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ON THE EXISTENCE OF COMPONENTS OF TH E 
NOETHER-LEFSCHETZ LOCUS WITH GIVEN CODIMENSION 

Ciro Ciliberto* and Angelo Felice Lopez** 

It is known that the codimension c of a component of the Noether-Lefschetz 
locus NL(d) satisfies d -  3 < c < (a31). We prove that  for d > 47 and for every 

9 -~ d - -1  integer c C [~d2, ( 3 )1 there exists a component of NL(d) with codimension c. 
This is done with families of surfaces of degree d in jp3 containing a curve lying 
on a cubic or on a quartic surface or a curve with general moduli. Moreover 
we produce an explicit example, for every d > 4, of components of maximum 
codimension (d31), thus giving a new proof of the fact that these components 
are dense in the locus of smooth surfaces (density theorem). 

1. I n t r o d u c t i o n  and  s t a t e m e n t  o f  t he  m a i n  resu l t s  

Let ~ 3  be the projective space of dimension 3 over the complex numbers. 

For d > 4 we denote by lP N = lP(d+3) -1 the projective space whose points 
correspond to surfaces of degree d in lP 3 and by S(d) C lP/v the open subset 
consisting of points corresponding to smooth surfaces. 

By the Noether-Lefschetz theorem, there is a countable set of proper  irre- 
ducible closed subvarieties of S(d) such that for every point s outside the union 
of these subvarieties, the corresponding surface S has Pie S ~ ~ generated 
by Os(1). The union of the mentioned subvarieties, i.e., the locus of surfaces 
with Picard group different from ,~, is called the Noether-Lefschetz locus and 
denoted NL(d). 

This paper concerns the study of the geometry of components of the 
Noether-Lefschetz locus started by M. Green, C. Voisin, C. Ciliberto, J. Harris 
and R. Miranda. 

Let W be an irreducible component of NL(d) and denote by c its codi- 
mension in S(d). Then one has the inequalities 

d -  3 K c K pg(d) 
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where pg(d) - =  (d31) is the geometric genus of any smooth surface of degree d 
in /p3  (see [CGGH],[Grl]). If c < 2 d -  7 for d >_ 5, then either c = 2d - 7 (and 
W is the component of surfaces containing a plane conic) or c = d - 3 (and W 
is the component of surfaces containing a line) (see [Gr2],[V1]). On the other 
hand, there are infinitely many components with c = po(d) and their union is 
dense, in both the Zariski and the natural  topology, in S(d) (see [CHM]). We 
consider here the following question: Which integers c E [d-3,pg(d)] actually 
occur as codimensions of a component? 

It is the purpose of this paper to give a partial  answer to the above ques- 
tion. We will prove the following theorem. 

T h e o r e m  1.1.For any d > 8 there exists a component of the Noether- 
Lefschetz locus NL(d) of codimension c for every integer c such that 

m i n { 3 d U _ 1 7 d  19 9d_~ - -j, < c < v / d )  

Note that  this result leaves the question open for lower codimensions, 
9 _a namely c < ~d2 for d > 47, in which case it is heuristically reasonable to 

expect gaps in the range of possible codimensions: To have small codimension 
means to have curves of small degree and hence few components of the Hilbert 
scheme. 

By C. Voisin's result [V1], there is indeed a gap between d - 3 and 2d - 7 
for d > 6. The next expected gap is between 2 d - 7  and 3 d - 1 2  for d_> 7 
( 3d - 12 is the codimension of the locus of surfaces containing a plane cubic). 

For any real number x, denote by Ix] the smallest integer k _> z, and by 
Ix] the largest integer k <_ x. Now define co(d) = min{k E [d - 3,pg(d)] N 2g:  
Vc E [k,pg(d)] N 2g there exists a component of codimension c}. By Theorem 
1.1 and [V1] we have 

for d _> 47. 

One weaker version of the question of finding the integers that can occur as 
codimensions would be to give c0(d) explicitly as a function of d. We have not 
a t tempted to address this question. 

In this circle of ideas, it may also be worthwhile to recall the following con- 
jecture: For d k 5 there are finitely many components of eodimension strictly 
smaller than pg(d). 

This is known to be true for d = 5 (see [V1]) and for d = 6,7 for reduced 
components (see [V2]). As for the proof of Theorem t.1, the idea is to introduce 
some sufficient conditions for a component of the Hilbert scheme to give rise 
to a component of the Noether-Lefschez locus. Let us recall that a coherent 
sheaf ~- on ~ n  is said to be m-regular if Hi(~an,.T(m-i))  = 0 Vi > 0. By 
Castelnuovo-Mumford's lemma ([Mu], p. 99) if ~ is m-regular, then the map 
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H~ | H~ ",  O p , ( 1 ) )  ~ H~ is surjective for k > rn 
and Hi (~" ,J : (k ) )  = 0 whenever i > O,k+i > m. In particular ~- is ( m + l ) -  
regular. We will use this notion in the following basic lemma. 

L e m m a  1.2. Let W be a component of Hilb~ 3 and consider the incidence 
correspondence 

{(S,C) : C C S} C_ ~ N  • W 

p N  W 

Let W(d) = Im 7r 1 and let C be a curve representing the generic point of W. 
Suppose that C is smooth irreducible, that the ideal sheaf Jc  of C is ( d -  1)- 
regular and H l ( J c ( d  - 4)) = 0 Then W(d)  is a component o / t h e  Uoethcr 
Lefschetz locus and 

codims(d)W(d) = h~ - 4)) - dim W + 4 deg C. 

Once we have this, a simple study of well-known components of Hilb~ ~ 
namely components of curves of general moduli (w of curves lying on a smooth 
cubic surface (w and on a smooth quartic surface (w together with the 
analysis of their codimensions, leads to the result. 

Finally we use Lemma 1.2 to give an explicit construction of components 
of maximum codimension and therefore a new proof of the density theorem 
below. 

T h e o r e m  1.3 ( D e n s i t y  T h e o r e m ) .  The set of components of maximum 
codimension pg(d) is dense in S(d) in the natural topology. 

The proofs of these three statements (Theorem 1.1, Lemma 1.2, Theorem 
1.3) will be collected in w 

2. C o m p o n e n t s  g iven  by  cu rves  w i th  g e n e r a l  modul i  

Let n ,g  be integers such that n >_ 3, 0 < g < 4n~12. By Brill-Noether 
theory ([EH]) it is known that  there is a component Wn,g C H,,g,3 dominating 
Mg and such that if C is a general curve in W~,g and Nc is the normal bundle 
of C in//93, then HI(Nc)  -- 0 ([Gi]) and C is maximal rank ([BE]). Let d > 8 
such that n(d - 4) - (d~l) + 1 < g; then 

(1) Hl(Jc(d-4) )  = Ha(Oc(d-5)) = O, 

i.e., 2c is ( d -  3)-regular: In fact, 2 g -  2 ~ 2 ( 4 n -  12) - 2 < n ( d -  5), 

hence Hl(Oc(d -5 ) )  = 0 and (d;1) = hO(Op~(d_ 4)) _> n ( d -  4) - g + 1 = 
h~ - 4)), therefore Hl(2c(d - 4 ) )  = 0 by maximal rank. 

By Lemma 1.2, Wn,g gives rise to a component Wn,g(d) of gL(d)  such 
that cl(n,g) -- codims(d)Wn,g(d) = h~ - 4)) = n(d - 4) - g + 1. 
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P r o p o s i t i o n  2.1. With the above inequalities ca(n,9 ) takes all the integral 
19 values in the interval [�88 2 -- ~ d  + T,p~(d)]. 

Proof: We have d > 8, n > 3 and max{0, n ( d - 4 ) -  (a;1) + 1} < g < 4n--12 

hence the two domains A1 = { (n ,g ) :  3 < n < ~ ( ~  - 2 d +  3),0 < g < ~ / ~ }  
and B1 = {(n ,g) :  ~(d 2 - 2 d + 3 )  < n < d~--6d2+nd-a6 - z J  ~ ~-~= , " ' ~ -  ~) - (~7')  + 1 < 

da--6d=-{-lld-36 Clearly Cl(n,g) g _< ~ A ~ } .  Set/3 = ~(d 2 - 2d + 3) and 7 = 6d-a2 
takes all the values in the set XA, U XB~, where 

and 

XA,= U 
3 < n < f l  

4n - 12 

3 
- -  + l , n ( d - 4 ) + l ]  A ~  

r 4n 12 1 
xB, = U ./"( d -  4) 1,pg(d)/j n 3 .  

~<n<'r 

Let al(n)  = n ( d - 4 )  4"a12 +1  and bl(n) = n ( d - 4 ) + l .  Since they are both 
increasing functions of n, and 

a,(n + 1)  < b l ( f~  ) <:=} n ]> 3-d  - -  1, 
- - 4 

we have 

(2) XA, 2 [ a i ( p ] d -  11),b,([/3])] n 3 .  

1 ,~ 3 1 Write d = 4k + s, 0 < s < 3; then F�88 11 = ~d - 1 + i s  _ ad - Z, so 

(a) 3d2 - ~ d  + 19 

Now write instead d = 6k + s, 0 < s < 5; then 

{/3 i fc  = 3,5 
[/3] = /3 s if c = 4 >/3 5 

/ 3 - d - 2 ~ i - a  i f r  6 

hence 

(4) bl([/3]) > bl(/3- 5)= (d-1) ~ 
- 6 a - ( d -  4 ) .  

Putt ing together (2), (3) and (4) we get 

(s)  X A 1 D [ ~ d 2  17 d 19 ~ ( d -  ,,T. _ - -~ + -~-,pg(d) - 4)] F1 
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Moreover, by the above computation we have [fl] = fl + u, where 

i i fe  = 3 , 5  
i f e = 4  2 

u =  i f e = 0 , 2  < 3 '  
i i fe  = 1  

hence 

2 1 (3d3  _ 2 2 d 2 + 5 3 d _ 2 2 )  as([Z3) = a l ( Z + = )  a l (Z + 5 ) =  

=pg(d)  - ~(d ~ - 5 d + l ) .  

Therefore 

9 

XB1 = [al ( [fl] ), pg (d)] N 2g _D ~g(d) - 9 (d2 - 5d + 1), pg (d)] Cl 2g. 

This, together with (5), proves the proposition. | 

3. C o m p o n e n t s  g iven by  c u r v e s  l y i n g  on a s m o o t h  cubic  sur face  

Let S be a smooth cubic surface in jpa. As is well known, S is isomor- 
phic to the blowing-up of _~2 at six points, P1 , . . . ,P6 ,  in generM position, 
and, if 7r : S ~ i p2 is the blowing-up morphism, g E P i e s  is the class of 
7r*O~(1) and ei C P i e s  i = 1 , . . .  ,6, is the class of the exceptional divisor 
zr-l(Pi), then Pie S ~ 2~ 7 generated by g , - e l , . . . , - e 6  ([H1]). We will denote 

6 

by (a, b l , . . . , b 6 )  the class of a t -  ~ bie i E P i e s  for a, b l , . . . , b 6  E 2g. For 
i = 1  

every n _> 13, let us define the function 

n - 9 83 
F(n)  = - - g - - , / 1 2 n  - 134 + 2n - 1--2" 

First we want to show the following. 

P r o p o s i t i o n  3.1. For every pair of integers n ,g  such that n >_ 13 and 
F ( n )  < g < ~n(n - 3) + 1, there exists a smooth irreducible curve C C S oJ 
degree n, genus g and such that HI(:Jc(3)) = O. 

In the proof of the above proposition, and also later on, we will use the 
ensuing lemma of Kleppe. 

L e m m a  3.2.Let C be an effective divisor on S of type (a, b l , . . .  , b6) with 
bl >_ b2 >_.. .  >_ b6 and a >_ bl + b2 -4- b3. Then 

6 
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with the following two exceptions: 
I. if C is of type (A, t)l  = (A + 3t, A + t, t, t, t, t, t) for A >_ 2, then 

6 

H l ( 2 c ( g ) )  # 0 r g e [b6,2a - E b i  - 1) = [t,2A + t  - 1) 
i = 2  

and 
2. if  C is of type (A, t)2 = (3t, t, t, t, t, t, t - A) for A > 2, then 

6 

H I ( J c ( s  r 0 ~ e e (b6,2a - ~ - ~ b i  - 1] = (t - A,t + A - 11. 
i = 2  

Proof of Lemma  3.2: See [K], Prop .  3.1.3. | 

Proof of Proposition 3.1: By L e m m a  3.2 to find curves C C S satisfying 
H l ( J c ( 3 ) )  = 0, it is enough to find divisors of type  (a, b l , . . .  ,b6) on S such 
tha t  

(6) a > bl + b2 + b3 

b~ > b2 > .- .  >b6  _>3 (b6>4  if type  (A , t ) l ) .  

These  two condit ions guarantee  tha t  the general  divisor of type  (a, b l , . .  �9 b6) 
is smooth  i r reducible  ([H1], V,4.12 and Ex. 4.8). 

Now the  proof  of Propos i t ion  3.1 is just  a simple modif icat ion of Gruson 
and Peskine 's  p roof  of existence of smooth  irreducible curves on a smooth  cubic 
surface. We will use the same no ta t ion  here  as in [H2], w 

Set r = a -  bl, ai  -- �89 - bi, i = 2 , . . . , 6 .  Since 

6 

n = 3a - E bi 
i = 1  

6 
1 2 n) + 1 ,  g = -~(a2 - E b  i - 

i = 1  

we have 

with 

6 
1 3 

i = 2  

1 
b i =  - r - a i ,  i = 2 , . . . , 6 ,  

2 

(7) 1 
(mod 1), i = 2 , . . . , 6  and 

6 
3 

y ]  -- 0 
i =2  

(mod 2). 
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The inequali t ies (6) t r ans la t e  into 

1 - 3  
(6)' -< _< - < < 3 

- ~ 2  + a3 + ' "  + a s  _< n -  ~r  

and 

6 
1 2 

(8) g = F . ( r )  - Z 
i = 2  

1 3 2 where Fn(r) = ~ ( ( r  - 1)n - ~r  ) + 1. Wi th  this no ta t ion  se tup ,  it is easy to see 
that  the  s a m e  p roof  of  L e m m a  1.1 of  [H2] goes t h rough  to show tha t  Vn,  r, g 

such t ha t  n > 13, l V + ~  < r < 2 and Fn(r 1) < 9 < Fn(r), there  - -  3 ~ n  - -  

1 exist c~i E ~2~, i = 2 , . . .  ,6 sat isfying (6)'  and  (7), such t h a t  g is given by  (8). 
Let us r e m a r k  a numer ica l  consequence:  

(9) 
if one of the  above divisors,  i.e., given by  n, r, ~ 2 , . . . ,  ~6, 

is of type  (A, t) l  of  L e m m a  3.2, then  b6 > 4. 

To see (9) we just  have to observe  t h a t  if (a, b l , . . .  , 5 6 ) = (/~ + 3t, A + t, t, t, t, t, t) 

for some A > 2, then  r = 2t > 17+v'~ > 7.2, hence r > 8 and  b 6 -~ t > 4. 
- -  - -  3 - -  - -  - -  

Hence (9) shows tha t  even if a m o n g  the divisors we found there  are some of 
type (~ , t ) l  , w e  still have H1(2c(3))  = 0 (by L e m m a  3.2). 

To finish the p roof  of P ropos i t ion  3.1, let 

[ 1 7 + ~ / 1 2 n - 1 3 4 ]  and r l - -  1 ~ / 1 2 n - 1 3 4 + 7 .  
r 0  ---~ 3 

Then,  by the  above modif ica t ion  of L e m m a  1.1 of [H2], we get t ha t  any integer  
g such t ha t  Fn(ro - 1) < g < F,=(~n) = 61n(n-3)  + 1 is a t t a ined  as in (8), 
i.e., as the  genus of a s m o o t h  i r reducible  curve of degree n; since r l  > r0, any  
integer g such tha t  

F i n )  _ n - 9 ~/12n - 134 + 2n 83 T 1 2 - F " ( r l ) < g <  n ( n - 3 ) + l  

is also a t ta ined .  II 

C o r o l l a r y  3 .3 .  For every n > 13 and g such that F(n)  < g << ~ n ( n - 3 ) + l  
there exists a component Kn,g C Hn,g,3 of dimension n + g + 18 such that its 
generic curve is as in Proposition 3.1. 

Proof: This  is an easy consequence of the fact t ha t  H1(2c(3))  = 0. One can 
use for example  [K], Corol. 3.1.10. II 

Our  next  goal is to cons t ruc t ,  as usual  with the  help of L e m m a  1.2, com- 
ponents  of the  Noether-Lefschetz  locus, whose generic surface contains a curve 
lying on a cubic surface. 
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L e m m a  3 .4 .  Let n > 13, g such that F ( n )  < g < ~ n ( n - 3 )  + 1, 

2 
d >  l n + 3 + ~ v / n 2 - 3 n + 6 - 6 g  

and C a curve as in Proposition 3.1. Then 

H ' (2c(e ) )  = 0 Ve >_ d - 4 ,  (10) 

and 

(11) 
H ( O c ( d - 4 ) )  = 0 

H l ( O c ( d - 3 ) )  = 0 

unless C is a complete intersection of 
S and d--  ln+3.  
for every C. 

Proof." To show (10) we use Lemma 3.2. 'Therefore, with the exception of type 
6 

()~, t)2, we need to show that d -  4 _> 2a - ~ bi - 1, i.e., with the notation of 
i = 2  

the proof of Proposition 3.1, that 

6 

d > 2 a - E b i + 3 = n - a + b l + 3 = n - r + 3 .  
/ = 2  

2 2 2 By the proof of Proposition 3.1 we have g_<Fn(r), so r> ~n -~  ~/n - 3 n + 6 - 6 g ,  
hence 

1 2 
n - r + 3 _ <  ~ n + ~ v / n  2 - 3 n + 6 - 6 g + 3  <d ,  

by hypothesis. Now if C is of type (A, t)2, we need to show that d - 4 _> t + A. 
1 2 + 2At - 3t - A + 2) and n 2 - -  3n + 6 - 6g = 4• 2, H e r e n = 3 t + A , g =  ~(3t -A2 

hence 

d > g ( 3 t + a ) + 3 +  ~ = t +  3 + 3 > t + A + 4  

since A > 2. As for (11) we notice that 

(1 2 ) 
n(d-4)  > n  ~ n - l + ~ v / n  2 - 3 n + 6 - 6 g  > 2 g - 2 ,  

with both equalities holding if and only if g = }n(n-3)  + 1 and d = ~n+3.~ II 

Coro l l a ry  3.5. Let n , g , d  be three integers such that n >_ 13, F i n  ) < 
g_< I n ( n - 3 ) + 1  and d~_ �89  ~v/n 2 - 3 n + 6 - 6 g .  Then there exists a 
component Kn,g(d) of the Noether-Lefschetz locus Nn (d )  such that 

c3(n,g) = codims(d)K,,g(d) = n ( d - 1 ) -  2g - 17 
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except if g = ~n(n-3)+l ,d  = �89 in which case c3(n ,g)  = n ( d - 1 ) - 2 g - 1 6 .  

Proof: By Corol lary 3.3 and L e m m a  3.4 we know tha t  there  is a componen t  
K, ,g  of  the  Hilbert  scheme whose generic curve C satisfies the hypotheses  of 
Lemma 1.2. In fact (10) and  (11) imply  tha t  Hl(Jc(d-2))  = H2(3c(d-3)) = O, 
i.e., t ha t  2c  is (d -1 ) - regu la r .  By L e m m a  1.2 we have 

codims(d)K.,a(d) = n ( d - 4 )  - g + 1 - d im K . , 9  + 4n + ha(Oc(d-4)) 
= n ( d - 1 )  - 2g - 17 + hl(Oc(d-4)). 

By (11) of L e m m a  3.4 we have tha t  HZ(Oc(d-4))  = 0 unless C is a complete  
intersection of  S and a surface of  degree 3 and d = 3 + 3 .  In the lat ter  case 
we -~ 0 c ( ~ - 1 )  = Oc(d-4) ,  hence h'(Oc(d-4))  = 1. | 

We now come to the s tudy  of  the integral  values a t t a ined  by the funct ion 
ca(n, g). To somewhat  simplify the result and the proof,  we will assume some 
suitable l imitat ions on the variables n and d. Set 

281 -- 3F(23)  1 
0 / 1 -  1587 ' a -  x / ~  

and let n, g, d be integers such tha t  

(12) 

d is even 
n > 2 3  
max{26,  n} < d < a l n  2 
F(~)  < g < ~ n ( . - a )  + 1. 

P r o p o s i t i o n  3.6.For n,g,d satisfying (12), we have ]v /n2-3n+6-6g+ 
ln+3 <<_ d and the function c3(n,g) = n ( d - 1 )  - 2g - 17, representing the 
codimension of the components of Corollary 3.5, takes at least all the integral 
values in the interval [c~d~ +2d-  ~ - d - ~ - d � 8 9  ~- ,d2-2d-16-2F(  d-1)).  

Proof: First  observe tha t  for n > 23, we have 

2 2 

therefore we are in the range of Corol lary 3.5. Since cs(n, g) e n + 1 (rood 2), 
we see tha t  ca(n,g) takes all the values in the  set X = A3 U B3 where 

Aa = U [ ~ ( ~ - 1 ) -  1 5 ,~ (n-3 )  - 19, n ( d - 1 )  - 2F(n)  - 17) n (2Z~) 
n odd  

2 3 < n < d < c ~ z n  ~ 

and 

B3 = U 
,~ even 

2 4 < n < d < v q n  2 

[~(d-1)- 1 ~ n ( n - 3 ) -  19, n ( d - 1 )  -2F(n)- 17) N (2g\22g) .  
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1 
a3(rt) = Tt(d--1) - 5 n ( n - - 3 )  -- 19 and 

b3(n ) ~--- n ( d - 1 )  - 2 F ( n )  - 17. 

F rom d > n follows tha t  a~(n) > 0 and b~(n) > 0, hence tha t  they are increasing 
functions.  Moreover  it is easily seen tha t  

a3(n + 2) _ b3(n) ~ d < l ( n 2  + n + 1 0 -  6 F ( n ) )  
O 

(13) 

and  

(14) n 2 + n + 1 0 -  6 F ( n )  
a l  = inf 

n>23 6 n  2 

Suppose  first tha t  n is odd and set n = 2m + 1 with max {11, ~d~-_____~l } _< 
m < d~_~2. By (14) we have 1 2 _ g(n + n + 10 - 6 F ( n ) )  >_ C~I n2 ~ d, hence 

a3(2(m + 1) + 1) = a3(n + 2) _< b3(n) = b3(2m + 1) 

by (13) and  therefore  

A3 = U [.3(2., + 1), b3(2m + 1)) n (2~) 

contains the  set [ a3 (2 [~e-g~]  + 1 ) , b3 (d -1 ) )  N (22~). But  

. ~ad�89 ad�89 
a ~ ( 2 | ~ |  + 1) <_ ~ (2 ( - -  V -  + 1) + 1) = ~(~d~ + 2) = 

+ 2 d -  a 2 d -  
4 ~  61 

old ~ 
3 3 3 

therefore  

(15) A3 2 [a3(ad~ + 2), b3 (d -1 ) )  • ( 2 ~ ) .  

d As above, by (14) Now let n = 2m be even, with max{12,  } < m _< 7" 
and (13) we have a3(2(m + 1)) = aa(n + 2) < b3(n) = b3(2m), hence 
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contains the  set [a3(2[~-~1), b3(d)) M (2~',2~). 

Since + 1) )=  + 2), we deduce  

(16) B3 D [a3(ad~ + 2), b3(d)) N ( 2 ~ \ 2 ~ ) .  

Finally, since b 3 ( d - 1 )  < b3(d), combining  (15) and  (16) we get 

X D [a3(ad�89 + 2 ) , b 3 ( d - 1 ) )  M 2g. | 

4. C o m p o n e n t s  g iven by curves ly ing on  a s m o o t h  quart ic  surface 

Let n and  g be  integers such t ha t  

1 2 
(17) n > 1 7 a n d 4 n - 3 2 < g <  ~ n  . 

Following Mori  ([Mo]), we will show the existence of smoo th  i r reducible  curves 
on a smoo th  quar t ic  surface in ~o3 having some ex t r a  proper t ies .  

P r o p o s i t i o n  4.1 .  Let e be an integer such that ~ > �88 + 3 V / ~  - 8g) 
or g = 4. Then for  every n, g satisfying (17), there exists a smooth irreducible 
curve C of degree n, genus g, lying on a smooth quartic surface in j~:~3 and such 
that g 1 (3c(g))  = 0. 

Proof: Set i0 = [ n - ~ ]  = m a x { i  > 1 : g - i n  + 2i 2 > 0, n - 4 i  > 1} and  
L 4 J - -  - -  - -  

I / t~2 n' = n - 4 i o , g '  = g - i o n + 2 i ~ .  Clearly we have n '  > 0, g' > 0, g' < ~t,n ) and  
(n ' , g ' )  # (5,3):  In fact if n '  = 5, g '  = 3, then  i0 = - ~ , 8 g  - n 2 + 1 = 0, hence 
i0 = [~-~]  = ~ _ t  which is a contradic t ion.  Therefore  by [Mo], T h e o r e m  1, 
there exists a s m o o t h  i rreducible  curve  C '  of degree n ' ,  genus g '  on a nons ingular  
quart ic surface X C_ .~3. Let H be the  hype rp lane  section of X and  let C be 
a generic e lement  of the linear sys tem IC' + ioH[ on X.  I t  is easy to show 
that  IC' + ioH I is very ample  (for example  using a theorem of Sa in t -Donat ;  see 
[Mo], T h e o r e m  5) because  i0 > 4 (since g > 4n - 32).  Therefore  C is smoo th  
irreducible and  deg C = n '  + 4i0 = n, genus of C = g'  + 2i02 + 1 + ion'  - 1 = g. 
For every integer  ~ we have 
(18) 

Hl(Jc(e)) = HI(Ox(gH-C))  = H l ( O x ( ( g - i o ) H - C ' ) )  = Hl(3c,(e-io)). 

Since i0 > 4, (18) shows tha t  H 1 ( 3 c ( 4 ) )  = 0. On the o ther  hand  if g > 
+ 3 ~ _ S g ,  t h e n g _ i o  > d e g C ' - 2 :  In fact 

- 4 J <  4 

so g - i0 > n - 4i0 - 2 = d e g C '  - 2. Hence H~(3c(g))  = 0 follows by (18) and 
Cas te lnuovo 's  comple teness  theorem.  I 
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Corollary 4.2 .  For every n ,g  satisfying (17), there exists a component 
Qn,g C_ Hn,g,3 of dimension g + 33 and such that its generic curve is as in 
Proposition 4.1. 

Proof: Again  follows easily f rom H1(2c(4)) = 0 and,  for example,  [K], Remark  
3.1.12. I 

To const ruct  componen ts  of  the Noether-Lefsehetz locus whose generic 
surface contains a curve lying on a smooth  quar t ic  surface, we will use L e m m a  
1.2 again. 

L e m m a  4 .3 .  Let n , g , d  be three integers such that n >_ 17, 4n - 3 2  <_ g < 
1 2 a n d d >  x gn _ i n  + 4 + �88 - 89 and let C be a curve as in Proposition 4.1. 
Then 

(19) H ' ( 2 c ( g ) )  = 0 Vg > d - 4, 

(20) H'  ( O c ( d - 4 ) )  = O. 

Proof: Since d - 4  > �88 + 3 v f ~  - 8 9 ,  (19) follows f rom Propos i t ion  4.1. More- 
over, n ( d - 4 )  > 1 2 1 2 _ i n  + 43-nvfn ~ - 89 > 29 - 2 since g < gn  , therefore we get 
(20). = 

C o r o l l a r y  4 .4 .  For every n , g , d  as in Lemma 4.3, there exists a compo- 
nent Q,,g(d) c_ NL(d )  such that 

c4(n,g) = codims(d)Q,,g(d) = n d -  2 9 -  32. 

Proof." By L e m m a  4.3 and  Corol lary 4.2 we know that  there  is a component  
Qn,g of the Hilbert scheme such tha t  its generic curve C has the ideal sheaf 
(d -2 ) - r egu la r .  So L e m m a  1.2 gives 

codims(d)Q,,g(d) = n ( d - 4 )  - g + 1 - d im Q,,g + 4n = n d  - 29 - 32. | 

As in the case of cubics, we will put  some restr ict ion on the variables n 
and d to s tudy  the values of c4(n,g). Namely, we will assume 

(21) 

d is odd and  >_ 15 
1 7 < n < d + 8  

1 2 4 n - 3 2 < g <  gn . 

1 P r o p o s i t i o n  4 .5 .  For n, g, d integers satisfying (21), we have d >_ ~n + 

4 + �88 s9 and the function = - 2 9  - 32, representing the 

352 



C I L I B E R T O - L O P E Z  

codimension of the components of Corollary 4.4, takes all the integral values in 
the interval 

[ ( 2 d - 1 6 ) ~  + 14d - S0, d 2 - d - 24]. 

Proof: Since g > 4n - 32 we have 

1 1 3 
4 - n + 4 + ~ V " - - 8 g < - ~ n + 4 + ~ v / ( n - 1 6 )  2 = n - s  < - 

therefore we are in the range of Corollary 4.4. Now c4(n,g) ~- n (mod 2), 
hence c4(n,g)  takes all the values in the set X = A4 U B4 where 

and 

A 4 = U 
n odd:  

1 7 < n < d + 8  

(nd - ~n 2 - 32, n ( d - 8 )  + 32] VI (~ \22g)  

B4 : U ( n d -  ~n  2 - 32, n ( d - 8 )  + 32] (3 (22~). 
n e v e n :  

18<n<d+7 

Set a4(n) = n d -  1 2 i n  - 32 and b4(n) = n ( d - 8 )  + 32. Then they are both 
increasing functions and satisfy 

(22) a4(n + 2) < b4(n) r n > 14 + 2 ~ .  

I f n i s o d d ,  set n = 2 m + l ,  w i t h 8 < m <  d+7 By  (22) we have 
- -  - -  2 " 

a4(2(m+l)  + 1) < b4(2m+l)  

if and only if m _> ~ + 2dv/~--S~-16, hence 

13 1), b,(,~+s)] n (z~,2z~). A4 D_ (a,(2 [-~ + x / -~ -~  + 

Since 

and b4(d+8) = d 2 - 32 we get 

(23) A 4 2  [a4(16 + 2 2 4 ~ - 1 6 ) , d  2 - 32] n (Z~2Z~). 

I f n i s e v e n ,  set n = 2 m ,  w i t h g < m <  d_~ Again by (22) we get 
- -  - -  2 " 

a4(2(m+l) )  < b4(2m) if and only if m > 7 + ~ ,  hence 
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B4 __D (a4(217 + ~ ] ) ,  b4(d+7)] f3 (22~). 

Now a4(217 + ~ ] )  < a4(2(8 + ~ ) )  : a4(16 -t- 2 ~ )  and 
b4(d+7) = d 2 - d - 24; therefore 

(24) B4 _D [a,(16 + 22dv~-d-Z~-16), d 2 - d - 24] n (2,~). 

Put t ing together (23) and (24) we get X _D [a4(16 + 2 ~ ) ,  at2 _ d -  24] Yl 2Z. 
| 

5. T h e  proo f s  o f  the  t h e o r e m s  

3 ~ d  9 -~ Proof of Theorem 1.1: F o r 8 < d < 4 6 w e h a v e  ~d 2 - -  + ~  < ~ d 2 , s o w e  
are done by Proposition 2.1. Suppose d odd _> 47. Then 

( 2 d - 1 6 )  2 4 Y ~ - - 1 6 + 1 4 d - 8 0 _ 2  < 9 d + - 4  < 3-d2-  17a4 + % - <  19 d 2 _ d _ 2 4 ,  

hence Propositions 2.1 and 4.5 show that there is a component of the Noether- 
Lefschetz locus NL(d) of any codimension c such that 

- -~-d+ %-,pg(d)]. 

If d is even > 48 we have 

o~ 2 4 ~ d � 8 9  < 9d~ < 3 d 2 1 7  19 d2_2d_16_2F(d_l) ' 
ad~ + 2 d - - ~ d -  3 3 - 2 - 4 - -~d+%- < 

hence Propositions 2.1 and 3.6 show that any c in the interval 

- ] - d  + %-,p.< j] 

occurs. | 

Proof of Lemma 1.2: To see that W(d) is a component of NL(d), we observe 
first that by Castelnuovo-Mumford's lemma, the projective ideal of C in ~3 is 
generated in degree less than d. If S is the generic surface of degree d containing 
C, then Corollary II.3.8 of [L] shows that P i e s  ~ 2Z 2 generated by Os(1) and 
Os(C). Let V be a component of NL(d) containing W(d) and S' be a surface 
representing its generic point. We can assume that there is a line bundle s  on 
S' that specializes to E = Os(C) when S' specializes (in V ) to S. We will be 
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done if we show that  s  is effective and h~ = h~163 (so t h a t / : '  corresponds 
to a deformation of C ). 

By semicontinuity we have h~ ') < h~ h2(/: ') < h2(/:), and h1(s  ') < 
h i (E)  = h l ( O s ( C ) )  = h l ( w s ( - C ) )  = h l ( 2 c ( d - 4 ) )  = 0, hence hl(/Z ') = 0. 
Therefore 

h0(~ ') = x ( c ' )  + h ' (C')  - h2(C ') = x ( C )  - h2(C ') _> X ( C )  - h~(C) = h~ 

So h~163  ') = h~163  and s  is thus effective. 
Now from the incidence correspondence, 

Z = { ( S , C ) : C c S } C _ n  ' N x w  
7s r ~7F2 

Im 7rl = W ( d )  C_ ~::~n W 

since S is the generic element of W(d), we get 

codim s( d) W ( d) = ( d ~ 3 ) - l - d im Im Tr l 

( d 3 3 )  1 d i m I + ( h ~  1) 

(d3+3) 1 d i m / +  h l ( O c ( d - 4 ) )  

= ( d ~ 3 ) - l - ( d i m W + h ~  

= h ~  - d i m W  - h~ + h l ( O c ( d - 4 ) )  

Since 2c is (d-1)-regular,  then H 1(2C(d)) = H l ( O c ( d ) )  = 0 by Castelnuovo- 
Mumford's lemma. Therefore the above computation gives 

codim W ( d )  = h ~ ( O c ( d ) )  + h i ( O c ( d - 4 ) )  - dim W 

= ( d e g C ) d - g ( C )  + 1 + h l ( O c ( d - 4 ) )  - d i m W  

= (d -4 )deg  C - g ( C ) +  1 + h ] ( O c ( d - 4 ) )  - d i m W  + 4deg C 

= h ~  - d i m W  + 4deg C. I 

As we claimed in the introduction, we proceed now to use Lemma 1.2 in 
order to explicitly construct a component of N L ( d )  of maximum codimension 
for every d > 4. Let C C ~3  be the projectively normal curve whose ideal is 
generated by the maximal minors of a (d-2)  x ( d - l )  matrix M, with entries 
linear forms, i.e., the ideal sheaf of C is defined by the minimal resolution 

0 --~ �9 d-2 M , o ~ . . ( 2 - d ) a - 1  ~ 3c  --+ O. 
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Then it is well known that HI(Nc)  = 0 where Nc is the normal bundle of C 
in •3 (see for example [Ga D and hence that C belongs to a unique component 
W1 of Hi lb~ z of dimension 4 deg C. By the above resolution, we see that Jc 
is (d-1)-regular and, of course, Hl(Jc(d-4))  = O. 

Let WI (d) be the component of NL(d) coming from W1 as in Lemma 1.2. 
Note that the general surface in Wl(d) has equation I LOqj I = 0, i=1, . . . ,  d - 2 , j =  
1, . . . ,  d -1  where the Lij's are linear forms and the Qj's are quadratic forms. 

Claim: codim s( ~) Wl ( d) = p~( d). 

Proof: Since Hi(No)  = 0, then dimW1 = 4degC,  hence Lemma 1.2 gives 

pg(d) - codim Wl(d) = (a;1) _ hO(Oc(d_4)) 

= h~ - h~ 

= h~ = O. | 

As M. Green pointed out, the existence of just one component of maximum 
codimension is enough to prove the density of NL(d) in S(d) in the natural 
topology (see [CHM], w Therefore our Claim implies Theorem 1.3. 
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