Variational aspects of singular Liouville systems

Luca Battaglia

S.I.S.S.A.

25th September 2015

I considered **Singular Liouville systems** on a compact surface (Σ, g) :

$$-\Delta u_i = \sum_{j=1}^N \mathsf{a}_{ij} \rho_j \left(\frac{h_j \mathsf{e}^{u_j}}{\int_{\Sigma} h_j \mathsf{e}^{u_j} \mathsf{d} V_g} - 1 \right) - 4\pi \sum_{m=1}^M \alpha_{im} (\delta_{p_m} - 1), \ i = 1, \dots, N.$$

- $A = (a_{ij})_{i,j=1}^{N}$ symmetric positive definite $N \times N$ matrix,
- $\rho_1, \ldots, \rho_N > 0$,
- $0 < h_1, \ldots, h_N \in C^{\infty}(\Sigma)$,
- $p_1, \ldots, p_M \in \Sigma$,
- $\alpha_{11}, \dots, \alpha_{NM} > -1$,
- Without loss of generality $|\Sigma| = 1$.

Luca Battaglia S.I.S.S.A.

Motivations

Such systems arise from different fields:

- Statistical mechanics (Chern-Simons vortices theory)
- Physics of particles (Kinetic plasma models)
- Algebraic Geometry (Complex holomorphic curves)
- Biology (Chemotaxis)

A change of variables

We re-write the system in an equivalent form:

Consider the solution of

$$\left\{ egin{array}{l} -\Delta G_p = \delta_p - 1 \ \int_{\Sigma} G_p dV_g = 0 \end{array}
ight.$$

and apply the change of variable

$$u_i \rightarrow u_i + 4\pi \sum_{m=1}^{M} \alpha_{im} G_{p_m}$$

A change of variables

The new u solve

$$-\Delta u_i = \sum_{j=1}^N a_{ij} \rho_j \left(\frac{\widetilde{h}_j e^{u_j}}{\int_{\Sigma} \widetilde{h}_j e^{u_j} dV_g} - 1 \right)$$

$$\widetilde{h}_i := h_i e^{-4\pi \sum_{m=1}^M \alpha_{im} G_{p_m}}$$

A change of variables

The new u solve

$$-\Delta u_i = \sum_{j=1}^N a_{ij} \rho_j \left(\frac{\widetilde{h}_j e^{u_j}}{\int_{\Sigma} \widetilde{h}_j e^{u_j} dV_g} - 1 \right) \qquad \qquad \widetilde{h}_i := h_i e^{-4\pi \sum_{m=1}^M \alpha_{im} G_{p_m}}$$

Since
$$G_p = \frac{1}{2\pi}\log\frac{1}{d(\cdot,p)} + O(1)$$
 around p , then

$$\widetilde{h}_i \sim d(\cdot, p_m)^{2\alpha_{im}}$$
 around p_m ,

that is

$$lpha_{im} > 0 \qquad \Rightarrow \qquad \widetilde{h}_i \ ext{goes to 0 around } p_m \ lpha_{im} < 0 \qquad \Rightarrow \qquad \widetilde{h}_i \ ext{goes to } + \infty \ ext{around } p_m$$

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 めのの

Luca Battaglia S.1.S.S.A.

The variational structure

In the last form, the problem has a **variational structure**: solutions are all and only the critical points of

$$J_{\rho}(u) := \frac{1}{2} \sum_{i,j=1}^{N} a^{ij} \int_{\Sigma} \nabla u_i \cdot \nabla u_j dV_g - \sum_{i=1}^{N} \rho_i \left(\log \int_{\Sigma} \widetilde{h}_i e^{u_i} dV_g - \int_{\Sigma} u_i dV_g \right)$$

The variational structure

In the last form, the problem has a **variational structure**: solutions are all and only the critical points of

$$J_{\rho}(u) := \frac{1}{2} \sum_{i,j=1}^{N} a^{ij} \int_{\Sigma} \nabla u_i \cdot \nabla u_j dV_g - \sum_{i=1}^{N} \rho_i \left(\log \int_{\Sigma} \widetilde{h}_i e^{u_i} dV_g - \int_{\Sigma} u_i dV_g \right)$$

If J_{ρ} is **coercive** (up to constants), then the system has minimizing solutions.

The scalar case

If
$$N=1$$
,

$$-\Delta u = \rho \left(\frac{\widetilde{h}e^u}{\int_{\Sigma} \widetilde{h}e^u dV_g} - 1 \right)$$

and we have

$$I_{\rho}(u) := \frac{1}{2} \int_{\Sigma} |\nabla u|^2 dV_g - \rho \left(\log \int_{\Sigma} \widetilde{h} e^u dV_g - \int_{\Sigma} u dV_g \right).$$

The scalar case

If N=1.

$$-\Delta u = \rho \left(\frac{\widetilde{h} e^u}{\int_{\Sigma} \widetilde{h} e^u dV_g} - 1 \right)$$

and we have

$$I_{\rho}(u) := \frac{1}{2} \int_{\Sigma} |\nabla u|^2 dV_g - \rho \left(\log \int_{\Sigma} \widetilde{h} e^u dV_g - \int_{\Sigma} u dV_g \right).$$

It is well known that, setting with $\widetilde{\alpha} := \min \{0, \min \alpha_m\}$

$$ho < 8\pi(1+\widetilde{lpha}) \ \Rightarrow \ I_{
ho} \ {
m coercive}$$
 $ho = 8\pi(1+\widetilde{lpha}) \ \Rightarrow \ I_{
ho} \ {
m bounded} \ {
m from below} \ {
m but} \ {
m not} \ {
m coercive}$
 $ho > 8\pi(1+\widetilde{lpha}) \ \Rightarrow \ I_{
ho} \ {
m not} \ {
m bounded} \ {
m from} \ {
m below}$

Luca Battaglia

Concentration-compactness alternative

We deduce that J_{ρ} is coercive for small ρ and we get minimizing solutions u_{ρ} .

Concentration-compactness alternative

We deduce that J_{ρ} is coercive for small ρ and we get minimizing solutions u_{ρ} .

What happens for higher values of ρ ?

Concentration-compactness alternative

We deduce that J_{ρ} is coercive for small ρ and we get minimizing solutions u_{ρ} .

What happens for higher values of ρ ?

We take a sequence u_{ρ_n} and discuss its convergence for $\rho_n \to \rho$. If $u_{\rho_n} \to u_{\rho}$, then J_{ρ} must be coercive and u_{ρ} is a minimizer.

Concentration-compactness alternative

Concentration-compactness Theorem

Let $\{u_{
ho_n}\}_{
ho_n o
ho}$ be a sequence of solutions with $\int_{\mathbb{T}}\widetilde{h}_i \mathrm{e}^{u_{i,
ho_n}}\mathrm{d}V_g=1.$ Then,

$$S_i := \{x \in \Sigma : \exists x_n \to x \text{ such that } u_{i,\rho_n}(x_n) \to +\infty\}$$

is finite for all i's. Moreover,

- Either $\mathcal{S}:=\bigcup^n \mathcal{S}_i=\emptyset$, and $u_{\rho_n} \to u_{\rho}$ in $W^{2,q}(\Sigma)^N$;
- Or $S \neq \emptyset$, for each i, either $u_{i,\rho_n} \to u_i$ in $W^{2,q}_{loc}(\Sigma \backslash S)$ or $u_{i,\rho_n} \to -\infty$ in $L^{\infty}_{loc}(\Sigma \setminus S)$; the latter occurs for at least one i.

Luca Battaglia

Concentration-compactness alternative

Define, for $x \in S_i$,

$$\sigma_i(x) := \lim_{r \to 0} \lim_{n \to +\infty} \rho_{i,n} \int_{B_r(x)} \widetilde{h}_i e^{u_{i,\rho_n}} dV_g.$$

Concentration-compactness alternative

Define, for $x \in S_i$,

$$\sigma_i(x) := \lim_{r \to 0} \lim_{n \to +\infty} \rho_{i,n} \int_{B_r(x)} \widetilde{h}_i e^{u_{i,\rho_n}} dV_g.$$

Then,

$$\rho_{i} \geq \sum_{x \in \mathcal{S}_{i}} \sigma_{i}(x);$$

$$\rho_{i} = \sum_{x \in \mathcal{S}_{i}} \sigma_{i}(x) \iff u_{i,\rho_{n}} \to -\infty \text{ in } L^{\infty}_{loc}(\Sigma \backslash \mathcal{S}).$$

Concentration-compactness alternative

If
$$x \in \mathcal{S}_i$$
 for $i \in \mathcal{I}$, then
$$\Lambda_{\mathcal{I},x}(\sigma(x)) := 8\pi \sum_{i \in \mathcal{I}} (1 + \alpha_i(x)) \sigma_i(x) - \sum_{i,j \in \mathcal{I}} a_{ij} \sigma_i(x) \sigma_j(x) = 0$$
 where
$$\alpha_i(x) = \left\{ \begin{array}{ll} \alpha_{im} & \text{if } x = p_m \\ 0 & \text{otherwise} \end{array} \right.$$

Concentration-compactness alternative

If
$$x \in S_i$$
 for $i \in \mathcal{I}$, then

$$\Lambda_{\mathcal{I},x}(\sigma(x)) := 8\pi \sum_{i \in \mathcal{I}} (1 + \alpha_i(x))\sigma_i(x) - \sum_{i,j \in \mathcal{I}} a_{ij}\sigma_i(x)\sigma_j(x) = 0$$

where

$$\alpha_i(x) = \begin{cases} \alpha_{im} & \text{if } x = p_m \\ 0 & \text{otherwise} \end{cases}$$

Conditions for coercivity

Since $\sigma_i(x) \leq \rho_i$, blow-up cannot occur if $\Lambda_{\mathcal{I},x}(\rho) > 0$ for all \mathcal{I}, x .

Conditions for coercivity

Since $\sigma_i(x) \leq \rho_i$, blow-up cannot occur if $\Lambda_{\mathcal{I},x}(\rho) > 0$ for all \mathcal{I},x .

Setting $\Lambda(\rho) := \min_{\mathcal{I},x} \Lambda_{\mathcal{I},x}(\rho)$, we get:

B.-Malchiodi, 2014 - B., preprint

$$\Lambda(\rho) > 0 \Rightarrow J_{\rho}$$
 coercive

Conditions for coercivity

Since
$$\sigma_i(x) \leq \rho_i$$
, blow-up cannot occur if $\Lambda_{\mathcal{I},x}(\rho) > 0$ for all \mathcal{I},x .

Setting
$$\Lambda(\rho) := \min_{\mathcal{I}, x} \Lambda_{\mathcal{I}, x}(\rho)$$
, we get:

B.-Malchiodi, 2014 - B., preprint

$$\Lambda(\rho) > 0 \Rightarrow J_{\rho}$$
 coercive

$$\Lambda(\rho) = 0 \implies J_{\rho}$$
 not coercive

$$\Lambda(\rho) < 0 \implies J_{\rho}$$
 not coercive nor bounded from below

Conditions for coercivity

The set $\Lambda > 0$:

Competitive systems

Suppose now $a_{ij} \leq 0$ for all $i \neq j$.

Then,

$$\Lambda(\rho) = \min_{i=1,\ldots,N} \left(8\pi (1 + \widetilde{\alpha}_i) \rho_i - a_{ii} \rho_i^2 \right),\,$$

with

$$\widetilde{\alpha}_i = \min_{x} \alpha_i(x) = \min \left\{ 0, \min_{m} \alpha_{im} \right\}$$

Competitive systems

The set
$$\Lambda(\rho) > 0 = \left\{ \rho_i < \frac{8\pi(1 + \widetilde{\alpha}_i)}{a_{ii}} \right\}$$
:

Competitive systems

The set
$$\Lambda(\rho) > 0 = \left\{ \rho_i < \frac{8\pi(1 + \widetilde{\alpha}_i)}{a_{ii}} \right\}$$
:

Competitive systems

For blowing-up sequences of minimizers for $\rho_{i,n} \to \frac{8\pi(1+\widetilde{\alpha}_i)}{a_{ii}}$, $S_i = \{x_i\}$ and either $a_{ij} = 0$ or $x_i \neq x_j$ for all $i \neq j$.

Competitive systems

For blowing-up sequences of minimizers for $\rho_{i,n} \to \frac{8\pi(1+\widetilde{\alpha}_i)}{a_{ii}}$, $S_i = \{x_i\}$ and either $a_{ij} = 0$ or $x_i \neq x_j$ for all $i \neq j$.

By the scalar Moser-Trudinger inequality we get a sharp result.

Competitive systems

For blowing-up sequences of minimizers for $\rho_{i,n} \to \frac{8\pi(1+\widetilde{\alpha}_i)}{a_{ii}}$, $S_i = \{x_i\}$ and either $a_{ij} = 0$ or $x_i \neq x_j$ for all $i \neq j$.

By the scalar Moser-Trudinger inequality we get a sharp result.

B.-Malchiodi, 2014 - B., preprint

$$\Lambda(\rho) > 0 \Rightarrow J_{\rho}$$
 coercive

$$\Lambda(\rho) = 0 \implies J_{\rho}$$
 not coercive but **bounded from below**

$$\Lambda(\rho) < 0 \implies J_{\rho}$$
 not coercive nor bounded from below

The role of sub-levels

If $\Lambda(\rho) < 0$, we cannot have minimizers. We have to look for **min-max** critical points.

The role of sub-levels

If $\Lambda(\rho) < 0$, we cannot have minimizers. We have to look for **min-max** critical points.

We will study the **topology of sub-levels** $\{J_{\rho} \leq a\}$:

No critical points with
$$a \leq J_{\rho} \leq b \ \Rightarrow \ \{J_{\rho} \leq a\} \simeq \{J_{\rho} \leq b\}$$

$$\{J_{\rho} \leq a\} \not\simeq \{J_{\rho} \leq b\} \ \Rightarrow \ \text{Critical points with } a \leq J_{\rho} \leq b$$

The role of sub-levels

The role of sub-levels

We need some compactness conditions.

Compactness issues

In general, such compactness conditions are not known, except for some particular systems.

Compactness issues

In general, such compactness conditions are not known, except for some particular systems.

$$A_{2} := \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

$$B_{2} := \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix} \qquad \alpha_{im} \equiv 0$$

$$G_{2} := \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} \qquad \alpha_{im} \equiv 0$$

Compactness issues

Although B_2 , G_2 are not symmetric, we can argue in the same way:

$$\begin{cases} -\Delta u_1 = 2\rho_1 \left(\frac{h_1 e^{u_1}}{\int_{\Sigma} h_1 e^{u_1} dV_g} - 1 \right) - 2 \cdot \frac{\rho_2}{2} \left(\frac{h_2 e^{u_2}}{\int_{\Sigma} h_2 e^{u_2} dV_g} - 1 \right) \\ -\Delta u_2 = -2\rho_1 \left(\frac{h_1 e^{u_1}}{\int_{\Sigma} h_1 e^{u_1} dV_g} - 1 \right) + 4 \cdot \frac{\rho_2}{2} \left(\frac{h_2 e^{u_2}}{\int_{\Sigma} h_2 e^{u_2} dV_g} - 1 \right) \end{cases}$$

$$J_{\rho}(u) = \int_{\Sigma} \left(\frac{|\nabla u_1|^2}{2} + \frac{\nabla u_1 \cdot \nabla u_2}{2} + \frac{|\nabla u_2|^2}{4} \right) dV_g$$

$$- \rho_1 \left(\log \int_{\Sigma} h_1 e^{u_1} dV_g - \int_{\Sigma} u_1 dV_g \right)$$

$$- \frac{\rho_2}{2} \left(\log \int_{\Sigma} h_2 e^{u_2} dV_g - \int_{\Sigma} u_2 dV_g \right).$$

The coercivity threshold is $\rho_1, \rho_2 < 4\pi$.

Compactness issues

Although B_2 , G_2 are not symmetric, we can argue in the same way:

$$\begin{cases} -\Delta u_1 = 2\rho_1 \left(\frac{h_1 e^{u_1}}{\int_{\Sigma} h_1 e^{u_1} dV_g} - 1 \right) - 3 \cdot \frac{\rho_2}{3} \left(\frac{h_2 e^{u_2}}{\int_{\Sigma} h_2 e^{u_2} dV_g} - 1 \right) \\ -\Delta u_2 = -3\rho_1 \left(\frac{h_1 e^{u_1}}{\int_{\Sigma} h_1 e^{u_1} dV_g} - 1 \right) + 6 \cdot \frac{\rho_2}{3} \left(\frac{h_2 e^{u_2}}{\int_{\Sigma} h_2 e^{u_2} dV_g} - 1 \right) \end{cases}$$

$$J_{\rho}(u) = \int_{\Sigma} \left(|\nabla u_1|^2 + \nabla u_1 \cdot \nabla u_2 + \frac{|\nabla u_2|^2}{3} \right) dV_g$$

$$- \rho_1 \left(\log \int_{\Sigma} h_1 e^{u_1} dV_g - \int_{\Sigma} u_1 dV_g \right)$$

$$- \frac{\rho_2}{3} \left(\log \int_{\Sigma} h_2 e^{u_2} dV_g - \int_{\Sigma} u_2 dV_g \right).$$

The coercivity threshold is $\rho_1, \rho_2 < 4\pi$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 めの

Compactness issues

Concerning A_2 , the coercivity threshold is $\rho_1, \rho_2 < 4\pi(1 + \widetilde{\alpha}_i)$:

$$\begin{cases} -\Delta u_1 = 2\rho_1 \left(\frac{\widetilde{h}_1 e^{u_1}}{\int_{\Sigma} \widetilde{h}_1 e^{u_1} dV_g} - 1 \right) - \rho_2 \left(\frac{\widetilde{h}_2 e^{u_2}}{\int_{\Sigma} \widetilde{h}_2 e^{u_2} dV_g} - 1 \right) \\ -\Delta u_2 = -\rho_1 \left(\frac{\widetilde{h}_1 e^{u_1}}{\int_{\Sigma} \widetilde{h}_1 e^{u_1} dV_g} - 1 \right) + 2\rho_2 \left(\frac{\widetilde{h}_2 e^{u_2}}{\int_{\Sigma} \widetilde{h}_2 e^{u_2} dV_g} - 1 \right) \end{cases}$$

$$J_{\rho}(u) = \int_{\Sigma} \frac{|\nabla u_1|^2 + \nabla u_1 \cdot \nabla u_2 + |\nabla u_2|^2}{3} dV_g$$

$$- \rho_1 \left(\log \int_{\Sigma} \widetilde{h}_1 e^{u_1} dV_g - \int_{\Sigma} u_1 dV_g \right)$$

$$- \rho_2 \left(\log \int_{\Sigma} \widetilde{h}_2 e^{u_2} dV_g - \int_{\Sigma} u_2 dV_g \right).$$

Compactness issues

Jost-Lin-Wang, 2006 - Lin-Zhang, preprint

Assume $\alpha_{im} \equiv 0$ and $A = A_2, B_2$. Then, $\sigma_1(x), \sigma_2(x) \in 4\pi\mathbb{N}$.

The same holds true for $A = G_2$ if

$$\sigma_1(x) < 4\pi \left(2 + \sqrt{2}\right), \ \sigma_2(x) < 4\pi \left(5 + \sqrt{7}\right).$$

Compactness issues

Jost-Lin-Wang, 2006 - Lin-Zhang, preprint

Assume $\alpha_{im} \equiv 0$ and $A = A_2$, B_2 . Then, $\sigma_1(x), \sigma_2(x) \in 4\pi\mathbb{N}$. The same holds true for $A = G_2$ if

$$\sigma_1(x) < 4\pi \left(2 + \sqrt{2}\right), \ \sigma_2(x) < 4\pi \left(5 + \sqrt{7}\right).$$

Combining with concentration-compactness Theorem, we get

B.-Gabriele Mancini, 2015

Under the same assumptions, if blow-up occurs then $\rho \in \Gamma_0 := 4\pi \mathbb{N} \times \mathbb{R}_+ \cup \mathbb{R}_+ \times 4\pi \mathbb{N}$.

- ◆ロ → ◆御 → ◆ き → ◆き → ・ き ・ りへ()

Compactness issues

Similarly,

Lin-Wei-Zhang, 2015

Assume $A = A_2$. If $x \notin \{p_1, \dots, p_M\}$, then $\sigma_1(x), \sigma_2(x) \in 4\pi\mathbb{N}$, and $(\sigma_1(p_m), \sigma_2(p_m)) \in \Xi_m$ for some finite Ξ_m .

Therefore.

B.-Gabriele Mancini, 2015

Under the same assumptions, if blow-up occurs then $\rho \in \Gamma := \Gamma_1 \times \mathbb{R}_+ \cup \mathbb{R}_+ \times \Gamma_2$ for some discrete $\Gamma_1, \Gamma_2 \subset \mathbb{R}_+$

Luca Battaglia

Compactness issues

Moreover, $J_{\rho} \leq L$ for all solutions, so $\{J_{\rho} \leq L\}$ is a deformation retract of $H^1(\Sigma)^2$, hence it is **contractible**.

Compactness issues

Moreover, $J_{\rho} \leq L$ for all solutions, so $\{J_{\rho} \leq L\}$ is a deformation retract of $H^1(\Sigma)^2$, hence it is **contractible**.

Existence of solutions will follow if $\{J_{\rho} \leq -L\}$ is **not contractible** for large L.

Analysis of sub-levels

To prove that low sub-levels are not contractible, we "compare" it with a **not contractible** space $\mathcal X$ in the following way:

$$\mathcal{X} \stackrel{\Phi}{\to} \{J_{\rho} \leq -L\} \stackrel{\Psi}{\to} \mathcal{X}$$

$$\Psi \circ \Phi \simeq \mathsf{Id}_{\mathcal{X}}.$$

$$\{J_{\rho} \leq -L\}$$
 is **dominated** by \mathcal{X} .

Analysis of sub-levels, $\alpha_{im} \geq 0$

Let us consider the A_2 Toda system in the case $\alpha_{im} \geq 0$:

Analysis of sub-levels, $\alpha_{im} \geq 0$

Let us consider the A_2 Toda system in the case $\alpha_{im} \geq 0$:

If $\rho_1 \in (4K_1\pi, 4(K_1+1)\pi)$, $\rho_2 \in (4K_2\pi, 4(K_2+1)\pi)$, then **either** u_1 concentrates at K_1 points **or** u_2 concentrates at K_2 points.

Analysis of sub-levels, $\alpha_{im} \geq 0$

To express the concentration we use the **barycenters** on Σ :

$$(\Sigma)_K := \left\{ \sum_{k=1}^K t_k \delta_{x_k}; \ x_k \in \Sigma, \ t_k \geq 0, \ \sum_{k=1}^K t_k = 1
ight\}.$$

Analysis of sub-levels, $\alpha_{im} \geq 0$

To express the concentration we use the **barycenters** on Σ :

$$(\Sigma)_K := \left\{ \sum_{k=1}^K t_k \delta_{x_k}; \ x_k \in \Sigma, \ t_k \geq 0, \ \sum_{k=1}^K t_k = 1
ight\}.$$

To express the alternative between u_1 and u_2 , we use the **join**:

$$X \star Y := \{(1-t)x + ty; x \in X, y \in Y, t \in [0,1]\}.$$

Analysis of sub-levels, $\alpha_{im} \geq 0$

Two big issues are the concentration at singular points and concentration of both components at the same point.

Analysis of sub-levels, $\alpha_{im} \geq 0$

Two big issues are the concentration at singular points and concentration of both components at the same point.

If $\chi(\Sigma) \leq 0$, this can be "by-passed" by a topological trick. There exist two **retractions** $\Pi_i : \Sigma \to \gamma_i$ for i = 1, 2 onto disjointed circles not containing any p_m .

Analysis of sub-levels, $\alpha_{im} \geq 0$, $\chi(\Sigma) \leq 0$

Through Π_1, Π_2 , we can study the concentration of each u_i only on γ_i , avoiding interactions.

Analysis of sub-levels, $\alpha_{im} \geq 0$, $\chi(\Sigma) \leq 0$

Through Π_1, Π_2 , we can study the concentration of each u_i only on γ_i , avoiding interactions.

We can take $\mathcal{X} := (\gamma_1)_{K_1} \star (\gamma_2)_{K_2}$, which is not contractible.

Analysis of sub-levels, $\alpha_{im} \geq 0$, $\chi(\Sigma) \leq 0$

Through Π_1, Π_2 , we can study the concentration of each u_i only on γ_i , avoiding interactions.

We can take $\mathcal{X} := (\gamma_1)_{K_1} \star (\gamma_2)_{K_2}$, which is not contractible.

$$(\gamma_1)_{\mathcal{K}_1} \star (\gamma_2)_{\mathcal{K}_2} \simeq \left(\mathbb{S}^1\right)_{\mathcal{K}_1} \star \left(\mathbb{S}^1\right)_{\mathcal{K}_2} \simeq \mathbb{S}^{2\mathcal{K}_1 - 1} \star \mathbb{S}^{2\mathcal{K}_2 - 1} \simeq \mathbb{S}^{2\mathcal{K}_1 + 2\mathcal{K}_2 - 1}.$$

Analysis of sub-levels, $\alpha_{im} \geq 0$, $\chi(\Sigma) \leq 0$

Through Π_1, Π_2 , we can study the concentration of each u_i only on γ_i , avoiding interactions.

We can take $\mathcal{X} := (\gamma_1)_{K_1} \star (\gamma_2)_{K_2}$, which is not contractible.

$$(\gamma_1)_{\mathcal{K}_1} \star (\gamma_2)_{\mathcal{K}_2} \simeq \left(\mathbb{S}^1\right)_{\mathcal{K}_1} \star \left(\mathbb{S}^1\right)_{\mathcal{K}_2} \simeq \mathbb{S}^{2\mathcal{K}_1 - 1} \star \mathbb{S}^{2\mathcal{K}_2 - 1} \simeq \mathbb{S}^{2\mathcal{K}_1 + 2\mathcal{K}_2 - 1}.$$

B.-Jevnikar-Malchiodi-Ruiz, 2015

Suppose $\rho \notin \Gamma$, $\chi(\Sigma) \leq 0$ and $\alpha_{im} \geq 0$ for all m. Then the A_2 Toda system has solutions.

Luca Battaglia S.I.S.S.A.

Analysis of sub-levels, $\alpha_{im} \geq 0$, $\chi(\Sigma) \leq 0$

The same results also works for the B_2 and G_2 Toda systems:

B., in preparation

Suppose $\rho_1, \rho_2 \notin 4\pi \mathbb{N}$, $\chi(\Sigma) \leq 0$. Then the B_2 Toda system has solutions.

The same holds for the G_2 Toda system, provided

$$\rho_1 < 4\pi \left(2 + \sqrt{2}\right), \ \rho_2 < 4\pi \left(5 + \sqrt{7}\right).$$

Analysis of sub-levels, $\alpha_{im} \geq 0$, $\chi(\Sigma) \leq 0$

If Σ has genus $g=\left[\frac{-\chi(\Sigma)}{2}\right]+1\geq 2$, we can take $\gamma_1,\,\gamma_2$ as bouquet of g circles to get a generic multiplicity result via Morse theory:

Analysis of sub-levels, $\alpha_{im} \geq 0$, $\chi(\Sigma) \leq 0$

B., 2014 - B., in preparation

If $\rho_1 \in (4K_1\pi, 4(K_2+1)\pi)$, $\rho_2 \in (4K_2\pi, 4(K_2+1)\pi)$, then for a generic choice of g, h_1 , h_2 there are at least

$$\begin{pmatrix} K_1 + \left[\frac{-\chi(\Sigma)}{2}\right] \\ K_1 \end{pmatrix} \begin{pmatrix} K_2 + \left[\frac{-\chi(\Sigma)}{2}\right] \\ K_2 \end{pmatrix}$$

solutions.

Analysis of sub-levels, $\chi(\Sigma) \leq 0$

If we consider the A_2 Toda system without restrictions on α_{im} , the same argument fails because negative coefficients affect the M-T inequality.

SISSA

Analysis of sub-levels, $\chi(\Sigma) \leq 0$

Variational aspects of singular Liouville systems

If we consider the A_2 Toda system without restrictions on α_{im} , the same argument fails because negative coefficients affect the M-T inequality.

To take account of this, we introduce the **weighted barycenters**:

$$\omega_i(q) = \left\{ egin{array}{ll} 1 + lpha_{im} & ext{if } q = p_m, \ lpha_{im} < 0 \ 1 & ext{otherwise} \end{array}
ight. \quad \omega_i\left(igcup_k q_k
ight) = \sum_k \omega_i(q_k)$$

$$(\Sigma)_{
ho_i,\underline{lpha}_i} := \left\{ \sum_{\mathsf{x}_k \in \mathcal{J}} t_k \delta_{\mathsf{x}_k}; \, \mathsf{x}_k \in \Sigma, \, t_k \geq 0, \, \sum_{\mathsf{x}_k \in \mathcal{J}} t_k = 1, \, 4\pi\omega_i(\mathcal{J}) < \rho_i
ight\}.$$

- **◆ロト ◆御 ▶ ◆恵 ▶ ◆恵 ▶ ・恵 ・ か**९(

Analysis of sub-levels, $\chi(\Sigma) \leq 0$

The topological argument can be adapted by modifying the retractions to take account of singularities.

Analysis of sub-levels, $\chi(\Sigma) \leq 0$

The topological argument can be adapted by modifying the retractions to take account of singularities.

We need $p_m \in \gamma_i$ if $\alpha_{im} < 0$, so we assume $\max\{\alpha_{1m}, \alpha_{2m}\} \ge 0$.

Analysis of sub-levels, $\chi(\Sigma) \leq 0$

Write:

$$\{p_{1}, \dots, p_{M}\} = \left\{p'_{01}, \dots, p'_{0M'_{0}}, p'_{11}, \dots, p'_{1M'_{1}}, p'_{21}, \dots, p'_{2M'_{2}}\right\}$$

$$p_{m} = p'_{0m'} \iff \alpha_{1m}, \alpha_{2m} \ge 0 \iff p_{m} \notin \gamma_{1} \cup \gamma_{2}$$

$$p_{m} = p'_{1m'} \iff \alpha'_{1m'} := \alpha_{1m} < 0 \iff p_{m} \in \gamma_{1}$$

$$p_{m} = p'_{2m'} \iff \alpha'_{2m'} := \alpha_{2m} < 0 \iff p_{m} \in \gamma_{2}$$

Analysis of sub-levels, $\chi(\Sigma) \leq 0$

Write:

$$\{p_{1}, \dots, p_{M}\} = \left\{p'_{01}, \dots, p'_{0M'_{0}}, p'_{11}, \dots, p'_{1M'_{1}}, p'_{21}, \dots, p'_{2M'_{2}}\right\}$$

$$p_{m} = p'_{0m'} \iff \alpha_{1m}, \alpha_{2m} \ge 0 \iff p_{m} \notin \gamma_{1} \cup \gamma_{2}$$

$$p_{m} = p'_{1m'} \iff \alpha'_{1m'} := \alpha_{1m} < 0 \iff p_{m} \in \gamma_{1}$$

$$p_{m} = p'_{2m'} \iff \alpha'_{2m'} := \alpha_{2m} < 0 \iff p_{m} \in \gamma_{2}$$

This time, low sub-levels are dominated by the join of weighted barycenters $(\gamma_1)_{\rho_1,\underline{\alpha}_1} \star (\gamma_2)_{\rho_2,\underline{\alpha}_2}$.

Analysis of sub-levels, $\chi(\Sigma) \leq 0$

The weighted barycenters, hence their join, **could be contractible**.

Analysis of sub-levels, $\chi(\Sigma) \leq 0$

The weighted barycenters, hence their join, could be contractible.

This happens if

$$\sigma \in (\gamma_i)_{\rho_i,\underline{\alpha}_i} \quad \Rightarrow \quad (1-t)\sigma + t\delta_{\rho'_{i1}} \in (\gamma_i)_{\rho_i,\underline{\alpha}_i} \quad \forall t \in [0,1];$$

which means, in terms of ρ ,

$$4\pi \left(K + \sum_{m \in \mathcal{M}} \left(1 + \alpha_{im}' \right) \right) < \rho_i \ \Rightarrow \ 4\pi \left(k + \sum_{m \in \mathcal{M} \cup \{1\}} \left(1 + \alpha_{im}' \right) \right) < \rho_i.$$

Analysis of sub-levels, $\chi(\Sigma) \leq 0$

If this does not happen for either i, then $(\gamma_1)_{\rho_1,\underline{\alpha}_1} \star (\gamma_2)_{\rho_2,\underline{\alpha}_2}$ is not contractible.

Analysis of sub-levels, $\chi(\Sigma) \leq 0$

If this does not happen for either i, then $(\gamma_1)_{\rho_1,\underline{\alpha}_1} \star (\gamma_2)_{\rho_2,\underline{\alpha}_2}$ is not contractible.

B. (2015)

Suppose $\rho \notin \Gamma$, $\chi(\Sigma) \leq 0$, $\max\{\alpha_{1m}, \alpha_{2m}\} \geq 0$ for all m and

$$4\pi \left(K_i + \sum_{m \in \mathcal{M}_i} \left(1 + \alpha'_{im} \right) \right) < \rho_i < 4\pi \left(K_i + \sum_{m \in \mathcal{M}_i \cup \{1\}} \left(1 + \alpha'_{im} \right) \right)$$

for some $K_1, K_2 \in \mathbb{N}$ and $\mathcal{M}_i \subset \{2, \dots, M'_i\}$. Then the A_2 Toda system has solutions.

- ◆ □ ▶ ◆ ■ ▶ ◆ ■ → りへの

Luca Battaglia S.I.S.S.A.

Analysis of sub-levels, general surfaces

In the general case, we need a sharper analysis.

Analysis of sub-levels, general surfaces

In the general case, we need a sharper analysis.

Roughly speaking, in case of concentration at the same point with the **same rate**, the point must be given a higher weight.

Analysis of sub-levels, general surfaces

In the general case, we need a sharper analysis.

Roughly speaking, in case of concentration at the same point with the **same rate**, the point must be given a higher weight.

If $\rho_1 < \overline{\rho}_1, \, \rho_2 < \overline{\rho}_2$, where

$$\overline{\rho}_i := 4\pi \min \left\{ 1, \min_{m \neq m'} (2 + \alpha_{im} + \alpha_{im'}) \right\},$$

then low sub-levels are dominated by

$$\mathcal{X} = (\Sigma)_{\rho_1,\underline{\alpha}_1} \star (\Sigma)_{\rho_2,\underline{\alpha}_2} \setminus \left\{ \left(p_{\textit{m}},p_{\textit{m}},\frac{1}{2}\right): \; \rho_1,\rho_2 < 4\pi(2+\alpha_{1\textit{m}}+\alpha_{2\textit{m}}) \right\}.$$

→□ → →□ → → = → □ → ○ へ ○

Analysis of sub-levels, general surfaces

Since, for such ρ , both $(\Sigma)_{\rho_i,\underline{\alpha}_i}$ are finite, than \mathcal{X} is easy to study:

Analysis of sub-levels, general surfaces

We need some assumptions to get a not-contractible space:

B. (2015)

Suppose $\rho \notin \Gamma$, $\rho_i < \overline{\rho}_i$ for both i and

$$(\textit{M}_{1}, \textit{M}_{2}, \textit{M}_{3}) \not \in \{(1, m, 0), (m, 1, 0), (2, 2, 1), (2, 3, 2), (3, 2, 2), \ m \in \mathbb{N}\},$$

with M_1 , M_2 , M_3 defined by

$$M_1 := \#\{m : 4\pi(1+\alpha_{1m}) < \rho_1\},\$$

$$M_2 := \#\{m : 4\pi(1 + \alpha_{2m}) < \rho_2\},\$$

$$M_3 := \#\{m : 4\pi(1+\alpha_{im}) < \rho_i, \rho_i < 4\pi(2+\alpha_{1m}+\alpha_{2m}) \text{ for both } i\}.$$

Then the A_2 Toda system has solutions.

200

General systems

We made topological assumptions on Σ to get general existence results.

In fact, if Σ has a "simple" topology, general systems could not be solvable

General systems

We made topological assumptions on Σ to get general existence results.

In fact, if Σ has a "simple" topology, general systems could not be solvable.

On the standard unit disk we get, through a Pohožaev identity, **necessary** algebraic conditions.

General systems

B.-Malchiodi, preprint

The following problem on the unit disk \mathbb{B} :

$$-\Delta u_i = \sum_{j=1}^N a_{ij} \rho_j \frac{|\cdot|^{2\alpha_j} e^{u_j}}{\int_{\mathbb{B}} |x|^{2\alpha_j} e^{u_j} dx} \qquad u_i|_{\partial \mathbb{B}} = 0 \qquad i = 1, \dots, N,$$

has no solutions if ρ satisfies

$$\Lambda_{\{1,\ldots,N\},\rho}(\rho) = 8\pi \sum_{i=1}^N (1+\alpha_i)\rho_i - \sum_{i,j=1}^N a_{ij}\rho_i\rho_j \leq 0.$$

General systems

Comparison with existence results for the A_2 Toda system:

General systems

Similar results hold on the unit sphere with antipodal singularities:

B.-Malchiodi, preprint

The following problem on the unit sphere \mathbb{S}^2 :

$$-\Delta \textit{u}_{\textit{i}} = \sum_{j=1}^{\textit{N}} \textit{a}_{\textit{ij}} \rho_{\textit{j}} \left(\frac{e^{\textit{u}_{\textit{j}}}}{\int_{\mathbb{S}^2} e^{\textit{u}_{\textit{j}}} d\textit{V}_{\textit{g}}} - \frac{1}{4\pi} \right) - 4\pi \sum_{\textit{m}=1}^{2} \alpha_{\textit{im}} \left(\delta_{\textit{p}_{\textit{m}}} - \frac{1}{4\pi} \right),$$

has no solutions if ρ satisfies:

$$\begin{array}{lll} \text{either} & \Lambda_{\mathcal{I}, p_1}(\rho) \geq \Lambda_{\{1, \dots, N\} \setminus \mathcal{I}, p_2}(\rho) & & \forall \, \mathcal{I} \subset \{1, \dots, N\} \\ & \text{or} & \Lambda_{\mathcal{I}, p_2}(\rho) \geq \Lambda_{\{1, \dots, N\} \setminus \mathcal{I}, p_1}(\rho) & & \forall \, \mathcal{I} \subset \{1, \dots, N\} \end{array}$$

and at least one inequality is strict.

2000

General systems

Comparison with existence results for the A_2 Toda system:

A₂ Toda system

We also get a non-existence results for the A_2 Toda system on any surface.

S.I.S.S.A.

A₂ Toda system

We also get a non-existence results for the A_2 Toda system on **any** surface.

If we take a couple of coefficients $(\alpha_{11}, \alpha_{21})$ close to -1 we show, through a blow-up analysis, that no solutions exist.

B.-Malchiodi, preprint

For any fixed $\alpha_{12},\ldots,\alpha_{1M},\alpha_{22},\ldots,\alpha_{2M}$ and $\rho\not\in \Gamma_{\underline{\alpha}_{1\widehat{1}},\underline{\alpha}_{2,\widehat{1}}}$ there exists $\alpha^*\in (-1,0)$ such that the A_2 Toda system has no solutions for $\alpha_{11},\alpha_{21}\leq \alpha^*$.

THANK YOU FOR YOUR ATTENTION!