {Jρ ≤ −L} is not contractible
for large L.
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Min-max solutions
Analysis of sub-levels

To prove that low sub-levels are not contractible, we “compare” it
with a not contractible space X in the following way:

X Φ→ {Jρ ≤ −L} Ψ→ X Ψ ◦ Φ ' IdX .

{Jρ ≤ −L} is dominated by X .
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Min-max solutions
Analysis of sub-levels, αim ≥ 0

Let us consider the A2 Toda system in the case αim ≥ 0:

If ρ1 ∈ (4K1π, 4(K1 + 1)π), ρ2 ∈ (4K2π, 4(K2 + 1)π), then either
u1 concentrates at K1 points or u2 concentrates at K2 points.

Luca Battaglia S.I.S.S.A.
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Min-max solutions
Analysis of sub-levels, αim ≥ 0

To express the concentration we use the barycenters on Σ:

(Σ)K :=

{
K∑

k=1

tkδxk ; xk ∈ Σ, tk ≥ 0,
K∑

k=1

tk = 1

}
.

To express the alternative between u1 and u2, we use the join:

X ? Y := {(1− t)x + ty ; x ∈ X , y ∈ Y , t ∈ [0, 1]}.

Luca Battaglia S.I.S.S.A.
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Min-max solutions
Analysis of sub-levels, αim ≥ 0

Two big issues are the concentration at singular points and
concentration of both components at the same point.

If χ(Σ) ≤ 0, this can be “by-passed” by a topological trick.
There exist two retractions Πi : Σ→ γi for i = 1, 2 onto
disjointed circles not containing any pm.

Σ

γ1

γ2
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Min-max solutions
Analysis of sub-levels, αim ≥ 0, χ(Σ) ≤ 0

Through Π1,Π2, we can study the concentration of each ui only on
γi , avoiding interactions.

We can take X := (γ1)K1 ? (γ2)K2 , which is not contractible.

(γ1)K1 ? (γ2)K2 '
(
S1
)
K1
?
(
S1
)
K2
' S2K1−1 ?S2K2−1 ' S2K1+2K2−1.

B.-Jevnikar-Malchiodi-Ruiz, 2015

Suppose ρ 6∈ Γ, χ(Σ) ≤ 0 and αim ≥ 0 for all m. Then the A2

Toda system has solutions.
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Min-max solutions
Analysis of sub-levels, αim ≥ 0, χ(Σ) ≤ 0

The same results also works for the B2 and G2 Toda systems:

B., in preparation

Suppose ρ1, ρ2 6∈ 4πN, χ(Σ) ≤ 0. Then the B2 Toda system has
solutions.
The same holds for the G2 Toda system, provided

ρ1 < 4π
(

2 +
√

2
)
, ρ2 < 4π

(
5 +
√

7
)

.
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Min-max solutions
Analysis of sub-levels, αim ≥ 0, χ(Σ) ≤ 0

If Σ has genus g =

[−χ(Σ)

2

]
+ 1 ≥ 2, we can take γ1, γ2 as

bouquet of g circles to get a generic multiplicity result via Morse
theory:

Σ

γ
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Min-max solutions
Analysis of sub-levels, αim ≥ 0, χ(Σ) ≤ 0

B., 2014 - B., in preparation

If ρ1 ∈ (4K1π, 4(K2 + 1)π), ρ2 ∈ (4K2π, 4(K2 + 1)π), then for a
generic choice of g , h1, h2 there are at leastK1 +

[
−χ(Σ)

2

]
K1

K2 +
[
−χ(Σ)

2

]
K2


solutions.
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Min-max solutions
Analysis of sub-levels, χ(Σ) ≤ 0

If we consider the A2 Toda system without restrictions on αim, the
same argument fails because negative coefficients affect the M-T
inequality.

To take account of this, we introduce the weighted barycenters:

ωi (q) =

{
1 + αim if q = pm, αim < 0
1 otherwise

ωi

(⋃
k

qk

)
=
∑
k

ωi (qk)

(Σ)ρi ,αi
:=

∑
xk∈J

tkδxk ; xk ∈ Σ, tk ≥ 0,
∑
xk∈J

tk = 1, 4πωi (J ) < ρi

 .
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Min-max solutions
Analysis of sub-levels, χ(Σ) ≤ 0

The topological argument can be adapted by modifying the
retractions to take account of singularities.

We need pm ∈ γi if αim < 0, so we assume max{α1m, α2m} ≥ 0.

Σ

γ1

γ2
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Min-max solutions
Analysis of sub-levels, χ(Σ) ≤ 0

Write:

{p1, . . . , pM} =
{
p′01, . . . , p

′
0M′

0
, p′11, . . . , p

′
1M′

1
, p′21, . . . , p

′
2M′

2

}
pm = p′0m′ ⇐⇒ α1m, α2m ≥ 0 ⇐⇒ pm 6∈ γ1 ∪ γ2

pm = p′1m′ ⇐⇒ α′1m′ := α1m < 0 ⇐⇒ pm ∈ γ1

pm = p′2m′ ⇐⇒ α′2m′ := α2m < 0 ⇐⇒ pm ∈ γ2

This time, low sub-levels are dominated by the join of weighted
barycenters (γ1)ρ1,α1

? (γ2)ρ2,α2
.
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Min-max solutions
Analysis of sub-levels, χ(Σ) ≤ 0

The weighted barycenters, hence their join, could be contractible.

This happens if

σ ∈ (γi )ρi ,αi
⇒ (1− t)σ + tδp′i1 ∈ (γi )ρi ,αi

∀ t ∈ [0, 1];

which means, in terms of ρ,

4π

(
K +

∑
m∈M

(
1 + α′im

))
< ρi ⇒ 4π

k +
∑

m∈M∪{1}

(
1 + α′im

) < ρi .
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Min-max solutions
Analysis of sub-levels, χ(Σ) ≤ 0

If this does not happen for either i , then (γ1)ρ1,α1
? (γ2)ρ2,α2

is not
contractible.

B. (2015)

Suppose ρ 6∈ Γ, χ(Σ) ≤ 0, max{α1m, α2m} ≥ 0 for all m and

4π

Ki +
∑

m∈Mi

(
1 + α′im

) < ρi < 4π

Ki +
∑

m∈Mi∪{1}

(
1 + α′im

)
for some K1,K2 ∈ N and Mi ⊂

{
2, . . . ,M ′i

}
.

Then the A2 Toda system has solutions.
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Min-max solutions
Analysis of sub-levels, general surfaces

In the general case, we need a sharper analysis.

Roughly speaking, in case of concentration at the same point with
the same rate, the point must be given a higher weight.

If ρ1 < ρ1, ρ2 < ρ2, where

ρi := 4πmin

{
1, min

m 6=m′
(2 + αim + αim′)

}
,

then low sub-levels are dominated by

X = (Σ)ρ1,α1
?(Σ)ρ2,α2

\
{(

pm, pm,
1

2

)
: ρ1, ρ2 < 4π(2 + α1m + α2m)

}
.
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Min-max solutions
Analysis of sub-levels, general surfaces

Since, for such ρ, both (Σ)ρi ,αi
are finite, than X is easy to study:

1

2 3 4

1

2

2 3

2 31

1

2

2 31 4

1

2
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Min-max solutions
Analysis of sub-levels, general surfaces

We need some assumptions to get a not-contractible space:

B. (2015)

Suppose ρ 6∈ Γ, ρi < ρi for both i and

(M1,M2,M3) 6∈ {(1,m, 0), (m, 1, 0), (2, 2, 1), (2, 3, 2), (3, 2, 2), m ∈ N},

with M1, M2, M3 defined by

M1 := #{m : 4π(1 + α1m) < ρ1},

M2 := #{m : 4π(1 + α2m) < ρ2},
M3 := #{m : 4π(1+αim) < ρi , ρi < 4π(2+α1m+α2m) for both i}.
Then the A2 Toda system has solutions.
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Non-existence results
General systems

We made topological assumptions on Σ to get general existence
results.

In fact, if Σ has a “simple” topology, general systems could not be
solvable.

On the standard unit disk we get, through a Pohožaev identity,
necessary algebraic conditions.

Luca Battaglia S.I.S.S.A.

Variational aspects of singular Liouville systems



Non-existence results
General systems

We made topological assumptions on Σ to get general existence
results.

In fact, if Σ has a “simple” topology, general systems could not be
solvable.

On the standard unit disk we get, through a Pohožaev identity,
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Non-existence results
General systems

B.-Malchiodi, preprint

The following problem on the unit disk B:

−∆ui =
N∑
j=1

aijρj
| · |2αj euj∫

B |x |2αj euj dx
ui |∂B = 0 i = 1, . . . ,N,

has no solutions if ρ satisfies

Λ{1,...,N},p(ρ) = 8π
N∑
i=1

(1 + αi )ρi −
N∑

i ,j=1

aijρiρj ≤ 0.
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Non-existence results
General systems

Comparison with existence results for the A2 Toda system:
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Non-existence results
General systems

Similar results hold on the unit sphere with antipodal singularities:

B.-Malchiodi, preprint

The following problem on the unit sphere S2:

−∆ui =
N∑
j=1

aijρj

(
euj∫

S2 euj dVg
− 1

4π

)
− 4π

2∑
m=1

αim

(
δpm −

1

4π

)
,

has no solutions if ρ satisfies:

either ΛI,p1(ρ) ≥ Λ{1,...,N}\I,p2
(ρ) ∀ I ⊂ {1, . . . ,N}

or ΛI,p2(ρ) ≥ Λ{1,...,N}\I,p1
(ρ) ∀ I ⊂ {1, . . . ,N}

and at least one inequality is strict.
Luca Battaglia S.I.S.S.A.
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Non-existence results
A2 Toda system

We also get a non-existence results for the A2 Toda system on any
surface.

If we take a couple of coefficients (α11, α21) close to −1 we show,
through a blow-up analysis, that no solutions exist.

B.-Malchiodi, preprint

For any fixed α12, . . . , α1M , α22, . . . , α2M and ρ 6∈ Γα11̂,α2,̂1
there

exists α∗ ∈ (−1, 0) such that the A2 Toda system has no solutions
for α11, α21 ≤ α∗.
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